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Chapter 1

Introduction

ForwardCom stands for Forward Compatible Computer system.

This document describes a new open instruction set architecture designed for optimal perfor-

mance, flexibility and scalability. The ForwardCom project includes both a new instruction set

architecture and the corresponding ecosystem of software standards, application binary inter-

face (ABI), memory management, development tools, library formats, and system functions. This

project illustrates the improvements that can be obtained by a complete vertical redesign of hard-

ware and software based on an open, collaborative process. All software and hardware code is

free and open source.

An introduction to ForwardCom is provided at http://www.forwardcom.info.

This manual and all associated code is maintained at https://github.com/ForwardCom.

1.1 Highlights

• The ForwardCom instruction set is neither RISC nor CISC, but a new paradigm combining

the advantages of both. ForwardCom has few instructions, but many variants of each in-

struction. A consistent template system with few instruction sizes combines the fast and

streamlined decoding and pipeline design of RISC systems with the compactness and

more work done per instruction of CISC systems.

• The instruction formats are fully orthogonal. This means that the same instruction can be

coded with different operand types, different precisions, different types of register operands,

memory operands, or immediate constant operands. Instructions can be coded in a com-

pact form where the destination register is the same as the first source register, or in a non-

destructive form with three or four registers. Immediate constants are compressed, if possi-

ble, to save code space.

• The ForwardCom design is scalable to support small embedded systems as well as large

supercomputers and vector processors without losing binary compatibility.

• Vector registers of variable length are provided for efficient handling of large data sets.

• Array loops are implemented in a new flexible way that automatically uses the maximum

vector length supported by the microprocessor in all but the last iteration of a loop. The

last iteration automatically uses a vector length that fits the remaining number of elements.

No extra code is needed to deal with remaining data and special cases. There is no need

to compile the code separately for different microprocessor versions with different vector

lengths.

• No recompilation or update of software is needed when a new microprocessor with a dif-

ferent vector register length becomes available. The software is guaranteed to be forward
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compatible and take advantage of the longer vectors of new microprocessor models with-

out recompilation.

• Memory management is simpler and more efficient than in traditional systems. Various

techniques are used for avoiding memory fragmentation. It is possible in most cases to

avoid memory paging and use a memory map with a limited number of sections with vari-

able size instead of a translation lookaside buffer (TLB) with a large number of fixed-size

pages.

• There are no dynamic link libraries (DLLs) or shared objects. Instead, there is only one

type of function libraries that can be used for both static and dynamic linking. Only the part

of the library that is actually used is loaded and linked. The library code is kept contigu-

ous with the main program code to improve caching and reduce memory fragmentation.

Executable files can be relinked to replace or update library functions and plug-ins and to

support multiple user interface frameworks.

• A mechanism for calculating the required stack size is provided. This can prevent stack

overflow in most cases without making the data stack bigger than necessary.

• A mechanism for optimal register allocation across program modules and function libraries

is provided. This makes it possible to keep most variables in registers without spilling to

memory. Vector registers can be saved in an efficient way that stores only the part of the

register that is actually used.

• Strong security features are fundamental parts of the hardware and software design.

• Standards for software tools, ABI, file formats, system libraries, etc. are defined in order to

establish compatibility between different programming languages and different platforms. It

is possible to code different parts of a program in different programming languages.

The ForwardCom design can be useful for many purposes where performance is important,

where large vectors are desired, where security is important, or where the copyright and license

restrictions of proprietary microprocessor systems is an obstacle.

The ForwardCom design is also useful as a sandbox for university projects and experiments

aiming at improving many different aspects of computer design, as discussed at

http://www.forwardcom.info.

1.2 Background

An instruction set architecture is a standardized set of machine instructions that a computer can

run. There are many instruction set architectures in use.

Some commonly used instruction sets are poorly designed from the beginning. These systems

have been augmented many times with extensions and patches. One of the worst cases is the

widely used x86 instruction set and its many extensions. The x86 instruction set is the result of a

long history of short-sighted extensions and patches. The result of this development history is a

very complicated architecture with thousands of different instruction codes, which is very difficult

and costly to decode in a microprocessor. We need to learn from past mistakes in order to make

better choices when designing a new instruction set architecture and the software that supports

it.

The design should be based on an open process. Krste Asanović and David Patterson (2014)

have presented compelling arguments for why an open instruction set should be preferred. Open-

ness can be crucial for the success of a technical design. For example, the original IBM PC in

the early 1980’s had an advantage over competing computers because the open architecture

allowed other hardware and software producers to make compatible equipment. IBM lost their
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market dominance when they switched to the proprietary Micro Channel Architecture in 1987.

The successes of open source software are well known and need no further discussion here.

The only thing that is missing for a complete computer ecosystem based on open standards is

an open microprocessor architecture. This will open the market also for smaller microprocessor

producers and niche products.

This project is based on discussions in various Internet forums. The specifications are subject to

continued development. The development of a new standard should benefit from a long experi-

mental phase, and it would be unwise to make it a fixed standard at this stage.

