skip to main content
10.1145/2063384.2063465acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Copernicus: a new paradigm for parallel adaptive molecular dynamics

Published:12 November 2011Publication History

ABSTRACT

Biomolecular simulation is a core application on supercomputers, but it is exceptionally difficult to achieve the strong scaling necessary to reach biologically relevant timescales. Here, we present a new paradigm for parallel adaptive molecular dynamics and a publicly available implementation: Copernicus. This framework combines performance-leading molecular dynamics parallelized on three levels (SIMD, threads, and message-passing) with kinetic clustering, statistical model building and real-time result monitoring. Copernicus enables execution as single parallel jobs with automatic resource allocation. Even for a small protein such as villin (9,864 atoms), Copernicus exhibits near-linear strong scaling from 1 to 5,376 AMD cores. Starting from extended chains we observe structures 0.6 Å from the native state within 30h, and achieve sufficient sampling to predict the native state without a priori knowledge after 80--90h. To match Copernicus' efficiency, a classical simulation would have to exceed 50 microseconds per day, currently infeasible even with custom hardware designed for simulations.

References

  1. S. Berneche and B. Roux. Energetics of ion conduction through the k+ channel. Nature, 414:73--77, 2001.Google ScholarGoogle ScholarCross RefCross Ref
  2. G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S. Pande. Progress and challenges in the automated construction of markov state models for full protein systems. J. Chem. Phys., 131:124101, Sep 2009.Google ScholarGoogle ScholarCross RefCross Ref
  3. G. R. Bowman, V. A. Voelz, and V. S. Pande. Atomistic folding simulations of the five helix bundle protein lambda 6--85. J. Am. Chem. Soc., 133:664--667, 2011.Google ScholarGoogle ScholarCross RefCross Ref
  4. C. Chipot and A. Pohorille. Free energy calculations. Springer, Berlin, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  5. Y. Duan and P. A. Kollman. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science, 282:740--744, 1998.Google ScholarGoogle ScholarCross RefCross Ref
  6. Y. Duan, C. Wu, S. Chowdhury, M. Lee, G. Xiong, W. Zhang, R. Yang, P. Cieplak, R. Luo, T. Lee, et al. A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J. Comp. Chem., 24(16):1999--2012, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  7. D. L. Ensign, P. M. Kasson, and V. S. Pande. Heterogeneity even at the speed limit of folding: Large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol., 374:806--816, 2007.Google ScholarGoogle ScholarCross RefCross Ref
  8. P. L. Freddolino and K. Schulten. Common structural transitions in explicit-solvent simulations of villin headpiece folding. Biophys. J., 96:3772--3780, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  9. D. Frenkel and B. Smit. Understanding Molecular Simulation. Academic Press, London, second edition, 2002. Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 4(3):435--447, 2008.Google ScholarGoogle ScholarCross RefCross Ref
  11. P. M. Kasson, N. W. Kelley, N. Singhal, M. Vrljic, A. T. Brunger, and V. S. Pande. Ensemble molecular dynamics yields submillisecond kinetics and intermediates of membrane fusion. Proc. Natl. Acad. Sci. U. S. A., 103:11916--11921, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  12. J. Kubelka, T. Chiu, D. Davies, W. Eaton, and J. Hofrichter. Sub-microsecond protein folding. J. Mol. Biol., 359:546--553, 2006.Google ScholarGoogle ScholarCross RefCross Ref
  13. D. P. Landau and K. Binder. A Guide to Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge, 2000. Google ScholarGoogle ScholarDigital LibraryDigital Library
  14. D. L. Mobley, A. P. Graves, J. D. Chodera, A. C. McReynolds, B. K. Shoichet, and K. A. Dill. Predicting absolute ligand binding free energies to a simple model site. J. Mol. Biol., 371(4):1118--34, Aug 2007.Google ScholarGoogle ScholarCross RefCross Ref
  15. V. Pande, I. Baker, J. Chapman, S. Elmer, S. Khaliq, S. Larson, Y. Rhee, M. Shirts, C. Snow, E. Sorin, et al. Atomistic protein folding simulations on the submillisecond time scale using worldwide distributed computing. Biopolymers, 68(1):91--109, 2003.Google ScholarGoogle ScholarCross RefCross Ref
  16. V. S. Pande, K. Beauchamp, and G. R. Bowman. Everything you wanted to know about markov state models but were afraid to ask. Methods, 52:99--105, Sep 2010.Google ScholarGoogle ScholarCross RefCross Ref
  17. R. Schulz, B. Lindner, L. Petridis, and J. C. Smith. Scaling of multimillion-atom biological molecular dynamics simulation on a petascale supercomputer. J. Chem. Theory Comput., 5(10):2798--2808, 2009.Google ScholarGoogle ScholarCross RefCross Ref
  18. D. E. Shaw, R. O. Dror, J. K. Salmon, J. Grossman, K. M. Mackenzie, J. A. Bank, C. Young, M. M. Deneroff, B. Batson, K. J. Bowers, E. Chow, M. P. Eastwood, D. J. Ierardi, J. L. Klepeis, J. S. Kuskin, R. H. Larson, K. Lindorff-Larsen, P. Maragakis, M. A. Moraes, S. Piana, Y. Shan, and B. Towles. Millisecond-scale molecular dynamics simulations on anton. In ACM, editor, Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09), New York, NY, 2009. Google ScholarGoogle ScholarDigital LibraryDigital Library
  19. D. E. Shaw, P. Maragakis, K. Lindorff-Larsen, S. Piana, R. O. Dror, M. P. Eastwood, J. A. Bank, J. M. Jumper, J. K. Salmon, Y. Shan, and W. Wriggers. Atomic-level characterization of the structural dynamics of proteins. Science, 330:341--346, 2010.Google ScholarGoogle ScholarCross RefCross Ref
  20. E. Sorin and V. Pande. Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys. J., 88(4):2472--2493, 2005.Google ScholarGoogle ScholarCross RefCross Ref
  21. V. A. Voelz, V. R. Singh, W. J. Wedemeyer, L. J. Lapidus, and V. S. Pande. Unfolded state dynamics and structure of protein l characterized by simulation and experiment. J. Am. Chem. Soc., 132:4702--4709, 2010.Google ScholarGoogle ScholarCross RefCross Ref

Recommendations

Comments

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Sign in

Full Access

  • Published in

    cover image ACM Conferences
    SC '11: Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis
    November 2011
    866 pages
    ISBN:9781450307710
    DOI:10.1145/2063384

    Copyright © 2011 ACM

    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    • Published: 12 November 2011

    Permissions

    Request permissions about this article.

    Request Permissions

    Check for updates

    Qualifiers

    • research-article

    Acceptance Rates

    SC '11 Paper Acceptance Rate74of352submissions,21%Overall Acceptance Rate1,516of6,373submissions,24%

PDF Format

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader