Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Effect of curcumin on hepatic heme oxygenase 1 expression in high fat diet fed rats: is there a triangular relationship?

Publication: Canadian Journal of Physiology and Pharmacology
11 August 2014

Abstract

High fat diet (HFD) is associated with oxidative stress induced fatty liver. Curcumin, an extract of Curcuma longa, has been shown to possess potent antioxidant and hypolipidemic properties. In this study, we investigated the effect of curcumin treatment on hepatic heme oxygenase-1 (HO-1) expression along with pro-oxidant–antioxidant status and lipid accumulation in rats fed an HFD. Male Sprague–Dawley rats were distributed among 4 groups: Group 1, which was fed the control diet (10% of total calories from fat); Group 2, which was fed the HFD (60% of total calories from fat); and groups 3 and 4, which received the HFD supplemented with curcumin and the control diet supplemented with curcumin (1 g/kg diet; w/w), respectively, for 16 weeks. HFD caused increases in hepatic lipid levels, production of reactive oxygen species, and lipid peroxidation. Further, HO-1 expression was significantly decreased. Histopathological examination showed hepatic fat accumulation and slight fibrotic changes. Curcumin treatment reduced hepatic lipids and oxidative stress parameters, and HO-1 expression was significantly increased. These findings suggest that increased HO-1 expression, along with suppressed oxidative stress as well as reduced hepatic fat accumulation and fibrotic changes, contribute to the beneficial effects of curcumin in attenuating the pathogenesis of fatty liver induced metabolic diseases.

