Skip to main content
Intended for healthcare professionals
Restricted access
Review article
First published online September 5, 2022

COVID-19 Spotlights Connections between Disease and Multiple Lifestyle Factors

Abstract

The SARS-CoV-2 virus (severe acute respiratory syndrome coronavirus 2), and the disease it causes (COVID-19), have had a profound impact on global human society and threaten to continue to have such an impact with newly emerging variants. Because of the widespread effects of SARS-CoV-2, understanding how lifestyle choices impact the severity of disease is imperative. This review summarizes evidence for an involvement of chronic, non-resolving inflammation, gut microbiome disruption (dysbiosis with loss of beneficial microorganisms), and impaired viral defenses, all of which are associated with an imbalanced lifestyle, in severe disease manifestations and post-acute sequelae of SARS-CoV-2 (PASC). Humans’ physiological propensity for uncontrolled inflammation and severe COVID-19 are briefly contrasted with bats’ low propensity for inflammation and their resistance to viral disease. This insight is used to identify positive lifestyle factors with the potential to act in synergy for restoring balance to the immune response and gut microbiome, and thereby protect individuals against severe COVID-19 and PASC. It is proposed that clinicians should consider recommending lifestyle factors, such as stress management, balanced nutrition and physical activity, as preventative measures against severe viral disease and PASC.

Get full access to this article

View all access and purchase options for this article.

