<iframe src="//www.googletagmanager.com/ns.html?id=GTM-5TSRKG" height="0" width="0" style="display: none; visibility: hidden">
Review Article
No access
Published Online: 17 October 2013

Regulation of SIRT1 by Oxidative Stress-Responsive miRNAs and a Systematic Approach to Identify Its Role in the Endothelium

Publication: Antioxidants & Redox Signaling
Volume 19, Issue Number 13

Abstract

Significance: Oxidative stress is a common denominator of various risk factors contributing to endothelial dysfunction and vascular diseases. Accumulated evidence suggests that sirtuin 1 (SIRT1) expression and/or activity is impaired by supraphysiological levels of oxidative stress, which in turn disrupts endothelial homeostasis. Recent Advances: Several microRNAs (miRNAs) are induced by oxidative stress and termed as oxidative stress-responsive miRNAs. They may play a role linking the imbalanced redox state with dysregulated SIRT1. Critical Issues: This review summarizes recent findings on oxidative stress-responsive miRNAs and their involvement in SIRT1 regulation. Because of the unique characteristics of miRNAs, research in this new area requires an integrative approach that combines bioinformatics and experimental validation. Thus, a research strategy is discussed to identify the SIRT1-regulating miRNAs under oxidative stress and their functional outcomes in relation to endothelial dysfunction. Additionally, the miRNAs implicated in vascular diseases such as atherosclerosis and abdominal aortic aneurysms are discussed along with the translational potential and challenges of using miRNAs and its analogs as therapeutic agents. Future Directions: Although at its infancy, research on oxidative stress-responsive miRNAs and their regulation of SIRT1 may provide new insights in understanding vascular disorders. Moreover, systematic approaches integrating in silico, in vitro, and in vivo observations can be useful tools in revealing the pathways modulating endothelial biology. Antioxid. Redox Signal. 19, 1522–1538.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Abdelmohsen KPullmann R Jr.Lal AKim HHGalban SYang XBlethrow JDWalker MShubert JGillespie DAFurneaux HGorospe M. Phosphorylation of HuR by Chk2 regulates SIRT1 expressionMol Cells25543-5572007. 1. Abdelmohsen K, Pullmann R, Jr., Lal A, Kim HH, Galban S, Yang X, Blethrow JD, Walker M, Shubert J, Gillespie DA, Furneaux H, and Gorospe M. Phosphorylation of HuR by Chk2 regulates SIRT1 expression. Mol Cells 25: 543–557, 2007.
2.
Abdelmohsen KSrikantan SKuwano YGorospe M. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levelsProc Natl Acad Sci U S A10520297-203022008. 2. Abdelmohsen K, Srikantan S, Kuwano Y, and Gorospe M. miR-519 reduces cell proliferation by lowering RNA-binding protein HuR levels. Proc Natl Acad Sci U S A 105: 20297–20302, 2008.
3.
Alcendor RRGao SZhai PZablocki DHolle EYu XTian BWagner TVatner SFSadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heartCirc Res1001512-15212007. 3. Alcendor RR, Gao S, Zhai P, Zablocki D, Holle E, Yu X, Tian B, Wagner T, Vatner SF, and Sadoshima J. Sirt1 regulates aging and resistance to oxidative stress in the heart. Circ Res 100: 1512–1521, 2007.
4.
Arciniegas EFrid MGDouglas ISStenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertensionAm J Physiol Lung Cell Mol Physiol293L1-82007. 4. Arciniegas E, Frid MG, Douglas IS, and Stenmark KR. Perspectives on endothelial-to-mesenchymal transition: potential contribution to vascular remodeling in chronic pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 293: L1–8, 2007.
5.
Ashburner MBall CABlake JABotstein DButler HCherry JMDavis APDolinski KDwight SSEppig JTHarris MAHill DPIssel-Tarver LKasarskis ALewis SMatese JCRichardson JERingwald MRubin GMSherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology ConsortiumNat Genet2525-292000. 5. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, and Sherlock G. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25–29, 2000.
6.
Ballinger SWPatterson CKnight-Lozano CABurow DLConklin CAHu ZReuf JHoraist CLebovitz RHunter GCMcIntyre KRunge MS. Mitochondrial integrity and function in atherogenesisCirculation106544-5492002. 6. Ballinger SW, Patterson C, Knight-Lozano CA, Burow DL, Conklin CA, Hu Z, Reuf J, Horaist C, Lebovitz R, Hunter GC, McIntyre K, and Runge MS. Mitochondrial integrity and function in atherogenesis. Circulation 106: 544–549, 2002.
7.
Barry-Lane PAPatterson Cvan der Merwe MHu ZHolland SMYeh ETRunge MS. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) miceJ Clin Invest1081513-15222001. 7. Barry-Lane PA, Patterson C, van der Merwe M, Hu Z, Holland SM, Yeh ET, and Runge MS. p47phox is required for atherosclerotic lesion progression in ApoE(-/-) mice. J Clin Invest 108: 1513–1522, 2001.
8.
Bartke ABrown-Borg H. Life extension in the dwarf mouseCurr Top Dev Biol63189-2252004. 8. Bartke A, and Brown-Borg H. Life extension in the dwarf mouse. Curr Top Dev Biol 63: 189–225, 2004.
9.
Beitzinger MPeters LZhu JYKremmer EMeister G. Identification of human microRNA targets from isolated argonaute protein complexesRNA Biol476-842007. 9. Beitzinger M, Peters L, Zhu JY, Kremmer E, and Meister G. Identification of human microRNA targets from isolated argonaute protein complexes. RNA Biol 4: 76–84, 2007.
10.
Benigni ACorna DZoja CSonzogni ALatini RSalio MConti SRottoli DLongaretti LCassis PMorigi MCoffman TMRemuzzi G. Disruption of the Ang II type 1 receptor promotes longevity in miceJ Clin Invest119524-5302009. 10. Benigni A, Corna D, Zoja C, Sonzogni A, Latini R, Salio M, Conti S, Rottoli D, Longaretti L, Cassis P, Morigi M, Coffman TM, and Remuzzi G. Disruption of the Ang II type 1 receptor promotes longevity in mice. J Clin Invest 119: 524–530, 2009.
11.
Bhaumik DScott GKSchokrpur SPatil CKOrjalo AVRodier FLithgow GJCampisi J. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8Aging (Albany NY)1402-4112009. 11. Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, Lithgow GJ, and Campisi J. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging (Albany NY) 1: 402–411, 2009.
12.
Bonauer ACarmona GIwasaki MMione MKoyanagi MFischer ABurchfield JFox HDoebele COhtani KChavakis EPotente MTjwa MUrbich CZeiher AMDimmeler S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in miceScience3241710-17132009. 12. Bonauer A, Carmona G, Iwasaki M, Mione M, Koyanagi M, Fischer A, Burchfield J, Fox H, Doebele C, Ohtani K, Chavakis E, Potente M, Tjwa M, Urbich C, Zeiher AM, and Dimmeler S. MicroRNA-92a controls angiogenesis and functional recovery of ischemic tissues in mice. Science 324: 1710–1713, 2009.
13.
Bou Kheir TFutoma-Kazmierczak EJacobsen AKrogh ABardram LHother CGronbaek KFederspiel BLund AHFriis-Hansen L. miR-449 inhibits cell proliferation and is down-regulated in gastric cancerMol Cancer10292011. 13. Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L, Hother C, Gronbaek K, Federspiel B, Lund AH, and Friis-Hansen L. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol Cancer 10: 29, 2011.
14.
Broderick JAZamore PD. MicroRNA therapeuticsGene Ther181104-11102011. 14. Broderick JA, and Zamore PD. MicroRNA therapeutics. Gene Ther 18: 1104–1110, 2011.
15.
Brunet ASweeney LBSturgill JFChua KFGreer PLLin YTran HRoss SEMostoslavsky RCohen HYHu LSCheng HLJedrychowski MPGygi SPSinclair DAAlt FWGreenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylaseScience3032011-20152004. 15. Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, and Greenberg ME. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015, 2004.
16.
Bryne JCValen ETang MHMarstrand TWinther Oda Piedade IKrogh ALenhard BSandelin A. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 updateNucleic Acids Res36D102-1062008. 16. Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I, Krogh A, Lenhard B, and Sandelin A. JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36: D102–106, 2008.
17.
Canto CGerhart-Hines ZFeige JNLagouge MNoriega LMilne JCElliott PJPuigserver PAuwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activityNature4581056-10602009. 17. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, and Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056–1060, 2009.
18.
Caruso PDempsie YStevens HCMcDonald RALong LLu RWhite KMair KMMcClure JDSouthwood MUpton PXin Mvan Rooij EOlson ENMorrell NWMacLean MRBaker AH. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samplesCirc Res111290-3002012. 18. Caruso P, Dempsie Y, Stevens HC, McDonald RA, Long L, Lu R, White K, Mair KM, McClure JD, Southwood M, Upton P, Xin M, van Rooij E, Olson EN, Morrell NW, MacLean MR, and Baker AH. A role for miR-145 in pulmonary arterial hypertension: evidence from mouse models and patient samples. Circ Res 111: 290–300, 2012.
19.
Chen KCHsieh ICHsi EWang YSDai CYChou WWJuo SH. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1J Cell Sci1244115-41242011. 19. Chen KC, Hsieh IC, Hsi E, Wang YS, Dai CY, Chou WW, and Juo SH. Negative feedback regulation between microRNA let-7g and the oxLDL receptor LOX-1. J Cell Sci 124: 4115–4124, 2011.
20.
Chen RXu MHogg RTLi JLittle BGerard RDGarcia JA. The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signalingJ Biol Chem28730800-308112012. 20. Chen R, Xu M, Hogg RT, Li J, Little B, Gerard RD, and Garcia JA. The acetylase/deacetylase couple CREB-binding protein/Sirtuin 1 controls hypoxia-inducible factor 2 signaling. J Biol Chem 287: 30800–30811, 2012.