Résumé

Une diète riche en gras (DRG) est liée au foie gras induit par le stress oxydant. La curcumine, un extrait de Curcuma longa, possède d’importantes propriétés anti-oxydantes et hypo-lipémiantes. Dans cette étude, les auteurs ont examiné l’effet d’un traitement à la curcumine sur l’expression de l’hème oxygénase-1 (HO-1) hépatique, l’état pro-oxydant–antioxydant et l’accumulation de lipides chez les rats soumis à une DRG. Des rats mâles Sprague–Dawley ont été répartis en quatre groupes : Groupe 1 nourri à la diète contrôle (10 % des calories totales fournies par les lipides), Groupe 2 nourri à la DRG (60 % des calories totales fournies par les lipides), Groupes 3 et 4 nourris respectivement à la diète contrôle ou la DRG avec de la curcumine (1 g/kg diète, p/p) pendant 16 semaines. La DRG provoquait une hausse significative des niveaux de lipides hépatiques, de la production d’ERO et de la peroxydation lipidique. L’expression d’HO-1 était significativement diminuée. L’examen histopathologique a montré une accumulation de graisse hépatique et une légère fibrose. Le traitement à la curcumine réduisait les lipides hépatiques et les paramètres liés au stress oxydant. L’expression d’HO-1 était significativement accrue. Ces données suggèrent que l’expression accrue d’HO-1 parallèlement à la suppression du stress oxydant et la réduction de l’accumulation de graisse hépatique et de la fibrose, peut contribuer aux effets bénéfiques de la curcumine dans l’atténuation de la pathogenèse des maladies métaboliques induites par le foie gras. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Abdel Aziz M.T., El-Asmar M.F., El-Ibrashy I.N., Rezq A.M., Al-Malki A.L., Wassef M.A., et al. 2012. Effect of novel water soluble curcumin derivative on experimental type-1 diabetes mellitus (short term study). Diabetol. Metab. Syndr. 4(1): 30.
Ammon H.P. and Wahl M.A. 1991. Pharmacology of Curcuma longa. Planta Med. 57: 1–7.
Aziz M.T., El Ibrashy I.N., Mikhailidis D.P., Rezq A.M., Wassef M.A., Fouad H.H., et al. 2013. Signaling mechanisms of a water soluble curcumin derivative in experimental type 1 diabetes with cardiomyopathy. Diabetol. Metab. Syndr. 5: 13.
Beutler E., Duron O., and Kelly B.M. 1979. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61: 882–888.
Bradford P.G. 2013. Curcumin and obesity. BioFactors, 39: 78–87.
Browning J.D., Szczepaniak L.S., Dobbins R., Nuremberg P., Horton J.D., Cohen J.C., et al. 2004. Prevalence of hepatic steatosis in an urban population in the United States: impact of ethnicity. Hepatology, 40: 1387–1395.
Buege J.A. and Aust J.D. 1978. Microsomal lipid peroxidation. Methods Enzymol. 52: 302–310.
Colantoni A., Idilman R., De Maria N., La Paglia N., Belmonte J., Wezeman F., et al. 2003. Hepatic apoptosis and proliferation in male and female rats fed alcohol: role of cytokines. Alcohol. Clin. Exp. Res. 27: 1184–1189.
Dandona P., Aljada A., Chaudhuri A., Mohanty P., and Garg R. 2005. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation, 111: 1448–1454.
Dikalov S.I., Li W., Mehranpour P., Wang S.S., and Zafari A.M. 2007. Production of extracellular superoxide by human lymphoblast cell lines: comparison of electron spin resonance techniques and cytochrome C reduction assay. Biochem. Pharmacol. 73: 972–980.
Doğru-Abbasoğlu S., Parıldar-Karpuzoğlu H., Balkan J., Aykaç-Toker G., and Uysal M. 2007. Nitrotyrosine formation and heme oxygenase-1 expression in endotoxemic cirrhotic rats. Arch. Med. Res. 38: 28–33.
Dominguez L.J., Galioto A., Pineo A., Ferlisi A., Ciaccio M., Putignano E., et al. 2010. Age, homocysteine, and oxidative stress: relation to hypertension and type 2 diabetes mellitus. J. Am. Coll. Nutr. 29: 1–6.
Ejaz A., Wu D., Kwan P., and Meydani M. 2009. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J. Nutr. 139: 919–925.
Farombi E.O. and Surh Y.J. 2006. Heme oxygenase-1 as a potential therapeutic target for hepatoprotection. J. Biochem. Mol. Biol. 30: 479–491.
Folch J., Lees M., and Stanley G.H.S. 1956. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226: 497–509.
Habig W.H. and Jacoby W.B. 1981. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 77: 398–405.
He H.J., Wang G.Y., Gao Y., Ling W.H., Yu Z.W., and Jin T.R. 2012. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J. Diabetes, 15: 94–104.
Jang E.M., Choi M.S., Jung U.J., Kim M.J., Kim H.J., Jeon S.M., et al. 2008. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism, 57: 1576–1583.
Kempaiah R.K. and Srinivasan K. 2004. Antioxidant status of red blood cells and liver in hypercholesterolemic rats fed hypolipidemic spices. Int. J. Vitam. Nutr. Res. 74: 199–208.
Lawrence R.A. and Burk R.F. 1976. Glutathione peroxidase activity in selenium deficient rat liver. Biochem. Biophys. Res. Commun. 71: 952–958.
Lee H.I., McGregor R.A., Choi M.S., Seo K.I., Jung U.J., Yeo J., et al. 2013. Low doses of curcumin protect alcohol-induced liver damage by modulation of the alcohol metabolic pathway, CYP2E1 and AMPK. Life Sci. 93: 693–699.