References

1. Zheng J. SARS-CoV-2: An emerging coronavirus that causes a global threat. Int J Biol Sci. 2020;16(10):1678-1685.
2. Wacharapluesadee S, Tan CW, Maneeorn P, et al. Evidence for SARS-CoV-2 related coronaviruses circulating in bats and pangolins in Southeast Asia. Nat Commun. 2021;12(1):972.
3. Fischhoff IR, Castellanos AA, Rodrigues JPGLM, Varsani A, Han BA. Predicting the zoonotic capacity of mammals to transmit SARS-CoV-2. Proc R Soc B Biol Sci. 2021;288(1963):20211651.
4. Wrobel AG, Benton DJ, Xu P, et al. SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects. Nat Struct Mol Biol. 2020;27(8):763-767.
5. Temmam S, Vongphayloth K, Baquero E, et al. Bat coronaviruses related to SARS-CoV-2 and infectious for human cells. Nature. 2022;604(7905):330-336.
6. Merarchi M, Dudha N, Das B, Garg M. Natural products and phytochemicals as potential anti‐SARS‐CoV ‐2 drugs. Phytother Res. 2021;35:5384-5396.
7. Doitsh G, Greene WC. Dissecting how CD4 T cells are lost during HIV infection. Cell Host Microbe. 2016;19(3):280-291.
8. Enichen E, Adams RB, Demmig-Adams B. Physical activity as an adjunct treatment for people living with HIV? Am J Lifestyle Med. Published online March 2. 2022:15598276221078222.
9. Joshee S, Vatti N, Chang C. Long-term effects of COVID-19. Mayo Clin Proc. 2022;97(3):579-599.
10. Zuin M, Rigatelli G, Zuliani G, Roncon L. The risk of thrombosis after acute-COVID-19 infection. QJM Int J Med. Published online March. 2021;15: 2021-2620. hcab054.
11. Peddapalli A, Gehani M, Kalle AM, Peddapalli SR, Peter AE, Sharad S. Demystifying excess immune response in COVID-19 to reposition an orphan drug for down-regulation of NF-κB: A systematic review. Viruses. 2021;13(3):378.
12. Ramos-Casals M, Brito-Zerón P, Mariette X. Systemic and organ-specific immune-related manifestations of COVID-19. Nat Rev Rheumatol. 2021;17(6):315-332.
13. Banerjee M, Gupta S, Sharma P, Shekhawat J, Gauba K. Obesity and COVID-19: A fatal alliance. Indian J Clin Biochem. 2020;35(4):410-417.
14. Hazeldine J, Lord JM. Immunesenescence: A predisposing risk factor for the development of COVID-19? Front Immunol. 2020;11: 573662. https://www.frontiersin.org/article/10.3389/fimmu.2020.573662
15. Gou W, Fu Y, Yue L, et al. Gut. J Genet Genomics. 2021;48(9):792-802.
16. Luthra-Guptasarma M, Guptasarma P. Does chronic inflammation cause acute inflammation to spiral into hyper-inflammation in a manner modulated by diet and the gut microbiome, in severe Covid-19? Bioessays. 2021;43(9):2000211.
17. Agostini M, di Marco B, Nocentini G, Delfino DV. Oxidative stress and apoptosis in immune diseases. Int J Immunopathol Pharmacol. 2002;15(3):157-164.
18. Dikalov S. Cross talk between mitochondria and NADPH oxidases. Free Radic Biol Med. 2011;51(7):1289-1301.
19. Brandes M, Klauschen F, Kuchen S, Germain RN. A systems analysis identifies a feed-forward inflammatory circuit leading to lethal influenza infection. Cell. 2013;154(1):197-212.
20. Fischer R, Maier O. Interrelation of oxidative stress and inflammation in neurodegenerative disease: role of TNF. Oxid Med Cell Longev. 2015;2015:610813.
21. Ranneh Y, Ali F, Akim AM, Hamid HAbd, Khazaai H, Fadel A. Crosstalk between reactive oxygen species and pro-inflammatory markers in developing various chronic diseases: a review. Appl Biol Chem. 2017;60(3):327-338.
22. Ye Q, Wang B, Mao J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J Infect. 2020;80(6):607-613.
23. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci AMS. 2017;13(4):851-863.
24. Dinh QN, Drummond GR, Sobey CG, Chrissobolis S. Roles of inflammation, oxidative stress, and vascular dysfunction in hypertension. BioMed Res Int. 2014;2014:e406960.
25. Katsiari CG, Bogdanos DP, Sakkas LI. Inflammation and cardiovascular disease. World J Transl Med. 2019;8(1):1-8.
26. Tsalamandris S, Antonopoulos AS, Oikonomou E, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019;14(1):50-59.
27. Thevaranjan N, Puchta A, Schulz C, et al. Age-associated microbial dysbiosis promotes intestinal permeability, systemic inflammation, and macrophage dysfunction. Cell Host Microbe. 2017;21(4):455-466.
28. Schmidt TSB, Raes J, Bork P. The human gut microbiome: from association to modulation. Cell. 2018;172(6):1198-1215.
29. Petrakis D, Margină D, Tsarouhas K, et al. Obesity - a risk factor for increased COVID-19 prevalence, severity and lethality (Review). Mol Med Rep. 2020;22(1):9-19.
30. Montague CT, O’Rahilly S. The perils of portliness: Causes and consequences of visceral adiposity. Diabetes. 2000;49(6):883-888.
31. Shuster A, Patlas M, Pinthus JH, Mourtzakis M. The clinical importance of visceral: A critical review of methods for visceral adipose tissue analysis. Br J Radiol. 2012;85(1009):1-10.
32. Lafontan M, Berlan M. Do regional differences in adipocyte biology provide new pathophysiological insights? Trends Pharmacol Sci. 2003;24(6):276-283.
33. Nesto RW. Obesity. Tex Heart Inst J. 2005;32(3):387-389.
34. Ibrahim MM. Subcutaneous and visceral adipose tissue: Structural and functional differences. Obes Rev Off J Int Assoc Study Obes. 2010;11(1):11-18.
35. Hayden FG, Fritz R, Lobo MC, Alvord W, Strober W, Straus SE. Local and systemic cytokine responses during experimental human influenza A virus infection. Relation to symptom formation and host defense. J Clin Invest. 1998;101(3):643-649.
36. Skulachev VP. Possible role of reactive oxygen species in antiviral defense. Biochem Biokhimiia. 1998;63(12):1438-1440.
37. Orzalli MH, Kagan JC. Apoptosis and necroptosis as host defense strategies to prevent viral infection. Trends Cell Biol. 2017;27(11):800-809.
38. Zhou X, Michal JJ, Zhang L, et al. Interferon induced IFIT family genes in host antiviral defense. Int J Biol Sci. 2013;9(2):200-208.
39. Gorbunova V, Seluanov A, Kennedy BK. The world goes bats: Living longer and tolerating viruses. Cell Metab. 2020;32(1):31-43.
40. Nicastro E, Verdoni L, Bettini LR, et al. COVID-19 in immunosuppressed children. Front Pediatr. 2021;9: 629240. https://www.frontiersin.org/article/10.3389/fped.2021.629240
41. Ragg H, Weissmann C. Not more than 117 base pairs of 5’-flanking sequence are required for inducible expression of a human IFN-alpha gene. Nature. 1983;303(5916):439-442.
42. Weber F, Kochs G, Haller O. Inverse interference: How viruses fight the interferon system. Viral Immunol. 2004;17(4):498-515.
43. Devasthanam AS. Mechanisms underlying the inhibition of interferon signaling by viruses. Virulence. 2014;5(2):270-277.
44. Burke JM, St Clair LA, Perera R, Parker R. SARS-CoV-2 infection triggers widespread host mRNA decay leading to an mRNA export block. RNAO News N. 2021;27(11):1318-1329.
45. Yang XL, Wang G, Xie JY, et al. The intestinal microbiome primes host innate immunity against enteric virus systemic infection through type I interferon. mBio. 2021;12(3):e00366.
46. Benveniste EN, Qin H. Type I interferons as anti-inflammatory mediators. Sci STKE Signal Transduct Knowl Environ. 2007;2007(416):pe70.
47. Bolívar S, Anfossi R, Humeres C, et al. IFN-β plays both pro- and anti-inflammatory roles in the rat cardiac fibroblast through differential STAT protein activation. Front Pharmacol. 2018;9:1368.
48. Mühl H, Pfeilschifter J. Anti-inflammatory properties of pro-inflammatory interferon-gamma. Int Immunopharm. 2003;3(9):1247-1255.
49. Pastorelli L, De Salvo C, Mercado JR, et al. Central role of the gut epithelial barrier in the pathogenesis of chronic intestinal inflammation: Lessons learned from animal models and human genetics. Front Immunol. 2013;4(280).
50. Johnson SD, Olwenyi OA, Bhyravbhatla N, et al. Therapeutic implications of SARS-CoV-2 dysregulation of the gut-brain-lung axis. World J Gastroenterol. 2021;27(29):4763-4783.
51. Lorenz W, Buhrmann C, Mobasheri A, Lueders C, Shakibaei M. Bacterial lipopolysaccharides form procollagen-endotoxin complexes that trigger cartilage inflammation and degeneration: Implications for the development of rheumatoid arthritis. Arthritis Res Ther. 2013;15(5):R111.
52. Mohammad S, Thiemermann C. Role of metabolic endotoxemia in systemic inflammation and potential interventions. Front Immunol. 2021;11. 594150.
53. Forbes JD, Chen CY, Knox NC, et al. A comparative study of the gut microbiota in immune-mediated inflammatory diseases-does a common dysbiosis exist? Microbiome. 2018;6(1):221.
54. Iacob S, Iacob DG. Infectious threats, the intestinal barrier, and its Trojan horse: Dysbiosis. Front Microbiol. 2019;10:1676.
55. Gou W, Fu Y, Yue L, et al. Gut microbiota, inflammation, and molecular signatures of host response to infection. J Genet Genomics 2021;48(9):792-802.
56. Gu S, Chen Y, Wu Z, et al. Alterations of the gut microbiota in patients with COVID-19 or H1N1 influenza. Clin Infect Dis Off Publ Infect Dis Soc Am. 2020;71:2669-2678. ciaa709.
57. Teixeira PC, Dorneles GP, Filho PCS, et al. Increased LPS levels coexist with systemic inflammation and result in monocyte activation in evere COVID-19 patients. Int Immunopharmacol. 2021;100:108125.
58. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 2004;203(2):631-637.
59. Wiese OJ, Allwood BW, Zemlin AE. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med Hypotheses. 2020;144:110231.
60. Penninger JM, Grant MB, Sung JJY. The role of angiotensin converting enzyme 2 in modulating gut microbiota, intestinal inflammation, and coronavirus infection. Gastroenterology. 2021;160(1):39-46.
61. Qin WH, Liu CL, Jiang YH, et al. Gut ACE2 expression, tryptophan deficiency, and inflammatory responses the potential connection that should not be ignored during SARS-CoV-2 infection. Cell Mol Gastroenterol Hepatol. 2021;12(4):1514-1516.
62. Hashimoto T, Perlot T, Rehman A, et al. ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature. 2012;487(7408):477-481.
63. Duan Y, Prasad R, Feng D, et al. Bone marrow-derived cells restore functional integrity of the gut epithelial and vascular barriers in a model of diabetes and ACE2 deficiency. Circ Res. 2019;125(11):969-988.
64. He L-H, Ren L-F, Li J-F, et al. Intestinal flora as a potential strategy to fight SARS-CoV-2 infection. Front Microbiol 2020;11:1388.
65. Burrell LM, Johnston CI, Tikellis C, Cooper ME. ACE2, a new regulator of the renin–angiotensin system. Trends Endocrinol Metabol. 2004;15(4):166-169.
66. Carlsson PO, Berne C, Jansson L. Angiotensin II and the endocrine pancreas: Effects on islet blood flow and insulin secretion in rats. Diabetologia. 1998;41(2):127-133.
67. Kayina CA, Maitra S, Anand RK, Ray BR, Baidya DK, Subramaniam R. SARS-CoV-2 infection presenting with hyperglycemia and ketosis: a case series of three diabetic patients. Indian J Crit Care Med Peer-Rev Off Publ Indian Soc Crit Care Med 2020;24(11):1141-1142.
68. Wang Y, Yuan X, Kang Y, Song X. Tryptophan-kynurenine pathway as a novel link between gut microbiota and schizophrenia: A review. Trop J Pharmaceut Res. 2019;18(4):897-905.
69. Thomas T, Stefanoni D, Reisz JA, et al. COVID-19 infection alters kynurenine and fatty acid metabolism, correlating with IL-6 levels and renal status. JCI Insight. 2020;5(14):e140327.
70. Lionetto L, Ulivieri M, Capi M, et al. Increased kynurenine-to-tryptophan ratio in the serum of patients infected with SARS-CoV2: An observational cohort study. Biochim Biophys Acta, Mol Basis Dis. 2021;1867(3):166042.
71. Eroğlu İ, Eroğlu BÇ, Güven GS. Altered tryptophan absorption and metabolism could underlie long-term symptoms in survivors of coronavirus disease 2019 (COVID-19). Nutr Burbank Los Angel Cty Calif. 2021;90:111308.
72. Yang T, Chakraborty S, Saha P, et al. Gnotobiotic rats reveal that gut microbiota regulates colonic mRNA of ACE2, the receptor for SARS-CoV-2 infectivity. Hypertension. 2020;76(1):e1-e3.
73. Adebisi YA, Jimoh ND, Ogunkola IO, et al.The use of antibiotics in COVID-19 management: A rapid review of national treatment guidelines in 10 African countries. Trop Med Health. 2021;49(1):51.
74. Russell CD, Fairfield CJ, Drake TM, et al. Co-infections, secondary infections, and antimicrobial use in patients hospitalised with COVID-19 during the first pandemic wave from the ISARIC WHO CCP-UK study: A multicentre, prospective cohort study. Lancet Microbe. 2021;2(8):e354-e365.
75. Hernández-Terán A, Mejía-Nepomuceno F, Herrera MT, et al. Dysbiosis and structural disruption of the respiratory microbiota in COVID-19 patients with severe and fatal outcomes. Sci Rep. 2021;11(1):21297.
76. Yeoh YK, Zuo T, Lui GCY, et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut. 2021;70(4):698-706.
77. Danilenko V, Devyatkin A, Marsova M, Shibilova M, Ilyasov R, Shmyrev V. Common inflammatory mechanisms in COVID-19 and Parkinson’s diseases: The role of microbiome, pharmabiotics and postbiotics in their prevention. J Inflamm Res. 2021;14:6349-6381.
78. Geva-Zatorsky N, Sefik E, Kua L, et al. Mining the human gut microbiota for immunomodulatory organisms. Cell. 2017;168(5):928-943.e11.
79. Zuo T, Zhang F, Lui GCY, et al. Alterations in gut microbiota of patients with COVID-19 during time of hospitalization. Gastroenterology. 2020;159(3):944-955.e8.
80. Zuo T, Liu Q, Zhang F, et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021;70(2):276-284.
81. Gao J, Xu K, Liu H, et al. Impact of the gut microbiota on intestinal immunity mediated by tryptophan metabolism. Front Cell Infect Microbiol. 2018;8:13.
82. Liu Q, Mak JWY, Su Q, et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut. 2022;71(3):544-552.
83. Singh N, Gurav A, Sivaprakasam S, et al. Activation of the receptor (Gpr109a) for niacin and the commensal metabolite butyrate suppresses colonic inflammation and carcinogenesis. Immunity. 2014;40(1):128-139.
84. Trompette A, Gollwitzer ES, Pattaroni C, et al. Dietary fiber confers protection against flu by shaping ly6c- patrolling monocyte hematopoiesis and CD8+ T cell metabolism. Immunity. 2018;48(5):992-1005. e8.
85. Miquel S, Martín R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16(3):255-261.
86. Pan L, Mu M, Yang P, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Off J Am Coll Gastroenterol ACG. 2020;115(5):766-773.
87. Peluso MJ, Lu S, Tang AF, et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J Infect Dis. 2021;224(11):1839-1848.
88. Hilpert K, Mikut R. Is there a connection between gut microbiome dysbiosis occurring in COVID-19 patients and post-COVID-19 symptoms? Front Microbiol. 2021;12:732838.
89. Yonker LM, Gilboa T, Ogata AF, et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J Clin Invest. 2021;131(14).
90. Haran JP, Bradley E, Zeamer AL, et al. Inflammation-type dysbiosis of the oral microbiome associates with the duration of COVID-19 symptoms and long COVID. JCI Insight. 2021;6(20):e152346.
91. Wilk AJ, Rustagi A, Zhao NQ, et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat Med. 2020;26(7):1070-1076.
92. Diamond M, Halfmann P, Maemura T, et al. The SARS-CoV-2 B.1.1.529 Omicron virus causes attenuated infection and disease in mice and hamsters. Published online February 9. 2022.
93. Kim HS. Do an altered gut microbiota and an associated leaky gut affect COVID-19 severity? Am Soc Microbiol. 2021;12(1):e03022.
94. Enaud R, Prevel R, Ciarlo E, et al. The gut-lung Axis in health and respiratory diseases: A place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;10:9. https://www.frontiersin.org/article/10.3389/fcimb.2020.00009
95. Budden KF, Gellatly SL, Wood DLA, et al. Emerging pathogenic links between microbiota and the gut–lung axis. Nat Rev Microbiol. 2017;15(1):55-63.
96. Sencio V, Machado MG, Trottein F. The lung-gut axis during viral respiratory infections: The impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol. 2021;14(2):296-304.
97. Trompette A, Gollwitzer ES, Yadava K, et al. Gut microbiota metabolism of dietary fiber influences allergic airway disease and hematopoiesis. Nat Med. 2014;20(2):159-166.
98. Villena J, Kitazawa H. The modulation of mucosal antiviral immunity by immunobiotics: could they offer any benefit in the SARS-CoV-2 pandemic? Front Physiol. 2020;11:699.
99. Bradley KC, Finsterbusch K, Schnepf D, et al. Microbiota-driven tonic interferon signals in lung stromal cells protect from influenza virus infection. Cell Rep. 2019;28(1):245-256. e4.
100. Schoefer L, Mohan R, Schwiertz A, Braune A, Blaut M. Anaerobic degradation of flavonoids by Clostridium orbiscindens. Appl Environ Microbiol. 2003;69(10):5849-5854.
101. Saura-Calixto F, Pérez-Jiménez J, Touriño S, et al. Proanthocyanidin metabolites associated with dietary fibre from in vitro colonic fermentation and proanthocyanidin metabolites in human plasma. Mol Nutr Food Res. 2010;54(7):939-946.
102. Steed AL, Christophi GP, Kaiko GE, et al. The microbial metabolite desaminotyrosine protects from influenza through type I interferon. Science. 2017;357(6350):498-502.
103. Gautier T, David-Le Gall S, Sweidan A, et al. Next-generation probiotics and their metabolites in COVID-19. Microorganisms. 2021;9(5):941.
104. Kumar S, Pandey AK. Chemistry and biological activities of flavonoids: An overview. Sci World J. 2013;2013:162750.
105. Abt MC, Osborne LC, Monticelli LA, et al. Commensal bacteria calibrate the activation threshold of innate antiviral immunity. Immunity. 2012;37(1):158-170.
106. Dumas A, Bernard L, Poquet Y, Lugo-Villarino G, Neyrolles O. The role of the lung microbiota and the gut–lung axis in respiratory infectious diseases. Cell Microbiol. 2018;20(12):e12966.
107. Crawford MS, Nordgren TM, McCole DF. Every breath you take: Impacts of environmental dust exposure on intestinal barrier function–from the gut-lung axis to COVID-19. Am J Physiol Gastrointest Liver Physiol. 2021;320(4):G586-G600.
108. Wang LF, Anderson DE. Viruses in bats and potential spillover to animals and humans. Curr Opin Virol. 2019;34:79-89.
109. Banerjee A, Baker ML, Kulcsar K, Misra V, Plowright R, Mossman K. Novel insights into immune systems of bats. Front Immunol. 2020;11:26.
110. Landolfo S, Gribaudo G, Angeretti A, Gariglio M. Mechanisms of viral inhibition by interferons. Pharmacol Ther. 1995;65(3):415-442.
111. Pestka S, Krause CD, Walter MR. Interferons, interferon-like cytokines, and their receptors. Immunol Rev. 2004;202(1):8-32.
112. Xie J, Li Y, Shen X, Goh G, Zhu Y, Cui J, et al. Dampened STING-Dependent interferon activation in bats. Cell Host Microbe. 2018;23(3):297-301. e4.
113. Mokhtari T, Hassani F, Ghaffari N, Ebrahimi B, Yarahmadi A, Hassanzadeh G. COVID-19 and multiorgan failure: A narrative review on potential mechanisms. J Mol Histol. 2020;51(6):613-628.
114. Yang L, Liu S, Liu J, et al. COVID-19: Immunopathogenesis and immunotherapeutics. Signal Transduct Targeted Ther. 2020;5(1):1-8.
115. Park SH. An impaired inflammatory and innate immune response in COVID-19. Mol Cell. 2021;44(6):384-391.
116. Bestle D, Heindl MR, Limburg H, et al. TMPRSS2 and furin are both essential for proteolytic activation of SARS-CoV-2 in human airway cells. Life Sci Alliance. 2020;3(9):e202000786.
117. Dobrindt K, Hoagland DA, Seah C, et al. Common genetic variation in humans impacts in vitro susceptibility to SARS-CoV-2 infection. Stem Cell Rep. 2021;16(3):505-518.
118. Chung HY, Kim HJ, Jung KJ, et al. The inflammatory process in aging. Rev Clin Gerontol. 2000;10(3):207-222.
119. Gupta S, Agrawal A, Agrawal S, Su H, Gollapudi S. A paradox of immunodeficiency and inflammation in human aging: Iessons learned from apoptosis. Immun Ageing. 2006;3(1):5.
120. Kregel KC, Zhang HJ. An integrated view of oxidative stress in aging: Basic mechanisms, functional effects, and pathological considerations. Am J Physiol Regul Integr Comp Physiol 2007;292(1):R18-R36.
121. Calyeca J, Balderas-Martínez YI, Selman M, Pardo A. Transcriptomic profile of the mice aging lung is associated with inflammation and apoptosis as important pathways. Aging. 2021;13(9):12378-12394.
122. Gupta S, Kass GE, Szegezdi E, Joseph B. The mitochondrial death pathway: A promising therapeutic target in diseases. J Cell Mol Med. 2009;13(6):1004-1033.