21.
Chen ZPeng ICCui XLi YSChien SShyy JY. Shear stress, SIRT1, and vascular homeostasisProc Natl Acad Sci U S A10710268-102732010. 21. Chen Z, Peng IC, Cui X, Li YS, Chien S, and Shyy JY. Shear stress, SIRT1, and vascular homeostasis. Proc Natl Acad Sci U S A 107: 10268–10273, 2010.
22.
Chien CHSun YMChang WCChiang-Hsieh PYLee TYTsai WCHorng JTTsou APHuang HD. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing dataNucleic Acids Res399345-93562011. 22. Chien CH, Sun YM, Chang WC, Chiang-Hsieh PY, Lee TY, Tsai WC, Horng JT, Tsou AP, and Huang HD. Identifying transcriptional start sites of human microRNAs based on high-throughput sequencing data. Nucleic Acids Res 39: 9345–9356, 2011.
23.
Chung SYao HCaito SHwang JWArunachalam GRahman I. Regulation of SIRT1 in cellular functions: role of polyphenolsArch Biochem Biophys50179-902010. 23. Chung S, Yao H, Caito S, Hwang JW, Arunachalam G, and Rahman I. Regulation of SIRT1 in cellular functions: role of polyphenols. Arch Biochem Biophys 501: 79–90, 2010.
24.
Collins TRead MANeish ASWhitley MZThanos DManiatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappaB and cytokine-inducible enhancersFASEB J9899-9091995. 24. Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, and Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF-kappaB and cytokine-inducible enhancers. FASEB J 9: 899–909, 1995.
25.
Cooke JPSinger AHTsao PZera PRowan RABillingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbitJ Clin Invest901168-11721992. 25. Cooke JP, Singer AH, Tsao P, Zera P, Rowan RA, and Billingham ME. Antiatherogenic effects of L-arginine in the hypercholesterolemic rabbit. J Clin Invest 90: 1168–1172, 1992.
26.
Csiszar ALabinskyy NJimenez RPinto JTBallabh PLosonczy GPearson KJde Cabo RUngvari Z. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1Mech Ageing Dev130518-5272009. 26. Csiszar A, Labinskyy N, Jimenez R, Pinto JT, Ballabh P, Losonczy G, Pearson KJ, de Cabo R, and Ungvari Z. Anti-oxidative and anti-inflammatory vasoprotective effects of caloric restriction in aging: role of circulating factors and SIRT1. Mech Ageing Dev 130: 518–527, 2009.
27.
Dafforn AAnderson MAsh DCampagna JDaniel EHorwood RKerr PRych GZappitelli F. The mode of binding of potential transition-state analogs to acetylcholinesteraseBiochim Biophys Acta484375-3851977. 27. Dafforn A, Anderson M, Ash D, Campagna J, Daniel E, Horwood R, Kerr P, Rych G, and Zappitelli F. The mode of binding of potential transition-state analogs to acetylcholinesterase. Biochim Biophys Acta 484: 375–385, 1977.
28.
Davalos AGoedeke LSmibert PRamirez CMWarrier NPAndreo UCirera-Salinas DRayner KSuresh UPastor-Pareja JCEsplugues EFisher EAPenalva LOMoore KJSuarez YLai ECFernandez-Hernando C. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signalingProc Natl Acad Sci U S A1089232-92372011. 28. Davalos A, Goedeke L, Smibert P, Ramirez CM, Warrier NP, Andreo U, Cirera-Salinas D, Rayner K, Suresh U, Pastor-Pareja JC, Esplugues E, Fisher EA, Penalva LO, Moore KJ, Suarez Y, Lai EC, and Fernandez-Hernando C. miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling. Proc Natl Acad Sci U S A 108: 9232–9237, 2011.
29.
Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systemsIUBMB Life50279-2892000. 29. Davies KJ. Oxidative stress, antioxidant defenses, and damage removal, repair, and replacement systems. IUBMB Life 50: 279–289, 2000.
30.
Dey NDas FMariappan MMMandal CCGhosh-Choudhury NKasinath BSChoudhury GG. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetesJ Biol Chem28625586-256032011. 30. Dey N, Das F, Mariappan MM, Mandal CC, Ghosh-Choudhury N, Kasinath BS, and Choudhury GG. MicroRNA-21 orchestrates high glucose-induced signals to TOR complex 1, resulting in renal cell pathology in diabetes. J Biol Chem 286: 25586–25603, 2011.
31.
Dioum EMChen RAlexander MSZhang QHogg RTGerard RDGarcia JA. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1Science3241289-12932009. 31. Dioum EM, Chen R, Alexander MS, Zhang Q, Hogg RT, Gerard RD, and Garcia JA. Regulation of hypoxia-inducible factor 2α signaling by the stress-responsive deacetylase sirtuin 1. Science 324: 1289–1293, 2009.
32.
Donners MMWolfs IMStoger LJvan der Vorst EPPottgens CCHeymans SSchroen BGijbels MJde Winther MP. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic micePLoS One7e358772012. 32. Donners MM, Wolfs IM, Stoger LJ, van der Vorst EP, Pottgens CC, Heymans S, Schroen B, Gijbels MJ, and de Winther MP. Hematopoietic miR155 deficiency enhances atherosclerosis and decreases plaque stability in hyperlipidemic mice. PLoS One 7: e35877, 2012.
33.
Duan YZhou BSu HLiu YDu C. miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300Exp Cell Res319173-1842013. 33. Duan Y, Zhou B, Su H, Liu Y, and Du C. miR-150 regulates high glucose-induced cardiomyocyte hypertrophy by targeting the transcriptional co-activator p300. Exp Cell Res 319: 173–184, 2013.
34.
Eades GYao YYang MZhang YChumsri SZhou Q. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cellsJ Biol Chem28625992-260022011. 34. Eades G, Yao Y, Yang M, Zhang Y, Chumsri S, and Zhou Q. miR-200a regulates SIRT1 expression and epithelial to mesenchymal transition (EMT)-like transformation in mammary epithelial cells. J Biol Chem 286: 25992–26002, 2011.
35.
Elmen JLindow MSchutz SLawrence MPetri AObad SLindholm MHedtjarn MHansen HFBerger UGullans SKearney PSarnow PStraarup EMKauppinen S. LNA-mediated microRNA silencing in non-human primatesNature452896-8992008. 35. Elmen J, Lindow M, Schutz S, Lawrence M, Petri A, Obad S, Lindholm M, Hedtjarn M, Hansen HF, Berger U, Gullans S, Kearney P, Sarnow P, Straarup EM, and Kauppinen S. LNA-mediated microRNA silencing in non-human primates. Nature 452: 896–899, 2008.
36.
Esguerra JLBolmeson CCilio CMEliasson L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki ratPLoS One6e186132011. 36. Esguerra JL, Bolmeson C, Cilio CM, and Eliasson L. Differential glucose-regulation of microRNAs in pancreatic islets of non-obese type 2 diabetes model Goto-Kakizaki rat. PLoS One 6: e18613, 2011.
37.
Feng BChen SMcArthur KWu YSen SDing QFeldman RDChakrabarti S. miR-146a-mediated extracellular matrix protein production in chronic diabetes complicationsDiabetes602975-29842011. 37. Feng B, Chen S, McArthur K, Wu Y, Sen S, Ding Q, Feldman RD, and Chakrabarti S. miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes 60: 2975–2984, 2011.
38.
Fiordaliso FLeri ACesselli DLimana FSafai BNadal-Ginard BAnversa PKajstura J. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell deathDiabetes502363-23752001. 38. Fiordaliso F, Leri A, Cesselli D, Limana F, Safai B, Nadal-Ginard B, Anversa P, and Kajstura J. Hyperglycemia activates p53 and p53-regulated genes leading to myocyte cell death. Diabetes 50: 2363–2375, 2001.
39.
Fred RGBang-Berthelsen CHMandrup-Poulsen TGrunnet LGWelsh N. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expressionPLoS One5e108432010. 39. Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, and Welsh N. High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 5: e10843, 2010.
40.
Fulco MCen YZhao PHoffman EPMcBurney MWSauve AASartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of NamptDev Cell14661-6732008. 40. Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, and Sartorelli V. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14: 661–673, 2008.
41.
Gao JWang WYMao YWGraff JGuan JSPan LMak GKim DSu SCTsai LH. A novel pathway regulates memory and plasticity via SIRT1 and miR-134Nature4661105-11092010. 41. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, and Tsai LH. A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466: 1105–1109, 2010.
42.
Gao WHe HWWang ZMZhao HLian XQWang YSZhu JYan JJZhang DGYang ZJWang LS. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery diseaseLipids Health Dis11552012. 42. Gao W, He HW, Wang ZM, Zhao H, Lian XQ, Wang YS, Zhu J, Yan JJ, Zhang DG, Yang ZJ, and Wang LS. Plasma levels of lipometabolism-related miR-122 and miR-370 are increased in patients with hyperlipidemia and associated with coronary artery disease. Lipids Health Dis 11: 55, 2012.
43.
Gerhart-Hines ZDominy JE Jr.Blattler SMJedrychowski MPBanks ASLim JHChim HGygi SPPuigserver P. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+)Mol Cells44851-8632011. 43. Gerhart-Hines Z, Dominy JE, Jr., Blattler SM, Jedrychowski MP, Banks AS, Lim JH, Chim H, Gygi SP, and Puigserver P. The cAMP/PKA pathway rapidly activates SIRT1 to promote fatty acid oxidation independently of changes in NAD(+). Mol Cells 44: 851–863, 2011.
44.
Gracia-Sancho JVillarreal G Jr.Zhang YGarcia-Cardena G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotypeCardiovasc Res85514-5192010. 44. Gracia-Sancho J, Villarreal G, Jr., Zhang Y, and Garcia-Cardena G. Activation of SIRT1 by resveratrol induces KLF2 expression conferring an endothelial vasoprotective phenotype. Cardiovasc Res 85: 514–519, 2010.
45.
Guo LQiu ZWei LYu XGao XJiang STian HJiang CZhu D. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1CHypertension591006-10132012. 45. Guo L, Qiu Z, Wei L, Yu X, Gao X, Jiang S, Tian H, Jiang C, and Zhu D. The microRNA-328 regulates hypoxic pulmonary hypertension by targeting at insulin growth factor 1 receptor and L-type calcium channel-alpha1C. Hypertension 59: 1006–1013, 2012.
46.
