Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Lipoic acid and moderate swimming improves the estrous cycle and oxidative stress in Wistar rats

Publication: Applied Physiology, Nutrition, and Metabolism
7 October 2011

Abstract

The generation of reactive oxygen species resulting from physical activity may trigger adaptive processes at the reproductive level and in the antioxidant defense system itself. The objective of this study was to investigate the effects of moderate daily swimming and lipoic acid (LA) supplementation on estrous cycle duration and pro-oxident and antioxidant markers in young Wistar rats. Animals were submitted to daily swimming (for 1 h) for 30 days, between 1300 h and 1400 h. The following study groups were formed: group 1, sedentary; group 2, submitted to swimming; group 3, sedentary supplemented with 100 mg·kg–1·day–1 of LA; and group 4, submitted to swimming and supplementation with 100 mg·kg–1·day–1 of LA. The estrous cycle of the animals was evaluated daily, and the following oxidative stress markers were measured: plasma thiobarbituric acid reactive substances (TBARS) and glutathione (GSH), erythrocyte superoxide dismutase (SOD), GSH peroxidase (GPx) and catalase (CAT) activity. The exercise protocol increased estrous cycle duration in group 2, especially in the diestrous phase. There was also a decrease in lipoperoxidation, with enhanced antioxidant activity of SOD and GPx. Group 4 showed no alteration in estrous cycle duration and maintained the beneficial effects on the antioxidant system observed in group 2. The increase in estrous cycle duration and improved oxidative stress markers may be an adaptive response to moderate exercise. LA impeded any exercise-induced alteration in the cycle but preserved improvements in the antioxidant system.

Résumé

La génération d’espèces réactives de l’oxygène provenant de l’activité physique peut entraîner des processus adaptatifs à un niveau reproductif et dans le propre système de défense antioxydant. L’objectif de ce travail est d’étudier les effets de la natation modérée quotidienne e de l’addition d’un acide lipoïdique sur la durée du cycle oestrous et marqueurs pro et antioxydants sur des rattes Wistar jeunes. Les animaux ont été soumis à une pratique quotidienne de la natation, pendant une période de 30 jours, entre 1300 et 1400 heures de l’après-midi. Les groupes d’études suivants ont été établis : groupe 1, sédentaire; groupe 2, pratique de la natation; groupe 3 sédentaire avec addition de 100 mg·kg–1·jour–1 d’acide lipoïdique; et groupe 4, pratique de la natation et addition de 100 mg·kg–1·jour–1 d’acide lipoïdique. Nous avons évalué quotidiennement leur cycle oestrous et mesuré les marqueurs suivants de stress oxydatif : TBARS et GSH plasmatiques, activité érythrocytaire de la SOD, GPx et CAT. Le protocole d’exercice a augmenté la durée du cycle oestrous dans le groupe 2, surtout pendant le dioestrus. Dans ce même groupe, il y a eu une diminution de la lipoperoxydation avec une amélioration de l’activité anti-oxydante de la SOD et GPx. Le groupe 4 n’a pas présenté d’altération pendant le cycle oestrous et a maintenu les bénéfices sur le système antioxydant observé antérieurement sur le groupe 2. L’augmentation de la durée du cycle oestrous et l’amélioration des marqueurs de stress oxydatif seraient une réponse adaptative face à l’exercice modéré. L’acide lipoïdique a empêché l’altération du cycle induite par l’exercice, mais a préservé l’amélioration dans le système antioxydant.

Get full access to this article

View all available purchase options and get full access to this article.