123. Franceschi C, Bonafè M, Valensin S, et al. Inflamm-aging: An evolutionary perspective on immunosenescence. Ann N Y Acad Sci. 2000;908(1):244-254.
124. De Maeyer RPH, van de Merwe RC, Louie R, et al. Blocking elevated p38 MAPK restores efferocytosis and inflammatory resolution in the elderly. Nat Immunol. 2020;21(6):615-625.
125. Coppé JP, Desprez PY, Krtolica A, Campisi J. The Senescence-associated secretory phenotype: The dark side of tumor suppression. Annu Rev Pathol. 2010;5(1):99-118.
126. Velavan TP, Pallerla SR, Rüter J, et al. Host genetic factors determining COVID-19 susceptibility and severity. EBioMedicine. 2021;72.
127. Feng S, Song F, Guo W, et al. Potential genes associated with COVID-19 and comorbidity. Int J Med Sci. 2022;19(2):402-415.
128. Qian F, Wang X, Zhang L, et al. Impaired interferon signaling in dendritic cells from older donors infected in witro with west nile virus. J Infect Dis. 2011;203(10):1415-1424.
129. Prakash S, Agrawal S, Cao J, Gupta S, Agrawal A. Impaired secretion of interferons by dendritic cells from aged subjects to influenza. Age. 2013;35(5):1785-1797.
130. Pillai PS, Molony RD, Martinod K, et al. Mx1 reveals innate pathways to antiviral resistance and lethal influenza disease. Science. 2016;352(6284):463-466.
131. Nagpal R, Mainali R, Ahmadi S, et al. Gut microbiome and aging: Physiological and mechanistic insights. Nutr Healthy Aging. 2018;4(4):267-285.
132. Aleman FDD, Valenzano DR. Microbiome evolution during host aging. PLoS Pathog. 2019;15(7):e1007727.
133. Viveiros A, Gheblawi M, Aujla PK, et al. Sex- and age-specific regulation of ACE2: Insights into severe COVID-19 susceptibility. J Mol Cell Cardiol. 2022;164:13-16.
134. Allali I, Bakri Y, Amzazi S, Ghazal H. Gut-lung axis in COVID-19. Interdiscip Perspect Infect Dis. 2021;2021:6655380.
135. de Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71(2):332-338.
136. de Frel DL, Atsma DE, Pijl H, et al. The impact of obesity and lifestyle on the immune system and susceptibility to infections such as COVID-19. Front Nutr. 2020;7:597600, Accessed July 28, 2022.https://www.frontiersin.org/articles/10.3389/fnut.2020.597600
137. Chiappetta S, Sharma AM, Bottino V, Stier C. COVID-19 and the role of chronic inflammation in patients with obesity. Int J Obes. 2020;44(8):1790-1792.
138. Michalakis K, Ilias I. SARS-CoV-2 infection and obesity: Common inflammatory and metabolic aspects. Diabetes Metab Syndr Clin Res Rev. 2020;14(4):469-471.
139. Muscogiuri G, Bettini S, Boschetti M, Barrea L, Savastano S, Colao A. Low-grade inflammation, CoVID-19, and obesity: Clinical aspect and molecular insights in childhood and adulthood. Int J Obes. 2022;46(7):1254-1261.
140. Mattioli AV, Sciomer S, Maffei S, Gallina S. Lifestyle and stress management in women during COVID-19 pandemic: Impact on cardiovascular risk burden. Am J Lifestyle Med. 2020;15(3):356-359.
141. Gutin I. BMI is just a number: Conflating riskiness and unhealthiness in discourse on body size. Sociol Health Illness. 2021;43(6):1437-1453.
142. Griffith DM, Sharma G, Holliday CS, et al. Men and COVID-19: A biopsychosocial approach to understanding sex differences in mortality and recommendations for practice and policy interventions. Prev Chronic Dis. 2020;17:200247.
143. Sharma G, Volgman AS, Michos ED. Sex differences in mortality from COVID-19 pandemic: Are men vulnerable and women protected? JACC Case Rep. 2020;2(9):1407-1410.
144. Ali RMM, Ghonimy MBI. Post-COVID-19 pneumonia lung fibrosis: A worrisome sequelae in surviving patients. Egypt J Radiol Nucl Med. 2021;52(1):101.
145. Klein SL, Flanagan KL. Sex differences in immune responses. Nat Rev Immunol. 2016;16(10):626-638.
146. Thomas T, Burguera B, Melton LJ, et al. Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone. 2001;29(2):114-120.
147. Nakaya M, Tachibana H, Yamada K. Effect of estrogens on the interferon-gamma producing cell population of mouse splenocytes. Biosci Biotechnol Biochem. 2006;70(1):47-53.
148. Griesbeck M, Ziegler S, Laffont S, et al. Sex differences in plasmacytoid dendritic cell levels of IRF5 drive higher IFN-α production in women. J Immunol. 2015;195(11):5327-5336.
149. Zhang Q, Bastard P, Liu Z, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370(6515):eabd4570.
150. Povysil G, Butler-Laporte G, Shang N, et al. Rare loss-of-function variants in type I IFN immunity genes are not associated with severe COVID-19. J Clin Invest. 2021;131, 147834(14).
151. Sama IE, Ravera A, Santema BT, et al. Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin–angiotensin–aldosterone inhibitors. Eur Heart J. 2020;41(19):1810-1817.
152. Niemi MEK, Karjalainen J, Liao RG, et al. Mapping the human genetic architecture of COVID-19. Nature. 2021;600:1-22. Published online July 8, 2021.
153. Vuille-dit-Bille RN, Camargo SM, Emmenegger L, et al. Human intestine luminal ACE2 and amino acid transporter expression increased by ACE-inhibitors. Amino Acids. 2015;47(4):693-705.
154. Wang HJ, Zakhari S, Jung MK. Alcohol, inflammation, and gut-liver-brain interactions in tissue damage and disease development. World J Gastroenterol WJG. 2010;16(11):1304-1313.
155. Elisia I, Lam V, Cho B, et al. The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep. 2020;10(1):19480.
156. Bailey KL, Samuelson DR, Wyatt TA. Alcohol use disorder: A pre-existing condition for COVID-19? Alcohol. 2021;90:11-17.
157. Higgins ST, Kurti AN, Redner R, et al. A literature review on prevalence of gender differences and intersections with other vulnerabilities to tobacco use in the United States, 2004-2014. Prev Med. 2015;80:89-100.
158. Kanny D, Naimi TS, Liu Y, Lu H, Brewer RD. Annual total binge drinks consumed by U.S. adults, 2015. Am J Prev Med. 2018;54(4):486-496.
159. Haston JC. Characteristics associated with adults remembering to wash hands in multiple situations before and during the COVID-19 pandemic — United States, October 2019 and June 2020. MMWR Morb Mortal Wkly Rep. 2020;69:1443, 1449.
160. Cassino D, Besen-Cassino Y. Of masks and men? Gender, sex, and protective measures during COVID-19. Polit Gend. 2020;16(4):1052-1062.
161. Okten IO, Gollwitzer A, Oettingen G. Gender differences in preventing the spread of coronavirus. Published online June 10, 2020.
162. Pawlowski B, Atwal R, Dunbar RIM. Sex differences in everyday risk-taking behavior in humans. Evol Psychol. 2008;6(1):147470490800600100.
163. Baker P, White A, Morgan R. Men’s health: COVID-19 pandemic highlights need for overdue policy action. Lancet. 2020;395(10241):1886-1888.
164. Rho HJ, Fremstad S, Brown H. A basic demographic profile of workers in frontline industries. Published online April 2020:10.
165. Munhoz CD, Lepsch LB, Kawamoto EM, et al. Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. J Neurosci Off J Soc Neurosci. 2006;26(14):3813-3820.
166. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. p38MAPK: stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 2009;15(8):369-379.
167. Heymach JV, Shackleford TJ, Tran HT, et al. Effect of low-fat diets on plasma levels of NFκB-regulated inflammatory cytokines and angiogenic factors in men with prostate cancer. Cancer Prev Res Phila Pa. 2011;4(10):1590-1598.
168. Slattery ML, Lundgreen A, Wolff RK. Dietary influence on MAPK-signaling pathways and risk of colon and rectal cancer. Nutr Cancer. 2013;65(5):729-738.
169. Combes A, Dekerle J, Webborn N, Watt P, Bougault V, Daussin FN. Exercise-induced metabolic fluctuations influence AMPK, p38-MAPK and CaMKII phosphorylation in human skeletal muscle. Phys Rep. 2015;3(9):e12462.
170. Hutton CP, Déry N, Rosa E, et al. Synergistic effects of diet and exercise on hippocampal function in chronically stressed mice. Neuroscience. 2015;308:180-193.
171. Liu HW, Chang SJ. Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1α axis to attenuate muscle loss in diabetic db/db mice. Front Physiol. 2018;9:636.
172. Enayat M. Lifestyle Choices, Environmental Conditions, and Social Issues: A Literature Review. Boulder. University of Colorado; 2019. https://scholar.colorado.edu/concern/undergraduate_honors_theses/3x816n261
173. Deschasaux-Tanguy M, Srour B, Bourhis L, et al. Nutritional risk factors for SARS-CoV-2 infection: a prospective study within the NutriNet-Santé cohort. BMC Med. 2021;19(1):290.
174. Lee SW, Lee J, Moon SY, et al. Physical activity and the risk of SARS-CoV-2 infection, severe COVID-19 illness and COVID-19 related mortality in South Korea: A nationwide cohort study. Br J Sports Med. 2021;56:912. Published online July 21, 2021.
175. Fossum CJ, Laatsch BF, Lowater HR, et al. Pre-existing oxidative stress creates a docking-ready conformation of the SARS-CoV-2 receptor-binding domain. ACS Bio Med Chem Au. 2022;2(1):84-93.
176. Adams MS, Adams RB, Wessman CA, Demmig-Adams B. Nutritional cues tie living organisms to their environment and its sustainability. Front Nutr. 2016;3:28.
177. Brand-Miller JC, Holt SH, Pawlak DB, McMillan J. Glycemic index and obesity. Am J Clin Nutr. 2002;76(1):281S-285S.
178. Summers LKM, Fielding BA, Bradshaw HA, et al. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia. 2002;45(3):369-377.
179. Krachler B, Eliasson M, Stenlund H, Johansson I, Hallmans G, Lindahl B. Population-wide changes in reported lifestyle are associated with redistribution of adipose tissue. Scand J Publ Health. 2009;37(5):545-553.
180. Goss AM, Goree LL, Ellis AC, et al. Effects of diet macronutrient composition on body composition and fat distribution during weight maintenance and weight loss. Obesity. 2013;21(6):1139-1142.
181. Teng KT, Chang CY, Chang LF, Nesaretnam K. Modulation of obesity-induced inflammation by dietary fats: Mechanisms and clinical evidence. Nutr J. 2014;13(1):12.
182. Calder PC. Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2006;75(3):197-202.
183. Galgani JE, García D. Role of saturated and polyunsaturated fat in obesity-related inflammation. In: Rahman I, Bagchi D, eds Inflammation, Advancing Age and Nutrition. Academic Press; 2014:297-308.