Guo XWilliams JGSchug TTLi X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1J Biol Chem28513223-132322010. 46. Guo X, Williams JG, Schug TT, and Li X. DYRK1A and DYRK3 promote cell survival through phosphorylation and activation of SIRT1. J Biol Chem 285: 13223–13232, 2010.
47.
Hackl MBrunner SFortschegger KSchreiner CMicutkova LMuck CLaschober GTLepperdinger GSampson NBerger PHerndler-Brandstetter DWieser MKuhnel HStrasser ARinnerthaler MBreitenbach MMildner MEckhart LTschachler ETrost ABauer JWPapak CTrajanoski ZScheideler MGrillari-Voglauer RGrubeck-Loebenstein BJansen-Durr PGrillari J. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human agingAging Cell9291-2962010. 47. Hackl M, Brunner S, Fortschegger K, Schreiner C, Micutkova L, Muck C, Laschober GT, Lepperdinger G, Sampson N, Berger P, Herndler-Brandstetter D, Wieser M, Kuhnel H, Strasser A, Rinnerthaler M, Breitenbach M, Mildner M, Eckhart L, Tschachler E, Trost A, Bauer JW, Papak C, Trajanoski Z, Scheideler M, Grillari-Voglauer R, Grubeck-Loebenstein B, Jansen-Durr P, and Grillari J. miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 9: 291–296, 2010.
48.
Hans CPFeng YNaura ASZerfaoui MRezk BMXia HKaye ADMatrougui KLazartigues EBoulares AH. Protective effects of PARP-1 knockout on dyslipidemia-induced autonomic and vascular dysfunction in ApoE mice: effects on eNOS and oxidative stressPLoS One4e74302009. 48. Hans CP, Feng Y, Naura AS, Zerfaoui M, Rezk BM, Xia H, Kaye AD, Matrougui K, Lazartigues E, and Boulares AH. Protective effects of PARP-1 knockout on dyslipidemia-induced autonomic and vascular dysfunction in ApoE mice: effects on eNOS and oxidative stress. PLoS One 4: e7430, 2009.
49.
He CHGong PHu BStewart DChoi MEChoi AMAlam J. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulationJ Biol Chem27620858-208652001. 49. He CH, Gong P, Hu B, Stewart D, Choi ME, Choi AM, and Alam J. Identification of activating transcription factor 4 (ATF4) as an Nrf2-interacting protein. Implication for heme oxygenase-1 gene regulation. J Biol Chem 276: 20858–20865, 2001.
50.
Herrera BMLockstone HETaylor JMWills QFKaisaki PJBarrett ACamps CFernandez CRagoussis JGauguier DMcCarthy MILindgren CM. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetesBMC Med Genomics2542009. 50. Herrera BM, Lockstone HE, Taylor JM, Wills QF, Kaisaki PJ, Barrett A, Camps C, Fernandez C, Ragoussis J, Gauguier D, McCarthy MI, and Lindgren CM. MicroRNA-125a is over-expressed in insulin target tissues in a spontaneous rat model of type 2 diabetes. BMC Med Genomics 2: 54, 2009.
51.
Hornbeck PVChabra IKornhauser JMSkrzypek EZhang B. PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylationProteomics41551-15612004. 51. Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, and Zhang B. PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4: 1551–1561, 2004.
52.
Houtkooper RHPirinen EAuwerx J. Sirtuins as regulators of metabolism and healthspanNat Rev Mol Cell Biol13225-2382012. 52. Houtkooper RH, Pirinen E, and Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol 13: 225–238, 2012.
53.
Hsieh YCChoudhry MAYu HPShimizu TYang SSuzuki TChen JBland KIChaudry IH. Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhageFASEB J201109-11172006. 53. Hsieh YC, Choudhry MA, Yu HP, Shimizu T, Yang S, Suzuki T, Chen J, Bland KI, and Chaudry IH. Inhibition of cardiac PGC-1alpha expression abolishes ERbeta agonist-mediated cardioprotection following trauma-hemorrhage. FASEB J 20: 1109–1117, 2006.
54.
Huang da WSherman BTLempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resourcesNat Protoc444-572009. 54. Huang da W, Sherman BT, and Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4: 44–57, 2009.
55.
Hulsmans MDe Keyzer DHolvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosisFASEB J252515-25272011. 55. Hulsmans M, De Keyzer D, and Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J 25: 2515–2527, 2011.
56.
Ibrahim AFWeirauch UThomas MGrunweller AHartmann RKAigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinomaCancer Res715214-52242011. 56. Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK, and Aigner A. MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 71: 5214–5224, 2011.
57.
Ikeda HSerria MSKakizaki IHatayama ISatoh KTsuchida SMuramatsu MNishi SSakai M. Activation of mouse Pi-class glutathione S-transferase gene by Nrf2(NF-E2-related factor 2) and androgenBiochem J364563-5702002. 57. Ikeda H, Serria MS, Kakizaki I, Hatayama I, Satoh K, Tsuchida S, Muramatsu M, Nishi S, and Sakai M. Activation of mouse Pi-class glutathione S-transferase gene by Nrf2(NF-E2-related factor 2) and androgen. Biochem J 364: 563–570, 2002.
58.
Ito TYagi SYamakuchi M. MicroRNA-34a regulation of endothelial senescenceBiochem Biophys Res Commun398735-7402010. 58. Ito T, Yagi S, and Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398: 735–740, 2010.
59.
John BSander CMarks DS. Prediction of human microRNA targetsMethods Mol Biol342101-1132006. 59. John B, Sander C, and Marks DS. Prediction of human microRNA targets. Methods Mol Biol 342: 101–113, 2006.
60.
Kaeberlein MMcVey MGuarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanismsGenes Dev132570-25801999. 60. Kaeberlein M, McVey M, and Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580, 1999.
61.
Kaneko HAnzai TMorisawa MKohno TNagai TAnzai ATakahashi TShimoda MSasaki AMaekawa YYoshimura KAoki HTsubota KYoshikawa TOkada YOgawa SFukuda K. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularizationAtherosclerosis217350-3572011. 61. Kaneko H, Anzai T, Morisawa M, Kohno T, Nagai T, Anzai A, Takahashi T, Shimoda M, Sasaki A, Maekawa Y, Yoshimura K, Aoki H, Tsubota K, Yoshikawa T, Okada Y, Ogawa S, and Fukuda K. Resveratrol prevents the development of abdominal aortic aneurysm through attenuation of inflammation, oxidative stress, and neovascularization. Atherosclerosis 217: 350–357, 2011.
62.
Kang HJung JWKim MKChung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damagePLoS One4e66112009. 62. Kang H, Jung JW, Kim MK, and Chung JH. CK2 is the regulator of SIRT1 substrate-binding affinity, deacetylase activity and cellular response to DNA-damage. PLoS One 4: e6611, 2009.
63.
Kawai YGarduno LTheodore MYang JArinze IJ. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localizationJ Biol Chem2867629-76402011. 63. Kawai Y, Garduno L, Theodore M, Yang J, and Arinze IJ. Acetylation-deacetylation of the transcription factor Nrf2 (nuclear factor erythroid 2-related factor 2) regulates its transcriptional activity and nucleocytoplasmic localization. J Biol Chem 286: 7629–7640, 2011.
64.
Kim EJKho JHKang MRUm SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activityMol Cells28277-2902007. 64. Kim EJ, Kho JH, Kang MR, and Um SJ. Active regulator of SIRT1 cooperates with SIRT1 and facilitates suppression of p53 activity. Mol Cells 28: 277–290, 2007.
65.
Kim JKang YKojima YLighthouse JKHu XAldred MAMcLean DLPark HComhair SAGreif DMErzurum SCChun HJ. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertensionNat Med1974-822013. 65. Kim J, Kang Y, Kojima Y, Lighthouse JK, Hu X, Aldred MA, McLean DL, Park H, Comhair SA, Greif DM, Erzurum SC, and Chun HJ. An endothelial apelin-FGF link mediated by miR-424 and miR-503 is disrupted in pulmonary arterial hypertension. Nat Med 19: 74–82, 2013.
66.
Kim YJHwang SHLee SYShin KKCho HHBae YCJung JS. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucoseStem Cells Dev211749-17602012. 66. Kim YJ, Hwang SH, Lee SY, Shin KK, Cho HH, Bae YC, and Jung JS. miR-486-5p induces replicative senescence of human adipose tissue-derived mesenchymal stem cells and its expression is controlled by high glucose. Stem Cells Dev 21: 1749–1760, 2012.
67.
King GLLoeken MR. Hyperglycemia-induced oxidative stress in diabetic complicationsHistochem Cell Biol122333-3382004. 67. King GL, and Loeken MR. Hyperglycemia-induced oxidative stress in diabetic complications. Histochem Cell Biol 122: 333–338, 2004.
68.
Kole RKrainer ARAltman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotidesNat Rev Drug Discov11125-1402012. 68. Kole R, Krainer AR, and Altman S. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11: 125–140, 2012.
69.
Kregel KCZhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerationsAm J Physiol Regul Integr Comp Physiol292R18-362007. 69. Kregel KC, and Zhang HJ. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 292: R18–36, 2007.
70.
Krek AGrun DPoy MNWolf RRosenberg LEpstein EJMacMenamin Pda Piedade IGunsalus KCStoffel MRajewsky N. Combinatorial microRNA target predictionsNat Genet37495-5002005. 70. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel M, and Rajewsky N. Combinatorial microRNA target predictions. Nat Genet 37: 495–500, 2005.
71.
Krutzfeldt JRajewsky NBraich RRajeev KGTuschl TManoharan MStoffel M. Silencing of microRNAs in vivo with “antagomirs.”Nature438685-6892005. 71. Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, and Stoffel M. Silencing of microRNAs in vivo with “antagomirs.” Nature 438: 685–689, 2005.
72.
Kume SHaneda MKanasaki KSugimoto TAraki SIsshiki KIsono MUzu TGuarente LKashiwagi AKoya D. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylationJ Biol Chem282151-1582007. 72. Kume S, Haneda M, Kanasaki K, Sugimoto T, Araki S, Isshiki K, Isono M, Uzu T, Guarente L, Kashiwagi A, and Koya D. SIRT1 inhibits transforming growth factor beta-induced apoptosis in glomerular mesangial cells via Smad7 deacetylation. J Biol Chem 282: 151–158, 2007.
73.