References

Agarwal A., Gupta S., and Sharma R.K. 2005. Role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 3(1): 28.
Beutler, E. 1984. Gluthatione. In Red cell metabolism: a manual of biochemical methods. Grune and Straton Publishers, New York, N.Y., USA. pp. 23–32.
Beutler E., Duron O., and Kelly B.M. 1963. Improved method for the determination of blood glutathione. J. Lab. Clin. Med. 61: 882–888.
Bird R.D. and Draper A.H. 1984. Comparative studes on diferents methods of malondyaldehyd determination. Methods Enzymol. 90: 105–110.
Boveris A. and Navarro A. 2007. Systemic and mitochondrial adaptive responses to moderate exercise in rodents. Free Radic. Biol. Med. 44(2): 224–229.
Calabrese E.J. and Baldwin L.A. 2003. Hormesis: the dose-response revolution. Annu. Rev. Pharmacol. Toxicol. 43(1): 175–197.
Cakatay U. 2006. Pro-oxidant actions of α-lipoic acid and dihydrolipoic acid. Med. Hypotheses, 66(1): 110–117.
Chae C.H., Shin C.H., and Kim H.T. 2008. The combination of α-lipoic acid supplementation and aerobic exercise inhibits lipid peroxidation in rat skeletal muscles. Nutr. Res. 28(6): 399–405.
Clarkson P.M. and Thompson H.S. 2000. Antioxidants: what role do they play in physical activity and health? Am. J. Clin. Nutr. 72(Suppl. 2): 637S–646S.
De Souza M.J. and Williams N.I. 2004. Phisiological aspects and clinical sequelae of energy deficiency and hypoestrogenism in exercise women. Hum. Reprod. Update, 10(5): 433–448.
Deneke S.M. and Fanburg B.L. 1989. Regulation of cellular glutathione. Am. J. Physiol. 257(4 Pt 1): L163–L173.
Dimarco N.M., Dart L., and Sanborn C.B. 2007. Modified activity-stress paradigm in an animal model of the female athlete triad. J. Appl. Physiol. 103(5): 1469–1478.
Garcia-Segura L.M., Azcoitia I., and DonCarlos L.L. 2001. Neuroprotection by estradiol. Prog. Neurobiol. 63(1): 29–60.
Gomez-Cabrera M.C., Domenech E., and Vina J. 2007. Moderate exercise is an antioxidant: upregulation of antioxidant genes by training. Free Radic. Biol. Med. 44(2): 126–131.
Halliwell, B., and Gutteridge, J.M.C. 2007. Antioxidant defenses. In Free radicals in biology and medicine. Oxford University Press, Oxford, UK. pp. 106–116.
Ji L.L. 2008. Modulation of skeletal muscle antioxidant defense by exercise: role of redox signaling. Free Radic. Biol. Med. 44(2): 142–152.
Ji L.L., Gomez-Cabrera M., and Vina J. 2006. Exercise and hormesis: activation of cellular antoxidant signaling pathway. Ann. N. Y. Acad. Sci. 1067(1): 425–435.
Khanna S., Atalay M., Laaksonen D.E., Gul M., Roy S., and Sen C.K. 1999. Lipoic acid supplementation: tissue glutathione homeostasis at rest and after exercise. J. Appl. Physiol. 86(4): 1191–1196.
Kregel K.C. and Zhang H.J. 2007. An integrated view of oxidative stress in aging: basic mechanisms, functional effects, and pathological considerations. Am. J. Physiol. Regul. Intergr. Comp. Physiol. 292(1): R18–R36.
Maeda K. and Tsukamura H. 2006. The impact of stress on reproduction: are glucocorticoids inhibitory or protective to gonadotropin secretion? Endocrinology, 147(3): 1085–1086.
Marcondes F.K., Bianchi F.J., and Tanno A.P. 2002. Determination of the estrous cycle phases or rats: some helpful considerations. Braz. J. Biol. 62(4A): 609–614.
Moreau K.L., DePaulis A.R., Gavin K.M., and Seals D.R. 2007. Oxidative stress contributes to chronic leg vasoconstriction in estrogen-deficient postmenopausal women. J. Appl. Physiol. 102(3): 890–895.
Peake J.M., Suzuki K., and Coombes J.S. 2007. The influence of antioxidant supplementation on markers of inflammation and the relationship to oxidative stress after exercise. J. Nutr. Biochem. 18(6): 357–371.
Radak Z., Chung H.Y., and Goto S. 2008. Systemic adaptation oxidative challenge induced by regular exercise. Free Radic. Biol. Med. 44(2): 153–159.
Radak Z., Chung H.Y., Koltai E., Taylor A.W., and Goto S. 2008. Exercise, oxidative stress and hormesis. Ageing Res. Rev. 7(1): 34–42.
Saengsirisuwan V., Perez F.R., Sloniger J.A., Maier T., and Henriksen E.J. 2004. Interactions of exercise training and α-lipoic acid on insulin signaling in skeletal muscle of obese Zucker rats. Am. J. Physiol. Endocrinol. Metab. 287(3): E529–E536.
Siow R.C., Li F.Y., Rowlands D.J., de Winter P., and Mann G.E. 2007. Cardiovascular targets for estrogens and phytoestrogens: transcriptional regulation of nitric oxide synthase and antioxidant defense genes. Free Radic. Biol. Med. 42(7): 909–925.
Veldhuis J.D., Evans W.S., Demers L.M., Thorner M.O., Wakat D., and Rogol A.D. 1985. Altered neuroendocrine regulation of gonadotropin secretion in women distance runners. J. Clin. Endocrinol. Metab. 61(3): 557–563.

Information & Authors

Information

Published In

cover image Applied Physiology, Nutrition, and Metabolism
Applied Physiology, Nutrition, and Metabolism
Volume 36Number 5October 2011
Pages: 693 - 697

History

Received: 22 March 2011
Accepted: 28 April 2011
Version of record online: 7 October 2011

Permissions

Request permissions for this article.

Key Words

  1. lipoic acid
  2. moderate swimming
  3. oxidative stress

Mots-clés

  1. acide lipoïdique
  2. modérée natation
  3. stress oxydatif

Authors

Affiliations

Rand Randall Martins
Department of Clinical Analysis and Toxicology, UFRN, Natal, RN, CEP 59012-570, Brazil.
Ulisvaldo Brunno de Oliveira Macedo
Department of Clinical Analysis and Toxicology, UFRN, Natal, RN, CEP 59012-570, Brazil.
Lúcia Dantas Leite
Department of Nutrition, UFRN, Natal, RN, CEP 59012-570, Brazil.
Adriana Augusto Rezende
Department of Clinical Analysis and Toxicology, UFRN, Natal, RN, CEP 59012-570, Brazil.
José Brandão-Neto
Department of Internal Medicine, UFRN, Natal, RN, CEP 59010-180, Brazil.
Maria das Graças Almeida
Department of Clinical Analysis and Toxicology, UFRN, Natal, RN, CEP 59012-570, Brazil.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Physical Exercise Mitigates Salivary Gland and Saliva Damages in Rats Exposed to Binge-like Ethanol Pattern
2. A low-intensity lifelong exercise routine changes miRNA expression in aging and prevents osteosarcopenic obesity by modulating inflammation
3. Alpha-lipoic acid-role in improving both reserpine toxicity and paroxetine treatment in the cerebral cortex of albino rats; histological, ultrastructural, immunohistohemical and biochemical studies
4. Swimming exercise in combination with garlic extract administration as a therapy against doxorubicin-induced hepatic, heart and renal toxicity to rats
5. Protective effect of alpha-lipoic acid and omega-3 fatty acids against cyclophosphamide-induced ovarian toxicity in rats
6. <p>Attenuated Renal and Hepatic Cells Apoptosis Following Swimming Exercise Supplemented with Garlic Extract in Old Rats</p>
7. Mechanisms of beneficial effects of exercise training on non-alcoholic fatty liver disease (NAFLD): Roles of oxidative stress and inflammation
8. The effects of progressive relaxation exercises applied to young ski jumpers on oxidative DNA damage
9. Antioxidant Vitamins as Oxidative Stress Markers in Rat Plasma After Physical Exercise - a Short Report
10. Nutraceutical agents with anti-inflammatory properties prevent dietary saturated-fat induced disturbances in blood–brain barrier function in wild-type mice
11. Oxidative Stress and Role of Natural Plant Derived Antioxidants in Animal Reproduction

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Applied Physiology, Nutrition, and Metabolism

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media