184. Simopoulos AP. Omega-3 fatty acids in wild plants, nuts and seeds. Asia Pac J Clin Nutr. 2002;11(s6):S163-S173.
185. Simopoulos AP. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp Biol Med. 2008;233(6):674-688.
186. Gordon WC, Bazan NG. Mediator lipidomics in ophthalmology: Targets for modulation in inflammation, neuroprotection and nerve regeneration. Curr Eye Res. 2013;38(10):995-1005.
187. Ilich JZ, Kelly OJ, Kim Y, Spicer MT. Low-grade chronic inflammation perpetuated by modern diet as a promoter of obesity and osteoporosis. Arh Hig Rada Toksikol. 2014;65(2):139-148.
188. Simopoulos AP. Evolutionary aspects of diet: The omega-6/omega-3 ratio and the brain. Mol Neurobiol. 2011;44(2):203-215.
189. Mirande C, Kadlecikova E, Matulova M, et al. Dietary fibre degradation and fermentation by two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human intestine. J Appl Microbiol. 2010;109(2):451-460.
190. Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016;99:110-132.
191. Perrin P, Pierre F, Patry Y, et al. Only fibres promoting a stable butyrate producing colonic ecosystem decrease the rate of aberrant crypt foci in rats. Gut. 2001;48(1):53-61.
192. Cheng C, Wei H, Peng J. 370 Dietary soluble fiber increases the intestinal butyrate-producing bacteria, reduces intestinal permeability, and improves metabolic syndrome in sows during perinatal period. J Anim Sci. 2019;97(suppl ment_3):133-133.
193. Tian R, Hou G, Li D, Yuan TF. A possible change process of inflammatory cytokines in the prolonged chronic stress and its ultimate implications for health. Sci World J. 2014;2014:e780616.
194. Cohen S, Janicki-Deverts D, Doyle WJ, et al. Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci USA. 2012;109(16):5995-5999.
195. Karin O, Raz M, Tendler A, et al. A new model for the HPA axis explains dysregulation of stress hormones on the timescale of weeks. Mol Syst Biol. 2020;16(7):e9510.
196. Dinan TG, Scott LV. Anatomy of melancholia: focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin. J Anat. 2005;207(3):259-264.
197. Torres SJ, Nowson CA. Relationship between stress, eating behavior, and obesity. Nutr Burbank Los Angel Cty Calif. 2007;23(11-12):887-894.
198. Moore CJ, Cunningham SA. Social position, psychological stress, and obesity: A systematic review. J Acad Nutr Diet. 2012;112(4):518-526.
199. Jackson SE, Kirschbaum C, Steptoe A. Hair cortisol and adiposity in a population-based sample of 2, 527 men and women aged 54 to 87 years. Obesity. 2017;25(3):539-544.
200. Brown A, Flint SW, Kalea AZ, O’Kane M, Williams S, Batterham RL. Negative impact of the first COVID-19 lockdown upon health-related behaviours and psychological wellbeing in people living with severe and complex obesity in the UK. EClinicalMedicine. 2021;34:100796.
201. Ferreira FG, Juvanhol LL, Silva DCGda, Longo GZ. Visceral adiposity index is a better predictor of unhealthy metabolic phenotype than traditional adiposity measures: Results from a population-based study. Publ Health Nutr. 2019;22(9):1545-1554.
202. Alkhalaqi A, Al-Naimi F, Qassmi R, et al. Visceral adiposity index is a better predictor of type 2 diabetes than body mass index in Qatari population. Medicine (Baltim). 2020;99(35):e21327.
203. Puhl RM, Lessard LM, Larson N, Eisenberg ME, Neumark-Stzainer D. Weight stigma as a predictor of Ddstress and maladaptive eating behaviors during COVID-19: Longitudinal findings from the EAT study. Ann Behav Med Publ Soc Behav Med. 2020;54(10):738-746.
204. Vartanian LR, Novak SA. Internalized societal attitudes moderate the impact of weight stigma on avoidance of exercise. Obes Silver Spring Md. 2011;19(4):757-762.
205. Phelan S, Burgess D, Yeazel M, Hellerstedt W, Griffin J, van Ryn M. Impact of weight bias and stigma on quality of care and outcomes for patients with obesity. Obes Rev. 2015;16(4):319-326.
206. Sutin AR, Stephan Y, Terracciano A. Weight discrimination and risk of mortality. Psychol Sci. 2015;26(11):1803-1811.
207. Tomiyama AJ, Carr D, Granberg EM, et al. How and why weight stigma drives the obesity ‘epidemic’ and harms health. BMC Med. 2018;16:123.
208. Gomez-Cabrera MC, Domenech E, Romagnoli M, et al. Oral administration of vitamin C decreases muscle mitochondrial biogenesis and hampers training-induced adaptations in endurance performance. Am J Clin Nutr. 2008;87(1):142-149.
209. Nieman DC, Wentz LM. The compelling link between physical activity and the body’s defense system. J Sport Health Sci. 2019;8(3):201-217.
210. Harrison RM, Yin J. Particulate matter in the atmosphere: which particle properties are important for its effects on health? Sci Total Environ. 2000;249(1):85-101.
211. Ansari FA, Mahmood R. Sodium nitrate induces reactive oxygen species that lower the antioxidant power, damage the membrane, and alter pathways of glucose metabolism in human erythrocytes. J Agric Food Chem. 2015;63(48):10372-10379.
212. Zhao S, Miao D, Zhu K, et al. Interaction of benzo[a]pyrene with Cu(II)-montmorillonite: Generation and toxicity of environmentally persistent free radicals and reactive oxygen species. Environ Int. 2019;129:154-163.
213. Mizutani T, Mori R, Hirayama M, et al. Sodium lauryl sulfate stimulates the generation of reactive oxygen species through interactions with cell membranes. J Oleo Sci. 2016;65(12):993-1001.
214. Tong H, Lakey PSJ, Arangio A M, et al. Reactive oxygen species formed in aqueous mixtures of secondary organic aerosols and mineral dust influencing cloud chemistry and public health in the Anthropocene. Faraday Discuss. 2017;200(0):251-270.
215. Fang T, Lakey PSJ, Weber RJ, Shiraiwa M. Oxidative potential of particulate matter and generation of reactive oxygen species in epithelial lining fluid. Environ Sci Technol. 2019;53(21):12784-12792.
216. Gori T, Daiber A, Di Stolfo G, et al. Nitroglycerine causes mitochondrial reactive oxygen species production: In vitro mechanistic insights. Can J Cardiol. 2007;23(12):990-992.
217. Lin Q, Deng Y. Is sulfate radical a ROS? Environ Sci Technol. 2021;55(22):15010-15012.
218. Paulin L, Hansel N. Particulate air pollution and impaired lung function. F1000Research. 2016;5:F1000. Faculty Rev-201.
219. Mutlu EA, Comba IY, Cho T, et al. Inhalational exposure to particulate matter air pollution alters the composition of the gut microbiome. Environ Pollut Barking Essex 1987. 2018;240:817-830.
220. Chuang KJ, Chan CC, Su TC, Lee CT, Tang CS. The effect of urban air pollution on inflammation, oxidative stress, coagulation, and autonomic dysfunction in young adults. Am J Respir Crit Care Med. 2007;176(4):370-376.
221. Vogel CFA, Van Winkle LS, Esser C, Haarmann-Stemmann T. The aryl hydrocarbon receptor as a target of environmental stressors - Implications for pollution mediated stress and inflammatory responses. Redox Biol. 2020;34:101530.
222. Van de Wiele T, Vanhaecke L, Boeckaert C, et al. Human colon microbiota transform polycyclic aromatic hydrocarbons to estrogenic metabolites. Environ Health Perspect. 2005;113(1):6-10.
223. Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Publ Health. 2020;17(4):1212.
224. Ghorani-Azam A, Riahi-Zanjani B, Balali-Mood M. Effects of air pollution on human health and practical measures for prevention in Iran. J Res Med Sci Off J Isfahan Univ Med Sci. 2016;21:65.
225. Fackelmann G, Sommer S. Microplastics and the gut microbiome: How chronically exposed species may suffer from gut dysbiosis. Mar Pollut Bull. 2019;143:193-203.
226. Popkin BM, Gordon-Larsen P. The nutrition transition: Worldwide obesity dynamics and their determinants. Int J Obes Relat Metab Disord J Int Assoc Study Obes. 2004;28(suppl 3):S2-S9.
227. Reddy S. Regional case studies – India. Emerg Soc - Coexistence Child Malnutrition Obes. 2009;63:15-24.
228. Drewnowski A, Eichelsdoerfer P. Can low-income Americans afford a healthy diet? Nutr Today. 2010;44(6):246-249.
229. Hilmers A, Hilmers DC, Dave J. Neighborhood disparities in access to healthy foods and their effects on environmental justice. Am J Publ Health. 2012;102(9):1644-1654.
230. Kari JT, Pehkonen J, Hirvensalo M, et al. Income and physical activity among adults: Evidence from self-reported and pedometer-based physical activity measurements. PLoS One. 2015;10(8):e0135651.
231. Bantham A, Taverno Ross SE, Sebastião E, Hall G. Overcoming barriers to physical activity in underserved populations. Prog Cardiovasc Dis. 2021;64:64-71.
232. National Research Council (US). Panel on race, ethnicity, and health in later life. In: Bulatao RA, Anderson NB, eds. Understanding Racial and Ethnic Differences in Health in Late Life: A Research Agenda. Washington (DC): National Academies Press (US); 2004. 8, Stress. Available from: https://www.ncbi.nlm.nih.gov/books/NBK24685/
233. Brondolo E, Byer K, Gianaros PJ, et al. Stress and Health Disparities: Contexts, Mechanisms, and Interventions Among Racial/ethnic Minority and Low Socioeconomic Status Populations: (500202018-001). Published online. 2017.
234. Hajat A, Hsia C, O’Neill MS. Socioeconomic disparities and air pollution exposure: A global review. Curr Environ Health Rep. 2015;2(4):440-450.
235. Jbaily A, Zhou X, Liu J, et al. Air pollution exposure disparities across US population and income groups. Nature. 2022;601(7892):228-233.
236. Koma W, Artiga S, Neuman T, et al. Low-income and Communities of Color at Higher Risk of Serious Illness if Infected with Coronavirus. Kaiser Family Foundation; 2020. https://www.kff.org/disparities-policy/issue-brief/low-income-and-communities-of-color-at-higher-risk-of-serious-illness-if-infected-with-coronavirus/, Accessed February, 2022.
237. CDC. Disparities in COVID-19-Associated Hospitalizations. Centers for Disease Control and Prevention; 2022, Accessed March, 2022. https://www.cdc.gov/coronavirus/2019-ncov/community/health-equity/racial-ethnic-disparities/disparities-hospitalization.html