Lee DSPark JKay KAChristakis NAOltvai ZNBarabasi AL. The implications of human metabolic network topology for disease comorbidityProc Natl Acad Sci U S A1059880-98852008. 73. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, and Barabasi AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A 105: 9880–9885, 2008.
74.
Lee HCWei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stressInt J Biochem Cell Biol37822-8342005. 74. Lee HC, and Wei YH. Mitochondrial biogenesis and mitochondrial DNA maintenance of mammalian cells under oxidative stress. Int J Biochem Cell Biol 37: 822–834, 2005.
75.
Lee JPadhye ASharma ASong GMiao JMo YYWang LKemper JK. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibitionJ Biol Chem28512604-126112010. 75. Lee J, Padhye A, Sharma A, Song G, Miao J, Mo YY, Wang L, and Kemper JK. A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J Biol Chem 285: 12604–12611, 2010.
76.
Lei JGu XYe ZShi JZheng X. Antiaging effects of simvastatin on vascular endothelial cellsClin Appl Thromb Hemost2012[Epub ahead of print]. 76. Lei J, Gu X, Ye Z, Shi J, and Zheng X. Antiaging effects of simvastatin on vascular endothelial cells. Clin Appl Thromb Hemost, 2012. [Epub ahead of print]; DOI: 10.1177/1076029612458967.
77.
Lewis BPBurge CBBartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targetsCell12015-202005. 77. Lewis BP, Burge CB, and Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20, 2005.
78.
Li NMuthusamy SLiang RSarojini HWang E. Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1Mech Ageing Dev13275-852011. 78. Li N, Muthusamy S, Liang R, Sarojini H, and Wang E. Increased expression of miR-34a and miR-93 in rat liver during aging, and their impact on the expression of Mgst1 and Sirt1. Mech Ageing Dev 132: 75–85, 2011.
79.
Li XZhang SBlander GTse JGKrieger MGuarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXRMol Cells2891-1062007. 79. Li X, Zhang S, Blander G, Tse JG, Krieger M, and Guarente L. SIRT1 deacetylates and positively regulates the nuclear receptor LXR. Mol Cells 28: 91–106, 2007.
80.
Li YSong YHLi FYang TLu YWGeng YJ. MicroRNA-221 regulates high glucose-induced endothelial dysfunctionBiochem Biophys Res Commun38181-832009. 80. Li Y, Song YH, Li F, Yang T, Lu YW, and Geng YJ. MicroRNA-221 regulates high glucose-induced endothelial dysfunction. Biochem Biophys Res Commun 381: 81–83, 2009.
81.
Lim JHLee YMChun YSChen JKim JEPark JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alphaMol Cells38864-8782010. 81. Lim JH, Lee YM, Chun YS, Chen J, Kim JE, and Park JW. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha. Mol Cells 38: 864–878, 2010.
82.
Lin YLiu XCheng YYang JHuo YZhang C. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cellsJ Biol Chem2847903-79132009. 82. Lin Y, Liu X, Cheng Y, Yang J, Huo Y, and Zhang C. Involvement of MicroRNAs in hydrogen peroxide-mediated gene regulation and cellular injury response in vascular smooth muscle cells. J Biol Chem 284: 7903–7913, 2009.
83.
Lipinski CALombardo FDominy BWFeeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settingsAdv Drug Deliv Rev463-262001. 83. Lipinski CA, Lombardo F, Dominy BW, and Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46: 3–26, 2001.
84.
Liu GHuang YLu XLu MHuang XLi WJiang M. Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysmsTohoku J Exp Med222187-1932010. 84. Liu G, Huang Y, Lu X, Lu M, Huang X, Li W, and Jiang M. Identification and characteristics of microRNAs with altered expression patterns in a rat model of abdominal aortic aneurysms. Tohoku J Exp Med 222: 187–193, 2010.
85.
Liu JWu YWang BYuan XFang B. High levels of glucose induced the caspase-3/PARP signaling pathway, leading to apoptosis in human periodontal ligament fibroblastsCell Biochem Biophys2012 85. Liu J, Wu Y, Wang B, Yuan X, and Fang B. High levels of glucose induced the caspase-3/PARP signaling pathway, leading to apoptosis in human periodontal ligament fibroblasts. Cell Biochem Biophys 2012. DOI: 10.1007/S12013-012-9470-y
86.
Liu PWilson MJ. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cellsJ Cell Physiol227867-8762012. 86. Liu P, and Wilson MJ. miR-520c and miR-373 upregulate MMP9 expression by targeting mTOR and SIRT1, and activate the Ras/Raf/MEK/Erk signaling pathway and NF-κB factor in human fibrosarcoma cells. J Cell Physiol 227: 867–876, 2012.
87.
Liu QWang GZhou GTan YWang XWei WLiu LXue WFeng WCai L. Angiotensin II-induced p53-dependent cardiac apoptotic cell death: its prevention by metallothioneinToxicol Lett191314-3202009. 87. Liu Q, Wang G, Zhou G, Tan Y, Wang X, Wei W, Liu L, Xue W, Feng W, and Cai L. Angiotensin II-induced p53-dependent cardiac apoptotic cell death: its prevention by metallothionein. Toxicol Lett 191: 314–320, 2009.
88.
Loboda AStachurska AFlorczyk URudnicka DJazwa AWegrzyn JKozakowska MStalinska KPoellinger LLevonen ALYla-Herttuala SJozkowicz ADulak J. HIF-1 induction attenuates Nrf2-dependent IL-8 expression in human endothelial cellsAntioxid Redox Signal111501-15172009. 88. Loboda A, Stachurska A, Florczyk U, Rudnicka D, Jazwa A, Wegrzyn J, Kozakowska M, Stalinska K, Poellinger L, Levonen AL, Yla-Herttuala S, Jozkowicz A, and Dulak J. HIF-1 induction attenuates Nrf2-dependent IL-8 expression in human endothelial cells. Antioxid Redox Signal 11: 1501–1517, 2009.
89.
Loftus IMNaylor ARGoodall SCrowther MJones LBell PRThompson MM. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruptionStroke3140-472000. 89. Loftus IM, Naylor AR, Goodall S, Crowther M, Jones L, Bell PR, and Thompson MM. Increased matrix metalloproteinase-9 activity in unstable carotid plaques. A potential role in acute plaque disruption. Stroke 31: 40–47, 2000.
90.
Long JWang YWang WChang BHDanesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditionsJ Biol Chem28523457-234652010. 90. Long J, Wang Y, Wang W, Chang BH, and Danesh FR. Identification of microRNA-93 as a novel regulator of vascular endothelial growth factor in hyperglycemic conditions. J Biol Chem 285: 23457–23465, 2010.
91.
Luo JNikolaev AYImai SChen DSu FShiloh AGuarente LGu W. Negative control of p53 by Sir2alpha promotes cell survival under stressCell107137-1482001. 91. Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, and Gu W. Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107: 137–148, 2001.
92.
Madamanchi NRVendrov ARunge MS. Oxidative stress and vascular diseaseArterioscler Thromb Vasc Biol2529-382005. 92. Madamanchi NR, Vendrov A, and Runge MS. Oxidative stress and vascular disease. Arterioscler Thromb Vasc Biol 25: 29–38, 2005.
93.
Maegdefessel LAzuma JToh RDeng AMerk DRRaiesdana ALeeper NJRaaz USchoelmerich AMMcConnell MVDalman RLSpin JMTsao PS. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansionSci Transl Med4122ra222012. 93. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, Leeper NJ, Raaz U, Schoelmerich AM, McConnell MV, Dalman RL, Spin JM, and Tsao PS. MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med 4: 122ra22, 2012.
94.
Maegdefessel LAzuma JToh RMerk DRDeng AChin JTRaaz USchoelmerich AMRaiesdana ALeeper NJMcConnell MVDalman RLSpin JMTsao PS. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm developmentJ Clin Invest122497-5062012. 94. Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U, Schoelmerich AM, Raiesdana A, Leeper NJ, McConnell MV, Dalman RL, Spin JM, and Tsao PS. Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest 122: 497–506, 2012.
95.
Magenta ACencioni CFasanaro PZaccagnini GGreco SSarra-Ferraris GAntonini AMartelli FCapogrossi MC. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibitionCell Death Differ181628-16392011. 95. Magenta A, Cencioni C, Fasanaro P, Zaccagnini G, Greco S, Sarra-Ferraris G, Antonini A, Martelli F, and Capogrossi MC. miR-200c is upregulated by oxidative stress and induces endothelial cell apoptosis and senescence via ZEB1 inhibition. Cell Death Differ 18: 1628–1639, 2011.
96.
Martin KO'Sullivan JFCaplice NM. New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque ruptureCurr Opin Cardiol26569-5752011. 96. Martin K, O'Sullivan JF, and Caplice NM. New therapeutic potential of microRNA treatment to target vulnerable atherosclerotic lesions and plaque rupture. Curr Opin Cardiol 26: 569–575, 2011.
97.
Mattagajasingh IKim CSNaqvi AYamamori THoffman TAJung SBDeRicco JKasuno KIrani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthaseProc Natl Acad Sci U S A10414855-148602007. 97. Mattagajasingh I, Kim CS, Naqvi A, Yamamori T, Hoffman TA, Jung SB, DeRicco J, Kasuno K, and Irani K. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci U S A 104: 14855–14860, 2007.
98.
McCormick MLGavrila DWeintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysmsArterioscler Thromb Vasc Biol27461-4692007. 98. McCormick ML, Gavrila D, and Weintraub NL. Role of oxidative stress in the pathogenesis of abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol 27: 461–469, 2007.
99.
Menghini RCasagrande VCardellini MMartelli ETerrinoni AAmati FVasa-Nicotera MIppoliti ANovelli GMelino GLauro RFederici M. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1Circulation1201524-15322009. 99. Menghini R, Casagrande V, Cardellini M, Martelli E, Terrinoni A, Amati F, Vasa-Nicotera M, Ippoliti A, Novelli G, Melino G, Lauro R, and Federici M. MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120: 1524–1532, 2009.
100.
