Perspective on Accuracy of Past SARS-CoV-2 Evolutionary Predictions

Authors

  • Juliette Blais-Savoie University of Toronto

DOI:

https://doi.org/10.33137/juls.v16i1.39995

Keywords:

COVID-19, SARS-CoV-2, Pathogen-Evolution, Immune Escape, Transmission

Downloads

Download data is not yet available.

References

Giovanetti, M. et al. Evolution patterns of SARS-CoV-2: Snapshot on its genome variants. Biochem. Biophys. Res. Commun. 538, 88-91 (2020). 10.1016/j.bbrc.2020.10.102. DOI: https://doi.org/10.1016/j.bbrc.2020.10.102

Day, T., Gandon, S., Lion, S., & Otto, S.P. On the evolutionary epidemiology of SARS-CoV-2. Current Biology 30, R841-R870 (2020). DOI: https://doi.org/10.1016/j.cub.2020.06.031

Alizon, S., et al. Virulence evolution and the trade-off hypothesis: history, current state of affairs and the future. Journal of Evolutionary Biology 22(2), 245-259 (2009). DOI: https://doi.org/10.1111/j.1420-9101.2008.01658.x

Berngruber, T. W., Froissart, R., Choisy, M., & Gandon, S. Evolution of Virulence in Emerging Epidemics. PLoS Pathog. 9(3) (2013). DOI: https://doi.org/10.1371/journal.ppat.1003209

Otto, S. P., et al. The origins and potential future of SARS-CoV-2 variants of concern in the evolving COVID-10 pandemic. Current Biology 31(14), R918-R929 (2021). https://doi.org/10.1016/j.cub.2021.06.049. DOI: https://doi.org/10.1016/j.cub.2021.06.049

Alizon, S., & Sofonea, M. T. SARS-CoV-2 virulence evolution: Avirulence theory, immunity and trade-offs. J. Evol. Biol. 2021(00), 1-11 (2021). 10.1111/jeb.13896. DOI: https://doi.org/10.1111/jeb.13896

Hodcroft, E., et al. CoVariants. (2021). https://covariants.org.

Salleh, M. Z., Derrick, J. P., & Deris, Z. Z. Structural Evaluation of the Spike Glycoprotein Variants on SARS-CoV-2 Transmission and Immune Evasion. International journal of molecular sciences, 22(14), 7425 (2021). https://doi.org/10.3390/ijms22147425. DOI: https://doi.org/10.3390/ijms22147425

Dasaraju, P. V., & Liu, C. Infections of the Respiratory System. In: Baron S, editor. Medical Microbiology. 4th edition. Galveston (TX): University of Texas Medical Branch at Galveston; 1996. Chapter 93. https://www.ncbi.nlm.nih.gov/books/NBK8142/.

Haynes, W. A., Kamath, K., Lucas, C., Shon, J., & Iwasaki, A. Impact of B.1.1.7 variant mutations on antibody recognition of linear SARS-CoV-2 epitopes. Peprint at medRxiv: https://doi.org/10.1101/2021.01.06.20248960 (2021). DOI: https://doi.org/10.1101/2021.01.06.20248960

Centers for Disease Control and Prevention (CDC). Science Brief: Omicron (B.1.1.529) Variant. (2021). https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/scientific-brief-omicron-variant.html.

Nelson, G., et al. Molecular dynamic simulation reveals E484K mutation enhances spike RBD-ACE2 affinity and the combination of E484K, K417N and N501Y mutations (501Y.V2 variant) induces conformational change greater than N501Y mutant alone, potentially resulting in an escape mutant. Preprint in bioRxiv: https://doi.org/10.1101/2021.01.13.426558 (2021). DOI: https://doi.org/10.1101/2021.01.13.426558

Lavine, J. S., Bjornstad, O. N., & Antia, R. Immunological characteristics govern the transition of COVID-19 to endemicity. Science 371(6530), 741-745 (2021). 10.1126/science.abe6522. DOI: https://doi.org/10.1126/science.abe6522

Diamond, M., et al. The SARS-CoV-2 B.1.1.529 Omicron virus causes attenuated infection and disease in mice and hamsters. Preprint at 10.21203/rs.3.rs-1211792/v1. (2021).

Kemp, S. A., et al. Recurrent emergence and transmission of a SARS-CoV-2 spike deletion H69/V70. Cell Rep. 35(13) (2021). 10.1016/j.celrep.2021.109292. DOI: https://doi.org/10.2139/ssrn.3780277

McCallum, M., et al. N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2. Preprint at bioRxiv. https://doi.org/10.1101/2021.01.14.426475 (2021). DOI: https://doi.org/10.1101/2021.01.14.426475

Kissler, S. M., et al. Viral dynamics of SARS-CoV-2 variants in vaccinated and unvaccinated individuals. Preprint at medRxiv: https://doi.org/10.1101/2021.02.16.21251535 (2021). DOI: https://doi.org/10.1101/2021.02.16.21251535

Gandon, S., Mackinnon, M. J., Nee, S., Read, A. F. Imperfect vaccines and the evolution of pathogen virulence. Nature 414, 751-756 (2001). DOI: https://doi.org/10.1038/414751a

Cao Y., et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. Nature. 10.1038/s41586-022-04980-y (2022). DOI: https://doi.org/10.1038/s41586-022-04980-y

Day, T., Kennedy, D. A., Read, A. F., & Gandon, S. The evolutionary epidemiology of pathogens during vaccination campaigns. Quantitative Biology (2021). https://arxiv.org/abs/2109.13680v1.

Ritchie, H., et al. “Coronavirus Pandemic (COVID-19).” Published online at OurWorldInData.org. (2020). https://ourworldindata.org/coronavirus.

Downloads

Published

2023-01-07

How to Cite

1.
Blais-Savoie J. Perspective on Accuracy of Past SARS-CoV-2 Evolutionary Predictions. J Undergrad Life Sci [Internet]. 2023 Jan. 7 [cited 2024 May 1];16(1). Available from: https://jps.library.utoronto.ca/index.php/juls/article/view/39995

Issue

Section

Perspectives Articles