Lu J., Wu D.M., Zheng Y.L., Hu B., Cheng W., Zhang Z.F., and Li M.Q. 2013. Troxerutin counteracts domoic acid-induced memory deficits in mice by inhibiting CCAAT/enhancer binding protein β-mediated inflammatory response and oxidative stress. J. Immunol. 190: 3466–3479.
Manjunatha H. and Srinivasan K.2007. Hypolipidemic and antioxidant effects of curcumin and capsaicin in high-fat-fed rats. Can. J. Physiol. Pharmacol. 85(6): 588–596.
Mantena S.K., Vaughn D.P., Andringa K.K., Eccleston H.B., King A.L., Abrams G.A., et al. 2009. High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. Biochem. J. 417: 183–193.
Martínez-Morúa A., Soto-Urquieta M.G., Franco-Robles E., Zúñiga-Trujillo I., Campos-Cervantes A., Pérez-Vázquez V., and Ramírez-Emiliano J. 2013. Curcumin decreases oxidative stress in mitochondria isolated from liver and kidneys of high-fat diet-induced obese mice. J. Asian Nat. Prod. Res. 15: 905–915.
Milagro F.I., Campión J., and Martínez J.A. 2006. Weight gain induced by high-fat feeding involves increased liver oxidative stress. Obesity, 14: 1118–1123.
Mylorie A.A., Collins H., Umbles C., and Kyle J. 1986. Erythrocyte superoxide dismutase activity and other parameters of copper status in rats ingesting lead acetate. Toxicol. Appl. Pharmacol. 82: 512–520.
Nanji A.A., Jokelainen K., Tipoe G.L., Rahemtulla A., Thomas P., and Dannenberg A.J. 2003. Curcumin prevents alcohol-induced liver disease in rats by inhibiting the expression of NF-kappa B-dependent genes. Am. J. Physiol. Gastrointest. Liver Physiol. 284: G321–G327.
Ohkawa H., Ohishi N., and Yagi K. 1979. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358.
Oliveira C.P., da Costa Gayotto L.C., Tatai C., Della Bina B.I., Janiszewski M., Lima E.S., et al. 2002. Oxidative stress in the pathogenesis of non alcoholic fatty liver disease, in rats fed with a choline-deficient diet. J. Cell. Mol. Med. 6: 399–406.
Oner-İyidoğan Y., Koçak H., Seyidhanoğlu M., Gürdöl F., Gülçubuk A., Yildirim F., et al. 2013. Curcumin prevents liver fat accumulation and serum fetuin-A increase in rats fed a high-fat diet. J. Physiol. Biochem. 69: 677–686.
Öztezcan S., Kırgız B., Ünlüçerçi Y., Doğru-Abbasoğlu S., Bilge H., Uysal M., and Aykaç-Toker G. 2004. Heme oxygenase induction protects liver against oxidative stress in X-irradiated aged rats. Biogerontology, 5: 99–105.
Pae H.O., Kim E.C., and Chung H.T. 2008. Integrative survival response evoked by heme oxygenase-1 and heme metabolites. J. Clin. Biochem. Nutr. 42: 197–203.
Rong S., Zhao Y., Bao W., Xiao X., Wang D., Nussler A.K., et al. 2012. Curcumin prevents chronic alcohol-induced liver disease involving decreasing ROS generation and enhancing antioxidative capacity. Phytomedicine, 19: 545–550.
Rosenstengel S., Stoeppeler S., Bahde R., Spiegel H.U., and Palmes D. 2011. Type of steatosis influences microcirculation and fibrogenesis in different rat strains. J. Invest. Surg. 24: 273–282.
Samuhasaneeto S., Thong-Ngam D., Kulaputana O., Suyasunanont D., and Klaikeaw N. 2009. Curcumin decreased oxidative stress, inhibited NF-kappa B activation, and improved liver pathology in ethanol-induced liver injury in rats. J. Biomed. Biotechnol. Article ID 981963.
Satia-Abouta J., Patterson R.E., Schiller R.N., and Kristal A.R. 2002. Energy from fat is associated with obesity in U.S. men: results from the Prostate Cancer Prevention Trial. Prev. Med. 34: 493–501.
Smith P.K., Krohn R.I., Hermanson G.T., Mallia A.K., Gartner F.H., Provenzano M.D., et al. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76–85.
Smith S. 1994. The animal fatty acid synthase: one gene, one polypeptide, seven enzymes. FASEB J. 8: 1248–1259.
Son, Y., Lee, J.H., Chung, H.T., and Pae, H.O. 2013. Therapeutic roles of heme oxygenase-1 in metabolic diseases: curcumin and resveratrol analogues as possible inducers of heme oxygenase-1. Oxid. Med. Cell. Longev. Article ID 639541, 12 pages.
Stoner G.D., Wang L., and Casto B.C. 2008. Laboratory and clinical studies of cancer chemoprevention by antioxidants in berries. Carcinogenesis, 29: 1665–1674.
Torres D.M. and Harrison S.A. 2008. Diagnosis and therapy of nonalcoholic steatohepatitis. Gastroenterology, 134: 1682–1698.
Uzun H., Zengin K., Taskin M., Aydin S., Simsek G., and Dariyerli N. 2004. Changes in leptin, plasminogen activator factor and oxidative stress in morbidly obese patients following open and laparoscopic Swedish adjustable gastric banding. Obes. Surg. 14: 659–665.
Valko M., Leibfritz D., Moncol J., Cronin M.T.D., Mazur M., and Telser J. 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39: 44–84.
Vera-Ramirez L., Perez-Lopez P., Varela-Lopez A., Ramirez-Tortosa M., Battino M., and Quiles J.L. 2013. Curcumin and liver disease. BioFactors, 39: 88–100.
Wang H. and Joseph J.A. 1999. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med. 27: 612–616.