Migliaccio EGiorgio MMele SPelicci GReboldi PPandolfi PPLanfrancone LPelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammalsNature402309-3131999. 100. Migliaccio E, Giorgio M, Mele S, Pelicci G, Reboldi P, Pandolfi PP, Lanfrancone L, and Pelicci PG. The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature 402: 309–313, 1999.
101.
Mueller CFLaude KMcNally JSHarrison DG. ATVB in focus: redox mechanisms in blood vesselsArterioscler Thromb Vasc Biol25274-2782005. 101. Mueller CF, Laude K, McNally JS, and Harrison DG. ATVB in focus: redox mechanisms in blood vessels. Arterioscler Thromb Vasc Biol 25: 274–278, 2005.
102.
Nakamaru YVuppusetty CWada HMilne JCIto MRossios CElliot MHogg JKharitonov SGoto HBemis JEElliott PBarnes PJIto K. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9FASEB J232810-28192009. 102. Nakamaru Y, Vuppusetty C, Wada H, Milne JC, Ito M, Rossios C, Elliot M, Hogg J, Kharitonov S, Goto H, Bemis JE, Elliott P, Barnes PJ, and Ito K. A protein deacetylase SIRT1 is a negative regulator of metalloproteinase-9. FASEB J 23: 2810–2819, 2009.
103.
Napoli CBalestrieri MLSica VLerman LOCrimi EDe Rosa GSchiano CServillo LD'Armiento FP. Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesisHeart Vessels23124-1332008. 103. Napoli C, Balestrieri ML, Sica V, Lerman LO, Crimi E, De Rosa G, Schiano C, Servillo L, and D'Armiento FP. Beneficial effects of low doses of red wine consumption on perturbed shear stress-induced atherogenesis. Heart Vessels 23: 124–133, 2008.
104.
Nasrin NKaushik VKFortier EWall DPearson KJde Cabo RBordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activityPLoS One4e84142009. 104. Nasrin N, Kaushik VK, Fortier E, Wall D, Pearson KJ, de Cabo R, and Bordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity. PLoS One 4: e8414, 2009.
105.
Nemoto SFergusson MMFinkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathwayScience3062105-21082004. 105. Nemoto S, Fergusson MM, and Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306: 2105–2108, 2004.
106.
Ning JXi GClemmons DR. Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cellsEndocrinology1523143-31542011. 106. Ning J, Xi G, and Clemmons DR. Suppression of AMPK activation via S485 phosphorylation by IGF-I during hyperglycemia is mediated by AKT activation in vascular smooth muscle cells. Endocrinology 152: 3143–3154, 2011.
107.
Ogata HGoto SSato KFujibuchi WBono HKanehisa M. KEGG: Kyoto Encyclopedia of Genes and GenomesNucleic Acids Res2729-341999. 107. Ogata H, Goto S, Sato K, Fujibuchi W, Bono H, and Kanehisa M. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res 27: 29–34, 1999.
108.
Ono KKuwabara YHan J. MicroRNAs and cardiovascular diseasesFEBS J2781619-16332011. 108. Ono K, Kuwabara Y, and Han J. MicroRNAs and cardiovascular diseases. FEBS J 278: 1619–1633, 2011.
109.
Orimo MMinamino TMiyauchi HTateno KOkada SMoriya JKomuro I. Protective role of SIRT1 in diabetic vascular dysfunctionArterioscler Thromb Vasc Biol29889-8942009. 109. Orimo M, Minamino T, Miyauchi H, Tateno K, Okada S, Moriya J, and Komuro I. Protective role of SIRT1 in diabetic vascular dysfunction. Arterioscler Thromb Vasc Biol 29: 889–894, 2009.
110.
Ota HAkishita MEto MIijima KKaneki MOuchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cellsJ Mol Cell Cardiol43571-5792007. 110. Ota H, Akishita M, Eto M, Iijima K, Kaneki M, and Ouchi Y. Sirt1 modulates premature senescence-like phenotype in human endothelial cells. J Mol Cell Cardiol 43: 571–579, 2007.
111.
Parikh VNJin RCRabello SGulbahce NWhite KHale ACottrill KAShaik RSWaxman ABZhang YYMaron BAHartner JCFujiwara YOrkin SHHaley KJBarabasi ALLoscalzo JChan SY. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approachCirculation1251520-15322012. 111. Parikh VN, Jin RC, Rabello S, Gulbahce N, White K, Hale A, Cottrill KA, Shaik RS, Waxman AB, Zhang YY, Maron BA, Hartner JC, Fujiwara Y, Orkin SH, Haley KJ, Barabasi AL, Loscalzo J, and Chan SY. MicroRNA-21 integrates pathogenic signaling to control pulmonary hypertension: results of a network bioinformatics approach. Circulation 125: 1520–1532, 2012.
112.
Perez-Linares JOchoa JLGago-Martinez A. Effect of PSP toxins in white leg shrimp Litopenaeus vannamei Boone, 1931J Food Sci73T69-732008. 112. Perez-Linares J, Ochoa JL, and Gago-Martinez A. Effect of PSP toxins in white leg shrimp Litopenaeus vannamei Boone, 1931. J Food Sci 73: T69–73, 2008.
113.
Pillai JBIsbatan AImai SGupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activityJ Biol Chem28043121-431302005. 113. Pillai JB, Isbatan A, Imai S, and Gupta MP. Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280: 43121–43130, 2005.
114.
Potente MDimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasisCell Cycle72117-21222008. 114. Potente M, and Dimmeler S. Emerging roles of SIRT1 in vascular endothelial homeostasis. Cell Cycle 7: 2117–2122, 2008.
115.
Pullamsetti SSDoebele CFischer ASavai RKojonazarov BDahal BKGhofrani HAWeissmann NGrimminger FBonauer ASeeger WZeiher AMDimmeler SSchermuly RT. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertensionAm J Respir Crit Care Med185409-4192012. 115. Pullamsetti SS, Doebele C, Fischer A, Savai R, Kojonazarov B, Dahal BK, Ghofrani HA, Weissmann N, Grimminger F, Bonauer A, Seeger W, Zeiher AM, Dimmeler S, and Schermuly RT. Inhibition of microRNA-17 improves lung and heart function in experimental pulmonary hypertension. Am J Respir Crit Care Med 185: 409–419, 2012.
116.
Quintas Ade Solis AJDiez-Guerra FJCarrascosa JMBogonez E. Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restrictionExp Gerontol47198-2012012. 116. Quintas A, de Solis AJ, Diez-Guerra FJ, Carrascosa JM, and Bogonez E. Age-associated decrease of SIRT1 expression in rat hippocampus: prevention by late onset caloric restriction. Exp Gerontol 47: 198–201, 2012.
117.
Raitoharju ELyytikainen LPLevula MOksala NMennander ATarkka MKlopp NIllig TKahonen MKarhunen PJLaaksonen RLehtimaki T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular StudyAtherosclerosis219211-2172011. 117. Raitoharju E, Lyytikainen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kahonen M, Karhunen PJ, Laaksonen R, and Lehtimaki T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study. Atherosclerosis 219: 211–217, 2011.
118.
Ramachandran DRoy UGarg SGhosh SPathak SKolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-isletsFEBS J2781167-11742011. 118. Ramachandran D, Roy U, Garg S, Ghosh S, Pathak S, and Kolthur-Seetharam U. Sirt1 and mir-9 expression is regulated during glucose-stimulated insulin secretion in pancreatic beta-islets. FEBS J 278: 1167–1174, 2011.
119.
Rane SHe MSayed DVashistha HMalhotra ASadoshima JVatner DEVatner SFAbdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytesCirc Res104879-8862009. 119. Rane S, He M, Sayed D, Vashistha H, Malhotra A, Sadoshima J, Vatner DE, Vatner SF, and Abdellatif M. Downregulation of miR-199a derepresses hypoxia-inducible factor-1alpha and Sirtuin 1 and recapitulates hypoxia preconditioning in cardiac myocytes. Circ Res 104: 879–886, 2009.
120.
Rayner KJEsau CCHussain FNMcDaniel ALMarshall SMvan Gils JMRay TDSheedy FJGoedeke LLiu XKhatsenko OGKaimal VLees CJFernandez-Hernando CFisher EATemel REMoore KJ. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglyceridesNature478404-4072011. 120. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, Khatsenko OG, Kaimal V, Lees CJ, Fernandez-Hernando C, Fisher EA, Temel RE, and Moore KJ. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478: 404–407, 2011.
121.
Rayner KJSheedy FJEsau CCHussain FNTemel REParathath Svan Gils JMRayner AJChang ANSuarez YFernandez-Hernando CFisher EAMoore KJ. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosisJ Clin Invest1212921-29312011. 121. Rayner KJ, Sheedy FJ, Esau CC, Hussain FN, Temel RE, Parathath S, van Gils JM, Rayner AJ, Chang AN, Suarez Y, Fernandez-Hernando C, Fisher EA, and Moore KJ. Antagonism of miR-33 in mice promotes reverse cholesterol transport and regression of atherosclerosis. J Clin Invest 121: 2921–2931, 2011.
122.
Rayner KJSuarez YDavalos AParathath SFitzgerald MLTamehiro NFisher EAMoore KJFernandez-Hernando C. MiR-33 contributes to the regulation of cholesterol homeostasisScience3281570-15732010. 122. Rayner KJ, Suarez Y, Davalos A, Parathath S, Fitzgerald ML, Tamehiro N, Fisher EA, Moore KJ, and Fernandez-Hernando C. MiR-33 contributes to the regulation of cholesterol homeostasis. Science 328: 1570–1573, 2010.
123.
Revollo JRGrimm AAImai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cellsJ Biol Chem27950754-507632004. 123. Revollo JR, Grimm AA, and Imai S. The NAD biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells. J Biol Chem 279: 50754–50763, 2004.
124.
Rhodes CJWharton JBoon RARoexe TTsang HWojciak-Stothard BChakrabarti AHoward LSGibbs JSLawrie ACondliffe RElliot CAKiely DGHuson LGhofrani HATiede HSchermuly RZeiher AMDimmeler SWilkins MR. Reduced miR-150 is associated with poor survival in pulmonary arterial hypertensionAm J Respir Crit Care Med187294-3022012. 124. Rhodes CJ, Wharton J, Boon RA, Roexe T, Tsang H, Wojciak-Stothard B, Chakrabarti A, Howard LS, Gibbs JS, Lawrie A, Condliffe R, Elliot CA, Kiely DG, Huson L, Ghofrani HA, Tiede H, Schermuly R, Zeiher AM, Dimmeler S, and Wilkins MR. Reduced miR-150 is associated with poor survival in pulmonary arterial hypertension. Am J Respir Crit Care Med 187: 294–302, 2012.
125.