238. Scherer LD, Pennycook G. Who is susceptible to online health misinformation? Am J Publ Health. 2020;110(S3):S276-S277.
239. Seo H, Blomberg M, Altschwager D, Vu HT. Vulnerable populations and misinformation: A mixed-methods approach to underserved older adults’ online information assessment. New Media Soc. 2021;23(7):2012-2033.
240. Khairat S, Zou B, Adler-Milstein J. Factors and reasons associated with low COVID-19 vaccine uptake among highly hesitant communities in the US. Am J Infect Control. 2022;0(0):262-267.
241. Furman D, Campisi J, Verdin E, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822-1832.
242. Groff D, Sun A, Ssentongo AE, et al. Short-term and long-term rates of postacute sequelae of SARS-CoV-2 Infection: A systematic review. JAMA Netw Open. 2021;4(10):e2128568.
243. Polutchko SK, Glime GNE, Demmig-Adams B. Synergistic action of membrane-bound and water-soluble antioxidants in neuroprotection. Molecules. 2021;26(17):5385.
244. Desai MS, Seekatz AM, Koropatkin NM, et al. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell. 2016;167(5):1339-1353. e21.
245. Gil-Cardoso K, Ginés I, Pinent M, Ardévol A, Blay M, Terra X. Effects of flavonoids on intestinal inflammation, barrier integrity and changes in gut microbiota during diet-induced obesity. Nutr Res Rev. 2016;29(2):234-248.
246. Tan J, McKenzie C, Vuillermin PJ, et al. Dietary fiber and bacterial SCFA enhance oral tolerance and protect against food allergy through diverse cellular pathways. Cell Rep. 2016;15(12):2809-2824.
247. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.
248. Ballway JW, Song BJ. Translational approaches with antioxidant phytochemicals against alcohol-mediated oxidative stress, gut dysbiosis, intestinal barrier dysfunction, and fatty liver disease. Antioxid Basel Switz. 2021;10(3):384.
249. Antunes KH, Fachi JL, de Paula R, et al. Microbiota-derived acetate protects against respiratory syncytial virus infection through a GPR43-type 1 interferon response. Nat Commun. 2019;10(1):3273.
250. Wang Y, Wu G, Zhao L, Wang W. Nutritional modulation of gut microbiota alleviates severe gastrointestinal symptoms in a patient with post-acute COVID-19 syndrome. mBio. 2022;0(0):e03801.
251. Li W, Ding Y, Quang TH, et al. NF-κB inhibition and PPAR activation by phenolic compounds from Hypericum perforatum L. adventitious root. Bull Kor Chem Soc. 2013;34(5):1407-1413.
252. Zivkovic AM, Telis N, German JB, Hammock BD. Dietary omega-3 fatty acids aid in the modulation of inflammation and metabolic health. Calif Agric. 2011;65(3):106-111.
253. Ciccone MM, Cortese F, Gesualdo M, et al. Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat Inflamm. 2013;2013:e782137.
254. Schultz H, Ying GS, Dunaief JL, Dunaief DM. Rising plasma beta-carotene is associated with diminishing C-reactive protein in patients consuming a dark green leafy vegetable–rich, low inflammatory foods everyday (LIFE) diet. Am J Lifestyle Med. 2019;15(6):634-643.
255. Demmig-Adams B, López-Pozo M, Stewart JJ, Adams WW. Zeaxanthin and lutein: Photoprotectors, anti-inflammatories, and brain food. Molecules. 2020;25(16):3607.
256. EWG Science Team. EWG’s 2021 Shopper’s Guide to Pesticides in Produce. EWG; 2021. https://www.ewg.org/foodnews/summary.php, Accessed February, 2022.
257. Barrea L, Grant WB, Frias-Toral E, et al. Dietary recommendations for post-COVID-19 syndrome. Nutrients. 2022;14(6):1305.
258. Demmig-Adams B, Polutchko SK, Adams WW. Structure-function-environment relationship of the isomers zeaxanthin and lutein. Photochem. 2022;2(2):308-325.
259. Zaragoza-Huesca D, Martínez-Cortés C, Banegas-Luna AJ, et al. Identification of kukoamine A, zeaxanthin, and Clexane as new furin inhibitors. Int J Mol Sci. 2022;23(5):2796.
260. Liu M, Zheng M, Cai D, et al. Zeaxanthin promotes mitochondrial biogenesis and adipocyte browning via AMPKα1 activation. Food Funct. 2019;10(4):2221-2233.
261. Xie J, Liu M, Liu H, et al. Zeaxanthin ameliorates obesity by activating the β3-adrenergic receptor to stimulate inguinal fat thermogenesis and modulating the gut microbiota. Food Funct. 2021;12(24):12734-12750.
262. Zhao B, Liu M, Liu H, et al. Zeaxanthin promotes browning by enhancing mitochondrial biogenesis through the PKA pathway in 3T3-L1 adipocytes. Food Funct. 2021;12(14):6283-6293.
263. El Hadi H, Di Vincenzo A, Vettor R, Rossato M. Food ingredients involved in white-to-brown adipose tissue conversion and in calorie burning. Front Physiol. 2018;9:1954.
264. Krüger K, Mooren FC, Eder K, Ringseis R. Immune and inflammatory signaling pathways in exercise and obesity. Am J Lifestyle Med. 2014;10(4):268-279.
265. Thirupathi A, Wang M, Lin JK, et al. Effect of different exercise modalities on oxidative stress: A systematic review. BioMed Res Int. 2021;2021:e1947928.
266. Rahmati-Ahmadabad S, Hosseini F. Exercise against SARS-CoV-2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity). Obes Med. 2020;19:100245.
267. Adams R, Egbo K, Demmig-Adams B. High-dose vitamin C supplements diminish the benefits of exercise in athletic training and disease prevention. Nutr Food Sci. 2014;44:95-101.
268. Divella R, Palma GD, Tufaro A, et al. Diet, Probiotics and physical activity: The right allies for a healthy microbiota. Anticancer Res. 2021;41(6):2759-2772.
269. Feng V, Bawa KK, Marzolini S, et al. Impact of 12-week exercise program on biomarkers of gut barrier integrity in patients with coronary artery disease. PLoS One. 2021;16(11):e0260165.
270. Ribeiro FM, Petriz B, Marques G, Kamilla LH, Franco OL. Is there an exercise-intensity threshold capable of avoiding the leaky gut? Front Nutr. 2021;8:75.
271. Fu Q, VanGundy TB, Shibata S, Auchus RJ, Williams GH, Levine BD. Exercise training versus propranolol in the treatment of the postural orthostatic Tachycardia syndrome. Hypertension. 2011;58(2):167-175.
272. Kanjwal K, Jamal S, Kichloo A, Grubb BP. New-onset postural orthostatic Tachycardia syndrome following coronavirus disease 2019 infection. J Innov Card Rhythm Manag. 2020;11(11):4302-4304.
273. Chadda KR, Blakey EE, Huang CLH, Jeevaratnam K. Long COVID-19 and postural orthostatic Tachycardia syndrome- Is dysautonomia to be Bbamed? Front Cardiovasc Med. 2022;9:860198. https://www.frontiersin.org/article/10.3389/fcvm.2022.860198
274. Djalilova DM, Schulz PS, Berger AM, Case AJ, Kupzyk KA, Ross AC. Impact of yoga on inflammatory biomarkers: A systematic review. Biol Res Nurs. 2019;21(2):198-209.
275. Venkatesh H, Ravish H, Wilma Delphine Silvia C, Srinivas H. Molecular signature of the immune response to yoga therapy in stress-related chronic disease conditions: An insight. Int J Yoga. 2020;13(1):9-17.
276. Moreira FP, Cardoso Tde A, Mondin TC, et al. The effect of proinflammatory cytokines in Cognitive Behavioral Therapy. J Neuroimmunol. 2015;285:143-146.
277. Pascoe MC, Thompson DR, Jenkins ZM, Ski CF. Mindfulness mediates the physiological markers of stress: systematic review and meta-analysis. J Psychiatr Res. 2017;95:156-178.
278. Sanada K, Montero-Marin J, Barceló-Soler A, et al. Effects of mindfulness-based interventions on biomarkers and low-grade inflammation in patients with psychiatric disorders: A meta-analytic review. Int J Mol Sci. 2020;21(7):2484.
279. Turner L, Galante J, Vainre M, Stochl J, Dufour G, Jones PB. Immune dysregulation among students exposed to exam stress and its mitigation by mindfulness training: Findings from an exploratory randomised trial. Sci Rep. 2020;10(1):5812.
280. Bai H, Xu S, Wu Q, et al. Clinical events associated with acupuncture intervention for the treatment of chronic inflammation associated disorders. Mediat Inflamm. 2020;2020:2675785.
281. Behan C. The benefits of meditation and mindfulness practices during times of crisis such as COVID-19. Ir J Psychol Med. 2020;37:1-3. Published online May 14, 2020.
282. Bursky M, Kosuri M, Walsh Carson K, Babad S, Iskhakova A, Nikulina V. The utility of meditation and mindfulness-based interventions in the time of COVID-19: A theoretical proposition and systematic review of the relevant prison, quarantine and lockdown literature. Psychol Rep. 2021;10:332941211048734. Published online December.
283. Yeun YR, Kim SD. Psychological effects of online-based mindfulness programs during the COVID-19 pandemic: A systematic review of randomized controlled trials. Int J Environ Res Publ Health. 2022;19(3):1624.
284. Christaki E, Kokkinos A, Costarelli V, Alexopoulos EC, Chrousos GP, Darviri C. Stress management can facilitate weight loss in Greek overweight and obese women: a pilot study. J Hum Nutr Diet Off J Br Diet Assoc. 2013;26(suppl 1):132-139.
285. Stavrou S, Nicolaides NC, Papageorgiou I, et al. The effectiveness of a stress-management intervention program in the management of overweight and obesity in childhood and adolescence. J Mol Biochem. 2016;5(2):63-70.
286. Xenaki N, Bacopoulou F, Kokkinos A, Nicolaides NC, Chrousos GP, Darviri C. Impact of a stress management program on weight loss, mental health and lifestyle in adults with obesity: A randomized controlled trial. J Mol Biochem. 2018;7(2):78-84.
287. Stewart SJF, Ogden J. Motivating or stigmatising? The public health and media messaging surrounding COVID-19 and obesity: A qualitative think aloud study. Health Educ. 2021;122(4):374-386.
288. Robinson B, Coveleski S. Don’t say that to ME: Opposition to targeting in weight-centric intervention messages. Health Commun. 2018;33(2):139-147.
289. Duarte C, Gilbert P, Stalker C, et al. Effect of adding a compassion-focused intervention on emotion, eating and weight outcomes in a commercial weight management programme. J Health Psychol. 2021;26(10):1700-1715.
290. Salemonsen E, Hansen BS, Førland G, Holm AL. Healthy life centre participants’ perceptions of living with overweight or obesity and seeking help for a perceived “wrong” lifestyle - a qualitative interview study. BMC Obes. 2018;5(1):42.
291. Carter A, Gilbert P, Kirby JN. Compassion-focused therapy for body weight shame: A mixed methods pilot trial. Clin Psychol Psychother. 2021;28(1):93-108.