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 92Number 10October 2014
Pages: 805 - 812

History

Received: 2 May 2014
Accepted: 8 July 2014
Accepted manuscript online: 11 August 2014
Version of record online: 11 August 2014

Permissions

Request permissions for this article.

Key Words

  1. obesity
  2. fatty liver
  3. antioxidant enzymes
  4. ROS
  5. MDA
  6. hepatic lipids
  7. turmeric

Mots-clés

  1. obésité
  2. foie gras
  3. enzymes anti-oxydantes
  4. ERO
  5. MDA
  6. lipides hépatiques
  7. curcuma

Authors

Affiliations

Yıldız Öner-İyidoğan
Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Çapa, Istanbul, Turkey.
Sevda Tanrıkulu-Küçük
Department of Biochemistry, Faculty of Medicine, Istanbul Bilim University, Esentepe, Istanbul, Turkey.
Muhammed Seyithanoğlu
Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Çapa, Istanbul, Turkey.
Hikmet Koçak
Department of Biochemistry, Faculty of Medicine, Istanbul Bilim University, Esentepe, Istanbul, Turkey.
Semra Doğru-Abbasoğlu
Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Çapa, Istanbul, Turkey.
A. Fatih Aydın
Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Çapa, Istanbul, Turkey.
Şule Beyhan-Özdaş
Department of Medical Biology and Genetic, Faculty of Medicine, Istanbul Bilim University, Esentepe, Istanbul, Turkey.
Hande Yapışlar
Department of Physiology, Faculty of Medicine, Istanbul Bilim University, Esentepe, Istanbul, Turkey.
Necla Koçak-Toker
Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Çapa, Istanbul, Turkey.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Curcumin as a Therapeutic Agent for Sarcopenia
2. A review of edible plant-derived natural compounds for the therapy of liver fibrosis
3. Effects of turmeric (Curcuma longa) and its constituent (curcumin) on the metabolic syndrome: An updated review
4. Natural Product Heme Oxygenase Inducers as Treatment for Nonalcoholic Fatty Liver Disease
5. Cellular and molecular mechanisms of curcumin in prevention and treatment of disease
6. Effect of dietary curcumin and capsaicin on testicular and hepatic oxidant–antioxidant status in rats fed a high-fat diet
7. Effects of Prolonged Dietary Curcumin Exposure on Skeletal Muscle Biochemical and Functional Responses of Aged Male Rats
8. The effect of dietary curcumin on hepatic chymase activity and serum fetuin-A levels in rats fed on a high-fat diet
9. New evidence for the therapeutic potential of curcumin to treat nonalcoholic fatty liver disease in humans
10. Molecular mechanisms underlying chemopreventive potential of curcumin: Current challenges and future perspectives
11. The role of heme oxygenase-1 in drug metabolizing dysfunction in the alcoholic fatty liver exposed to ischemic injury
12. Curcuma longa
13. Curcumin

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media