Rippe CLesniewski LConnell MLaRocca TDonato ASeals D. Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stressAging Cell9304-3122010. 125. Rippe C, Lesniewski L, Connell M, LaRocca T, Donato A, and Seals D. Short-term calorie restriction reverses vascular endothelial dysfunction in old mice by increasing nitric oxide and reducing oxidative stress. Aging Cell 9: 304–312, 2010.
126.
Rivetti di Val Cervo PLena AMNicoloso MRossi SMancini MZhou HSaintigny GDellambra EOdorisio TMahe CCalin GACandi EMelino G. p63-microRNA feedback in keratinocyte senescenceProc Natl Acad Sci U S A1091133-11382012. 126. Rivetti di Val Cervo P, Lena AM, Nicoloso M, Rossi S, Mancini M, Zhou H, Saintigny G, Dellambra E, Odorisio T, Mahe C, Calin GA, Candi E, and Melino G. p63-microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci U S A 109: 1133–1138, 2012.
127.
Rodgers JTLerin CHaas WGygi SPSpiegelman BMPuigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1Nature434113-1182005. 127. Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, and Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113–118, 2005.
128.
Rogina BHelfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restrictionProc Natl Acad Sci U S A10115998-160032004. 128. Rogina B, and Helfand SL. Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci U S A 101: 15998–16003, 2004.
129.
Rual JFVenkatesan KHao THirozane-Kishikawa TDricot ALi NBerriz GFGibbons FDDreze MAyivi-Guedehoussou NKlitgord NSimon CBoxem MMilstein SRosenberg JGoldberg DSZhang LVWong SLFranklin GLi SAlbala JSLim JFraughton CLlamosas ECevik SBex CLamesch PSikorski RSVandenhaute JZoghbi HYSmolyar ABosak SSequerra RDoucette-Stamm LCusick MEHill DERoth FPVidal M. Towards a proteome-scale map of the human protein-protein interaction networkNature4371173-11782005. 129. Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz GF, Gibbons FD, Dreze M, Ayivi-Guedehoussou N, Klitgord N, Simon C, Boxem M, Milstein S, Rosenberg J, Goldberg DS, Zhang LV, Wong SL, Franklin G, Li S, Albala JS, Lim J, Fraughton C, Llamosas E, Cevik S, Bex C, Lamesch P, Sikorski RS, Vandenhaute J, Zoghbi HY, Smolyar A, Bosak S, Sequerra R, Doucette-Stamm L, Cusick ME, Hill DE, Roth FP, and Vidal M. Towards a proteome-scale map of the human protein-protein interaction network. Nature 437: 1173–1178, 2005.
130.
Sasaki TMaier BKoclega KDChruszcz MGluba WStukenberg PTMinor WScrable H. Phosphorylation regulates SIRT1 functionPLoS One3e40202008. 130. Sasaki T, Maier B, Koclega KD, Chruszcz M, Gluba W, Stukenberg PT, Minor W, and Scrable H. Phosphorylation regulates SIRT1 function. PLoS One 3: e4020, 2008.
131.
Saunders LRSharma ADTawney JNakagawa MOkita KYamanaka SWillenbring HVerdin E. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissuesAging (Albany NY)2415-4312010. 131. Saunders LR, Sharma AD, Tawney J, Nakagawa M, Okita K, Yamanaka S, Willenbring H, and Verdin E. miRNAs regulate SIRT1 expression during mouse embryonic stem cell differentiation and in adult mouse tissues. Aging (Albany NY) 2: 415–431, 2010.
132.
Schreiber BEValerio CJKeir GJHandler CWells AUDenton CPCoghlan JG. Improving the detection of pulmonary hypertension in systemic sclerosis using pulmonary function testsArthritis Rheum633531-35392011. 132. Schreiber BE, Valerio CJ, Keir GJ, Handler C, Wells AU, Denton CP, and Coghlan JG. Improving the detection of pulmonary hypertension in systemic sclerosis using pulmonary function tests. Arthritis Rheum 63: 3531–3539, 2011.
133.
Schwer BVerdin E. Conserved metabolic regulatory functions of sirtuinsCell Metab7104-1122008. 133. Schwer B, and Verdin E. Conserved metabolic regulatory functions of sirtuins. Cell Metab 7: 104–112, 2008.
134.
Shin KKKim YJHong CPYang JWBae YCJung JS. Retracted article: miR-598 induces replicative senescence in human adipose tissue-derived mesenchymal stem cells via silent information regulator 1Mol Cell Biochem3722852013. 134. Shin KK, Kim YJ, Hong CP, Yang JW, Bae YC, and Jung JS. Retracted article: miR-598 induces replicative senescence in human adipose tissue-derived mesenchymal stem cells via silent information regulator 1. Mol Cell Biochem 372: 285, 2013.
135.
Simmons CRZou FYounkin SGEstus S. Evaluation of the global association between cholesterol-associated polymorphisms and Alzheimer's disease suggests a role for rs3846662 and HMGCR splicing in disease riskMol Neurodegener6622011. 135. Simmons CR, Zou F, Younkin SG, and Estus S. Evaluation of the global association between cholesterol-associated polymorphisms and Alzheimer's disease suggests a role for rs3846662 and HMGCR splicing in disease risk. Mol Neurodegener 6: 62, 2011.
136.
Simone NLSoule BPLy DSaleh ADSavage JEDegraff WCook JHarris CCGius DMitchell JB. Ionizing radiation-induced oxidative stress alters miRNA expressionPLoS One4e63772009. 136. Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W, Cook J, Harris CC, Gius D, and Mitchell JB. Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4: e6377, 2009.
137.
Small EMFrost RJOlson EN. MicroRNAs add a new dimension to cardiovascular diseaseCirculation1211022-10322010. 137. Small EM, Frost RJ, and Olson EN. MicroRNAs add a new dimension to cardiovascular disease. Circulation 121: 1022–1032, 2010.
138.
Stelzl UWorm ULalowski MHaenig CBrembeck FHGoehler HStroedicke MZenkner MSchoenherr AKoeppen STimm JMintzlaff SAbraham CBock NKietzmann SGoedde AToksoz EDroege AKrobitsch SKorn BBirchmeier WLehrach HWanker EE. A human protein-protein interaction network: a resource for annotating the proteomeCell122957-9682005. 138. Stelzl U, Worm U, Lalowski M, Haenig C, Brembeck FH, Goehler H, Stroedicke M, Zenkner M, Schoenherr A, Koeppen S, Timm J, Mintzlaff S, Abraham C, Bock N, Kietzmann S, Goedde A, Toksoz E, Droege A, Krobitsch S, Korn B, Birchmeier W, Lehrach H, and Wanker EE. A human protein-protein interaction network: a resource for annotating the proteome. Cell 122: 957–968, 2005.
139.
Strum JCJohnson JHWard JXie HFeild JHester AAlford AWaters KM. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1Mol Endocrinol231876-18842009. 139. Strum JC, Johnson JH, Ward J, Xie H, Feild J, Hester A, Alford A, and Waters KM. MicroRNA 132 regulates nutritional stress-induced chemokine production through repression of SirT1. Mol Endocrinol 23: 1876–1884, 2009.
140.
Sun CAlkhoury KWang YIFoster GARadecke CETam KEdwards CMFacciotti MTArmstrong EJKnowlton AANewman JWPasserini AGSimon SI. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat mealCirc Res1111054-10642012. 140. Sun C, Alkhoury K, Wang YI, Foster GA, Radecke CE, Tam K, Edwards CM, Facciotti MT, Armstrong EJ, Knowlton AA, Newman JW, Passerini AG, and Simon SI. IRF-1 and miRNA126 modulate VCAM-1 expression in response to a high-fat meal. Circ Res 111: 1054–1064, 2012.
141.
Sun HXZeng DYLi RTPang RPYang HHu YLZhang QJiang YHuang LYTang YBYan GJZhou JG. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthaseHypertension601407-14142012. 141. Sun HX, Zeng DY, Li RT, Pang RP, Yang H, Hu YL, Zhang Q, Jiang Y, Huang LY, Tang YB, Yan GJ, and Zhou JG. Essential role of microRNA-155 in regulating endothelium-dependent vasorelaxation by targeting endothelial nitric oxide synthase. Hypertension 60: 1407–1414, 2012.
142.
Sun LLJiang BGLi WTZou JJShi YQLiu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expressionDiabetes Res Clin Pract9194-1002011. 142. Sun LL, Jiang BG, Li WT, Zou JJ, Shi YQ, and Liu ZM. MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Res Clin Pract 91: 94–100, 2011.
143.
Sung FLZhu TYAu-Yeung KKSiow YL O K. Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-kappaBKidney Int621160-11702002. 143. Sung FL, Zhu TY, Au-Yeung KK, Siow YL, and O K. Enhanced MCP-1 expression during ischemia/reperfusion injury is mediated by oxidative stress and NF-kappaB. Kidney Int 62: 1160–1170, 2002.
144.
Szabo CPacher PZsengeller ZVaslin AKomjati KBenko RChen MMabley JGKollai M. Angiotensin II-mediated endothelial dysfunction: role of poly(ADP-ribose) polymerase activationMol Med1028-352004. 144. Szabo C, Pacher P, Zsengeller Z, Vaslin A, Komjati K, Benko R, Chen M, Mabley JG, and Kollai M. Angiotensin II-mediated endothelial dysfunction: role of poly(ADP-ribose) polymerase activation. Mol Med 10: 28–35, 2004.
145.
Thomson DWBracken CPGoodall GJ. Experimental strategies for microRNA target identificationNucleic Acids Res396845-68532011. 145. Thomson DW, Bracken CP, and Goodall GJ. Experimental strategies for microRNA target identification. Nucleic Acids Res 39: 6845–6853, 2011.
146.
Thum T. MicroRNA therapeutics in cardiovascular medicineEMBO Mol Med43-142012. 146. Thum T. MicroRNA therapeutics in cardiovascular medicine. EMBO Mol Med 4: 3–14, 2012.
147.
Tissenbaum HAGuarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegansNature410227-2302001. 147. Tissenbaum HA, and Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230, 2001.
148.
Trajkovski MHausser JSoutschek JBhat BAkin AZavolan MHeim MHStoffel M. MicroRNAs 103 and 107 regulate insulin sensitivityNature474649-6532011. 148. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, Heim MH, and Stoffel M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474: 649–653, 2011.
149.
Ungvari ZBagi ZFeher ARecchia FASonntag WEPearson Kde Cabo RCsiszar A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2Am J Physiol Heart Circ Physiol299H18-242010. 149. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, de Cabo R, and Csiszar A. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 299: H18–24, 2010.