292. Thøgersen-Ntoumani C, Dodos LA, Stenling A, Ntoumanis N. Does self-compassion help to deal with dietary lapses among overweight and obese adults who pursue weight-loss goals? Br J Health Psychol. 2021;26(3):767-788.
293. Duarte C, Matos M, Stubbs RJ, et al. The impact of shame, self-criticism and social rank on eating behaviours in overweight and obese women participating in a weight management programme. PLoS One. 2017;12(1):e0167571.
294. Lowe MR, Butryn ML, Didie ER, et al. The power of food scale. A new measure of the psychological influence of the food environment. Appetite. 2009;53(1):114-118.
295. Keirns NG, Stout ME, Smith CE, et al. Mindful acceptance, not awareness, associated with lower food susceptibility. Eat Weight Disord EWD. 2022;27(4):1481-1489.
296. Carrillo A, Feig EH, Harnedy LE, et al. The role of positive psychological constructs in diet and eating behavior among people with metabolic syndrome: A qualitative study. Health Psychol Open. 2022;9(1):20551029211055264.
297. Mathews EH, Liebenberg L. A Practical quantification of blood glucose production due to high-level chronic stress. Stress Health. 2012;28(4):327-332.
298. Kersten S Mechanisms of nutritional and hormonal regulation of lipogenesis. EMBO Rep. 2001;2(4):282-286.
299. Linares-García L, Cárdenas-Barragán ME, Hernández-Ceballos W, et al. Bacterial and fungal gut dysbiosis and Clostridium difficile in COVID-19: A review. J Clin Gastroenterol. 2022;56(4):285-298.
300. Ceccarelli G, Borrazzo C, Pinacchio C, et al. Oral bacteriotherapy in patients with COVID-19: A retrospective cohort study. Front Nutr. 2021;7:613928.
301. Liu F, Ye S, Zhu X, et al. Gastrointestinal disturbance and effect of fecal microbiota transplantation in discharged COVID-19 patients. J Med Case Rep. 2021;15:60.
302. Wischmeyer PE, Tang H, Ren Y, et al. Daily Lactobacillus probiotic versus placebo in COVID-19-exposed household contacts (PROTECT-EHC): A randomized clinical trial. 2022:21268275. Published online January 5, 2022.
303. Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest. 2014;124(10):4212-4218.
304. Calderón-Parra J, Muiño-Miguez A, Bendala-Estrada AD, et al. Inappropriate antibiotic use in the COVID-19 era: Factors associated with inappropriate prescribing and secondary complications. Analysis of the registry SEMI-COVID. PLoS One. 2021;16(5):e0251340.
305. Llor C, Ouchi D, Giner-Soriano M, García-Sangenís A, Bjerrum L, Morros R. Correlation between previous antibiotic exposure and COVID-19 severity. A population-based cohort study. Antibiotics. 2021;10(11):1364.
306. Evans A, Banks K, Jennings R, et al. Increasing access to healthful foods: A qualitative study with residents of low-income communities. Int J Behav Nutr Phys Act. 2015;12(suppl 1):S5.
307. Thow AM, Jan S, Leeder S, Swinburn B. The effect of fiscal policy on diet, obesity and chronic disease: A systematic review. Bull World Health Organ. 2010;88(8):609-614.
308. Kondo MC, Fluehr JM, McKeon T, Branas CC. Urban green space and its impact on human health. Int J Environ Res Publ Health. 2018;15(3):445.
309. Pasanen TP, White MP, Wheeler BW, Garrett JK, Elliott LR. Neighbourhood blue space, health and wellbeing: the mediating role of different types of physical activity. Environ Int. 2019;131:105016.
310. Goodman A, Sahlqvist S, Ogilvie D. New walking and cycling routes and increased physical activity: one- and 2-year findings from the UK iConnect study. Am J Publ Health. 2014;104(9):e38-e46.
311. Kärmeniemi M, Lankila T, Ikäheimo T, Koivumaa-Honkanen H, Korpelainen R. The built environment as a determinant of physical activity: A systematic review of longitudinal studies and natural experiments. Ann Behav Med. 2018;52(3):239-251.
312. Rix G, Bernay R. A study of the effects of mindfulness in five primary schools in New Zealand. Teach Work. 2014;11(2):201-220.
313. Islam MS, Kamal AHM, Kabir A, et al. COVID-19 vaccine rumors and conspiracy theories: The need for cognitive inoculation against misinformation to improve vaccine adherence. PLoS One. 2021;16(5):e0251605.
314. Hornik R, Kikut A, Jesch E, Woko C, Siegel L, Kim K. Association of COVID-19 misinformation with face mask wearing and social distancing in a nationally representative US sample. Health Commun. 2021;36(1):6-14.
315. Kim HK, Tandoc EC. Consequences of online misinformation on COVID-19: Two potential pathways and disparity by eHealth literacy. Front Psychol. 2022;13:783909. https://www.frontiersin.org/article/10.3389/fpsyg.2022.783909
316. Eyler AA, Brownson RC, ‘The power of policy to improve health’. in: Eyler AA, Chriqui JF. (eds), Prevention, Policy, and Public Health. 2016. .
317. Ferrarini T, Nelson K, Sjöberg O. Decomposing the effect of social policies on population health and inequalities: An empirical example of unemployment benefits. Scand J Publ Health. 2014;42(7):635-642.
318. Burtle A, Bezruchka S. Population health and paid parental leave: What the United States can learn from two decades of research. Healthcare. 2016;4(2):30.
319. Lenhart O. The impact of minimum wages on population health: evidence from 24 OECD countries. Eur J Health Econ. 2017;18(8):1031-1039.
320. Bloom DE, Khoury A, Subbaraman R. The promise and peril of universal health care. Science. 2018;361(6404):eaat9644.
321. Deschenes O. Environmental Regulations and Labor Markets. Bonn, Germany: IZA World Labor. Published online; 2018.
322. Duflo E, Dupas P, Kremer M. The Impact of Free Secondary Education: Experimental Evidence from Ghana. University of Chicago, Becker Friedman Institute for Economics. 2021; Working Paper No. 2021-73.
323. SFM C, Van Cauwenberg J, Maenhout L, Cardon G, Lambert EV, Van Dyck D. Inequality in physical activity, global trends by income inequality and gender in adults. Int J Behav Nutr Phys Activ. 2020;17(1):142.
324. Siddiqui F, Salam RA, Lassi ZS, Das JK. The intertwined relationship between malnutrition and poverty. Front Public Health. 2020;8:453.
325. Vilar-Compte M, Burrola-Méndez S, Lozano-Marrufo A, et al. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: A global systematic literature review. Int J Equity Health. 2021;20(1):40.
326. Andrea SB, Messer LC, Marino M, Goodman JM, Boone-Heinonen J. The tipping point: Could increasing the subminimum wage reduce poverty-related antenatal stressors in U.S. women? Ann Epidemiol. 2020;45:47-53. e6.
327. Muehlenbein MP. Human-wildlife contact and emerging infectious diseases. Hum-Environ Interact. 2012;1:79-94.
328. Jones BA, Grace D, Kock R, et al. Zoonosis emergence linked to agricultural intensification and environmental change. Proc Natl Acad Sci USA. 2013;110(21):8399-8404.
329. Neiderud CJ. How urbanization affects the epidemiology of emerging infectious diseases. Infect Ecol Epidemiol. 2015;5:27060.
330. Gibb R, Redding DW, Chin KQ, et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature. 2020;584(7821):398-402.
331. Bernstein AS, Ando AW, Loch-Temzelides T, et al. The costs and benefits of primary prevention of zoonotic pandemics. Sci Adv. 2022;8(5):eabl4183.
332. Swift L, Hunter PR, Lees AC, Bell DJ. Wildlife trade and the emergence of infectious diseases. EcoHealth. 2007;4(1):25.
333. McNamara J, Robinson EJZ, Abernethy K, et al. COVID-19, systemic crisis, and possible implications for the wild meat trade in Sub-Saharan Africa. Environ Resour Econ. 2020;76(4):1045-1066.
334. Institute of Medicine (US). Forum on microbial threats. In: Knobler S, Mahmoud A, Lemon S, et al., eds. The Impact of Globalization on Infectious Disease Emergence and Control: Exploring the Consequences and Opportunities: Workshop Summary. Washington (DC): National Academies Press (US); 2006. Summary and Assessment. Available from: https://www.ncbi.nlm.nih.gov/books/NBK56579/
335. Farzanegan MR, Feizi M, Gholipour HF. Globalization and the outbreak of COVID-19: An empirical analysis. J Risk Financ Manag. 2021;14(3):105.
336. Funakoshi K, Uchida T. Studies on the physiological and ecological adaptation of temperate insectivorous bats: III. Annual activity of the Japanese house-dwelling bat, Pipistrellus abramus. J Fac Agric Kyushu Univ. 1978;23(1/2):95-115.
337. Benedict RA, Benedict SK, Howell DL. Use of buildings by Indiana bats (Myotis sodalis) and other bats in south-central Iowa. Am Midl Nat. 2017;178(1):29-35.
338. Wilkinson DA, Marshall JC, French NP, Hayman DTS. Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J R Soc Interface. 2018;15(149):20180403.
339. Bloomfield LSP, McIntosh TL, Lambin EF. Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa. Landsc Ecol. 2020;35(4):985-1000.
340. Royce K, Fu F. Mathematically modeling spillovers of an emerging infectious zoonosis with an intermediate host. PLoS One. 2020;15(8):e0237780.
341. Zhao J, Cui W, Tian B. The potential intermediate hosts for SARS-CoV-2. Front Microbiol. 2020;11:580137.
342. Everard M, Johnston P, Santillo D, Staddon C. The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environ Sci Pol. 2020;111:7-17.
343. Platto S, Zhou J, Wang Y, Wang H, Carafoli E. Biodiversity loss and COVID-19 pandemic: The role of bats in the origin and the spreading of the disease. Biochem Biophys Res Commun. 2021;538:2-13.
344. Walzer C. COVID-19 and the curse of piecemeal perspectives. Front Vet Sci. 2020;7:582983. https://www.frontiersin.org/article/10.3389/fvets.2020.582983
345. IOM (Institute of Medicine) and NRC (National Research Council). Achieving sustainable global capacity for surveillance and response to emerging diseases of zoonotic origin. In Keusch GT, Pappaioanou M, Gonzalez MC, et al. eds. Sustaining Global Surveillance and Response to Emerging Zoonotic Diseases. Washington (DC): National Academies Press (US); 2009. Available from: https://www.ncbi.nlm.nih.gov/books/NBK215317/.
346. Zinsstag J, Utzinger J, Probst-Hensch N, Shan L, Zhou XN. Towards integrated surveillance-response systems for the prevention of future pandemics. Infect Dis Poverty. 2020;9(1):140.