150.
Ungvari ZLabinskyy NMukhopadhyay PPinto JTBagi ZBallabh PZhang CPacher PCsiszar A. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cellsAm J Physiol Heart Circ Physiol297H1876-18812009. 150. Ungvari Z, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, Zhang C, Pacher P, and Csiszar A. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. Am J Physiol Heart Circ Physiol 297: H1876–1881, 2009.
151.
van Rooij EOlson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstaclesNat Rev Drug Discov11860-8722012. 151. van Rooij E, and Olson EN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat Rev Drug Discov 11: 860–872, 2012.
152.
van Rooij EPurcell ALLevin AA. Developing microRNA therapeuticsCirc Res110496-5072012. 152. van Rooij E, Purcell AL, and Levin AA. Developing microRNA therapeutics. Circ Res 110: 496–507, 2012.
153.
Vasa-Nicotera MChen HTucci PYang ALSaintigny GMenghini RMahe CAgostini MKnight RAMelino GFederici M. miR-146a is modulated in human endothelial cell with agingAtherosclerosis217326-3302011. 153. Vasa-Nicotera M, Chen H, Tucci P, Yang AL, Saintigny G, Menghini R, Mahe C, Agostini M, Knight RA, Melino G, and Federici M. miR-146a is modulated in human endothelial cell with aging. Atherosclerosis 217: 326–330, 2011.
154.
Vaziri HDessain SKNg Eaton EImai SIFrye RAPandita TKGuarente LWeinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylaseCell107149-1592001. 154. Vaziri H, Dessain SK, Ng Eaton E, Imai SI, Frye RA, Pandita TK, Guarente L, and Weinberg RA. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107: 149–159, 2001.
155.
Vickers KCShoucri BMLevin MGWu HPearson DSOsei-Hwedieh DCollins FSRemaley ATSethupathy P. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemiaHepatology57533-5422012. 155. Vickers KC, Shoucri BM, Levin MG, Wu H, Pearson DS, Osei-Hwedieh D, Collins FS, Remaley AT, and Sethupathy P. MicroRNA-27b is a regulatory hub in lipid metabolism and is altered in dyslipidemia. Hepatology 57: 533–542, 2012.
156.
Wagner WHorn PCastoldi MDiehlmann ABork SSaffrich RBenes VBlake JPfister SEckstein VHo AD. Replicative senescence of mesenchymal stem cells: a continuous and organized processPLoS One3e22132008. 156. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, and Ho AD. Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3: e2213, 2008.
157.
Whitsett JPicklo MJ Sr.Vasquez-Vivar J. 4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradationArterioscler Thromb Vasc Biol272340-23472007. 157. Whitsett J, Picklo MJ, Sr., and Vasquez-Vivar J. 4-Hydroxy-2-nonenal increases superoxide anion radical in endothelial cells via stimulated GTP cyclohydrolase proteasomal degradation. Arterioscler Thromb Vasc Biol 27: 2340–2347, 2007.
158.
Wingender EChen XHehl RKaras HLiebich IMatys VMeinhardt TPruss MReuter ISchacherer F. TRANSFAC: an integrated system for gene expression regulationNucleic Acids Res28316-3192000. 158. Wingender E, Chen X, Hehl R, Karas H, Liebich I, Matys V, Meinhardt T, Pruss M, Reuter I, and Schacherer F. TRANSFAC: an integrated system for gene expression regulation. Nucleic Acids Res 28: 316–319, 2000.
159.
Wu CGong YYuan JZhang WZhao GLi HSun AZou YGe J. microRNA-181a represses ox-LDL-stimulated inflammatory response in dendritic cell by targeting c-FosJ Lipid Res532355-23632012. 159. Wu C, Gong Y, Yuan J, Zhang W, Zhao G, Li H, Sun A, Zou Y, and Ge J. microRNA-181a represses ox-LDL-stimulated inflammatory response in dendritic cell by targeting c-Fos. J Lipid Res 53: 2355–2363, 2012.
160.
Wu WXiao HLaguna-Fernandez AVillarreal G Jr.Wang KCGeary GGZhang YWang WCHuang HDZhou JLi YSChien SGarcia-Cardena GShyy JY. Flow-dependent regulation of krüppel-like factor 2 is mediated by microRNA-92aCirculation124633-6412011. 160. Wu W, Xiao H, Laguna-Fernandez A, Villarreal G, Jr., Wang KC, Geary GG, Zhang Y, Wang WC, Huang HD, Zhou J, Li YS, Chien S, Garcia-Cardena G, and Shyy JY. Flow-dependent regulation of krüppel-like factor 2 is mediated by microRNA-92a. Circulation 124: 633–641, 2011.
161.
Wu ZPuigserver PAndersson UZhang CAdelmant GMootha VTroy ACinti SLowell BScarpulla RCSpiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1Cell98115-1241999. 161. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, and Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124, 1999.
162.
Xu DTakeshita FHino YFukunaga SKudo YTamaki AMatsunaga JTakahashi RUTakata TShimamoto AOchiya TTahara H. miR-22 represses cancer progression by inducing cellular senescenceJ Cell Biol193409-4242011. 162. Xu D, Takeshita F, Hino Y, Fukunaga S, Kudo Y, Tamaki A, Matsunaga J, Takahashi RU, Takata T, Shimamoto A, Ochiya T, and Tahara H. miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193: 409–424, 2011.
163.
Yajima NMasuda MMiyazaki MNakajima NChien SShyy JY. Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: a study of the transcription profile with complementary DNA microarrayJ Vasc Surg36379-3852002. 163. Yajima N, Masuda M, Miyazaki M, Nakajima N, Chien S, and Shyy JY. Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: a study of the transcription profile with complementary DNA microarray. J Vasc Surg 36: 379–385, 2002.
164.
Yamakuchi M. MicroRNA regulation of SIRT1Front Physiol3682012. 164. Yamakuchi M. MicroRNA regulation of SIRT1. Front Physiol 3: 68, 2012.
165.
Yamakuchi MFerlito MLowenstein CJ. miR-34a repression of SIRT1 regulates apoptosisProc Natl Acad Sci U S A10513421-134262008. 165. Yamakuchi M, Ferlito M, and Lowenstein CJ. miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105: 13421–13426, 2008.
166.
Yang YFu WChen JOlashaw NZhang XNicosia SVBhalla KBai W. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stressNat Cell Biol91253-12622007. 166. Yang Y, Fu W, Chen J, Olashaw N, Zhang X, Nicosia SV, Bhalla K, and Bai W. SIRT1 sumoylation regulates its deacetylase activity and cellular response to genotoxic stress. Nat Cell Biol 9: 1253–1262, 2007.
167.
Yeung FHoberg JERamsey CSKeller MDJones DRFrye RAMayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylaseEMBO J232369-23802004. 167. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, and Mayo MW. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23: 2369–2380, 2004.
168.
Yin HHu MZhang RShen ZFlatow LYou M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1J Biol Chem2879817-98262012. 168. Yin H, Hu M, Zhang R, Shen Z, Flatow L, and You M. MicroRNA-217 promotes ethanol-induced fat accumulation in hepatocytes by down-regulating SIRT1. J Biol Chem 287: 9817–9826, 2012.
169.
Zhang QWang SYFleuriel CLeprince DRocheleau JVPiston DWGoodman RH. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complexProc Natl Acad Sci U S A104829-8332007. 169. Zhang Q, Wang SY, Fleuriel C, Leprince D, Rocheleau JV, Piston DW, and Goodman RH. Metabolic regulation of SIRT1 transcription via a HIC1:CtBP corepressor complex. Proc Natl Acad Sci U S A 104: 829–833, 2007.
170.
Zhang QJWang ZChen HZZhou SZheng WLiu GWei YSCai HLiu DPLiang CC. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient miceCardiovasc Res80191-1992008. 170. Zhang QJ, Wang Z, Chen HZ, Zhou S, Zheng W, Liu G, Wei YS, Cai H, Liu DP, and Liang CC. Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice. Cardiovasc Res 80: 191–199, 2008.
171.
Zhao TLi JChen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1Am J Physiol Endocrinol Metab299E110-1162010. 171. Zhao T, Li J, and Chen AF. MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 299: E110–116, 2010.
172.
Zhou BLi CQi WZhang YZhang FWu JXHu YNWu DMLiu YYan TTJing QLiu MFZhai QW. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivityDiabetologia552032-20432012. 172. Zhou B, Li C, Qi W, Zhang Y, Zhang F, Wu JX, Hu YN, Wu DM, Liu Y, Yan TT, Jing Q, Liu MF, and Zhai QW. Downregulation of miR-181a upregulates sirtuin-1 (SIRT1) and improves hepatic insulin sensitivity. Diabetologia 55: 2032–2043, 2012.
173.
Zhou SChen HZWan YZZhang QJWei YSHuang SLiu JJLu YBZhang ZQYang RFZhang RCai HLiu DPLiang CC. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunctionCirc Res109639-6482011. 173. Zhou S, Chen HZ, Wan YZ, Zhang QJ, Wei YS, Huang S, Liu JJ, Lu YB, Zhang ZQ, Yang RF, Zhang R, Cai H, Liu DP, and Liang CC. Repression of P66Shc expression by SIRT1 contributes to the prevention of hyperglycemia-induced endothelial dysfunction. Circ Res 109: 639–648, 2011.
174.
Zhu HYang YWang YLi JSchiller PWPeng T. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1Cardiovasc Res9275-842011. 174. Zhu H, Yang Y, Wang Y, Li J, Schiller PW, and Peng T. MicroRNA-195 promotes palmitate-induced apoptosis in cardiomyocytes by down-regulating Sirt1. Cardiovasc Res 92: 75–84, 2011.
175.
Zhu SDeng SMa QZhang TJia CZhuo DYang FWei JWang LDykxhoorn DMHare JMGoldschmidt-Clermont PJDong C. MicroRNA-10A* and microRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2Circ Res112152-1642013. 175. Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, Hare JM, Goldschmidt-Clermont PJ, and Dong C. MicroRNA-10A* and microRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res 112: 152–164, 2013.
176.
Zu YLiu LLee MYXu CLiang YMan RYVanhoutte PMWang Y. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cellsCirc Res1061384-13932010. 176. Zu Y, Liu L, Lee MY, Xu C, Liang Y, Man RY, Vanhoutte PM, and Wang Y. SIRT1 promotes proliferation and prevents senescence through targeting LKB1 in primary porcine aortic endothelial cells. Circ Res 106: 1384–1393, 2010.