Cite article

Cite article

Cite article

OR

Download to reference manager

If you have citation software installed, you can download article citation data to the citation manager of your choice

Share options

Share

Share this article

Share with email
EMAIL ARTICLE LINK
Share on social media

Share access to this article

Sharing links are not relevant where the article is open access and not available if you do not have a subscription.

For more information view the Sage Journals article sharing page.

Information, rights and permissions

Information

Published In

Article first published online: September 5, 2022
Issue published: March/April 2023

Keywords

  1. exercise
  2. inflammation
  3. microbiome
  4. mindfulness
  5. nutrition
  6. post-acute sequelae of SARS-CoV-2
  7. recovery
  8. severe acute respiratory syndrome coronavirus 2

Rights and permissions

Copyright © 2022 The Author(s).
Request permissions for this article.

Authors

Affiliations

Elizabeth Enichen, BA
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
Caitlyn Harvey, BA
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)
Barbara Demmig-Adams, PhD
Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA (EE, CH, BDA)

Notes

Elizabeth Enichen, Department of Ecology and Evolutionary Biology, University of Colorado, 1900 Pleasant Street, 334 UCB, Boulder, CO 80309-0401, USA; e-mail: [email protected]

Metrics and citations

Metrics

Journals metrics

This article was published in American Journal of Lifestyle Medicine.

VIEW ALL JOURNAL METRICS

Article usage*

Total views and downloads: 282

*Article usage tracking started in December 2016


Articles citing this one

Receive email alerts when this article is cited

Web of Science: 2 view articles Opens in new tab

Crossref: 3

  1. Reframing Diabetes Prevention: From Body Shaming to Metabolic Reprogra...
    Go to citation Crossref Google Scholar
  2. COVID-19 in patients with pre-existing chronic liver disease – predict...
    Go to citation Crossref Google Scholar
  3. Lemna as a Sustainable, Highly Nutritious Crop: Nutrient Production in...
    Go to citation Crossref Google Scholar

Figures and tables

Figures & Media

Tables

View Options

Get access

Access options

If you have access to journal content via a personal subscription, university, library, employer or society, select from the options below:

ACLM members can access this journal content after logging in to their ACLM profile using their membership credentials and clicking the 'View American Journal of Lifestyle Medicine' button.

ACLM members can access this journal content after logging in to their ACLM profile using their membership credentials and clicking the 'View American Journal of Lifestyle Medicine' button.


Alternatively, view purchase options below:

Purchase 24 hour online access to view and download content.

Access journal content via a DeepDyve subscription or find out more about this option.

View options

PDF/ePub

View PDF/ePub

Full Text

View Full Text