Information & Authors

Information

Published In

cover image Antioxidants & Redox Signaling
Antioxidants & Redox Signaling
Volume 19Issue Number 13November 1, 2013
Pages: 1522 - 1538
PubMed: 23477488

History

Published in print: November 1, 2013
Published online: 17 October 2013
Published ahead of print: 25 April 2013
Published ahead of production: 11 March 2013
Accepted: 11 March 2013
Revision received: 9 March 2013
Received: 11 July 2012

Permissions

Request permissions for this article.

Topics

Authors

Affiliations

Zhen Chen
Division of Biomedical Sciences, University of California, Riverside, California.
Division of Cardiology, Department of Medicine, School of Medicine, University of California, San Diego, California.
Tzu-Pin Shentu
Division of Biomedical Sciences, University of California, Riverside, California.
Division of Cardiology, Department of Medicine, School of Medicine, University of California, San Diego, California.
Liang Wen
Division of Biomedical Sciences, University of California, Riverside, California.
David A. Johnson
Division of Biomedical Sciences, University of California, Riverside, California.
John Y.-J. Shyy
Division of Biomedical Sciences, University of California, Riverside, California.
Division of Cardiology, Department of Medicine, School of Medicine, University of California, San Diego, California.

Notes

Address correspondence to:Dr. John Y.-J. ShyyDivision of CardiologyDepartment of MedicineSchool of MedicineUniversity of CaliforniaSan Diego, CA 92093E-mail: [email protected]
[email protected]

Metrics & Citations

Metrics

Citations

Export citation

Select the format you want to export the citations of this publication.

View Options

Get Access

Access content

To read the fulltext, please use one of the options below to sign in or purchase access.

Society Access

If you are a member of a society that has access to this content please log in via your society website and then return to this publication.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF/EPUB

View PDF/ePub

Full Text

View Full Text

Media

Figures

Other

Tables

Share

Share

Copy the content Link

Share on social media

Back to Top