1.3 Design goals

Previously published open instruction sets are suitable for small, cheap microprocessors for em-

bedded systems, system-on-a-chip designs, FPGA implementations for scientific experiments,

etc. The proposed ForwardCom architecture takes the idea further and aims at a design that can

outperform common high-end processors.

The ForwardCom instruction set architecture is based on the following priorities:

• The instruction set should have a simple and consistent modular design.

• The instruction set represents a suitable compromise between the RISC principle that en-

ables fast decoding, and the CISC principle that makes it possible to do more work per in-

struction and to use the code cache and data cache more efficiently.

• The design should be extensible so that new instructions and extensions can be added in a

consistent and predictable way.

• The design should be scalable so that it is suitable for both small computers with on-chip

RAM and large supercomputers with very long vectors.

• The design should be competitive over current commercial designs with a focus on the

high-end applications of tomorrow rather than the low-end applications of yesterday.

• Vector support and other features that have proven essential for high performance should

be a fundamental part of the design, not a clumsy appendix.

• Security should be a fundamental part of the design, not patches added ad hoc.

• The instruction set should be designed through an open process with the participation of

the international hardware and software community, similar to the standardization work in

other technical areas.

• The entire vertical design should be non-proprietary and allow anybody to make compatible

software, hardware, and equipment for test, debugging and emulation.

• Decisions about instructions and extensions should not be determined by the short term

marketing considerations of an oligopolistic microprocessor industry but by the long term

needs of the entire hardware and software community.

• The design should allow the construction of forward compatible software that will run opti-

mally without recompilation on future processors with larger vector registers.

• The design should allow application-specific extensions.

• The basic aspects of the entire ecosystem of ABI standard, assembler, compilers, function

libraries, system functions, user interface framework, etc. should also be standardized for

maximum compatibility between different implementations.
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A new instruction set will not easily get success on a commercial market, even if it is better than

legacy systems, because the market prefers backward compatibility with existing software and

hardware. It is unlikely that the ForwardCom instruction set will make a successful commercial

product within a short time frame, but the discussion about what an ideal instruction set, micro-

processor design, and software ecosystem might look like is always useful. The ForwardCom

project has already generated so many important new ideas that it is worth pursuing further,

even if we do not know where this process will end. The present work can be useful if the need

for introducing a new instruction set architecture should arise for other reasons. It will be particu-

larly useful for large vector processors, for applications where security is important, for real-time

operating systems, for FPGA soft cores, as well as for projects where the patent and license re-

strictions of other architectures would be an obstacle.

The ideas in this document will also be useful as a source of inspiration and for scientific exper-

iments. Many of the ideas are independent of the design details and may be implemented in

other systems.

1.4 Problems addressed by ForwardCom

The design of ForwardCom was prompted by many years of frustration with existing systems.

The design is trying to address and solve a lot of problems with existing CPU designs as well as

the surrounding ecosystems of development tools, ABI standard, and operating systems. This

list provides an overview of problems that the ForwardCom design is trying to solve:

• RISC vs. CISC. The consistent template design of ForwardCom instructions aims at ob-

taining the efficient instruction decoding and smooth pipeline design of RISC systems com-

bined with the more work done per instruction of CISC systems. RISC systems typically

have a fixed instruction size of 32 bits that makes it impossible to include larger addresses,

constants, and option bits in a single instruction. ForwardCom allows instructions to have

a size of one, two, or three 32-bit words. This provides space for larger addresses, con-

stants, and option bits to allow each instruction to contain more information and to have

many different variants. Common CISC systems such as x86, on the other hand, have a

variable instruction size that is so difficult to decode that decoding has become a serious

bottleneck in the hardware. ForwardCom avoids this problem by indicating the instruction

size with just two bits.

• Forward compatibility. Current SIMD designs have been made with little foresight of future

extensions with larger vectors. It is impossible in other systems to save and restore a vec-

tor register in a way that can accommodate future extensions to the vector length. This has

caused a lot of problems and awkward patches in current systems. Software has to be re-

compiled for every new extension. The ForwardCom design with variable vector lengths

makes the software automatically use the maximum vector length of the CPU it is running

on with no need for recompilation.

• Vector loops. Current SIMD designs have a problem with vector loops when the loop count

is not certain to be a multiple of the vector length. The new design with variable vector

lengths solves this problem in an elegant and very efficient way.

• Position independent code. All code addresses are relative to the instruction pointer. All

writeable data are addressed relative to a data pointer. Code and data can be relocated

independently of each other.

• Data coherency. The ForwardCom design makes it possible to store constant data in in-

struction codes instead of constants scattered in static data memory. This reduces cache

misses.
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• Suitable for out-of-order execution. ForwardCom has no global status flags or status reg-

ister that would complicate parallel and out-of-order execution. The need for speculative

execution is reduced or eliminated by a handling of numerical errors that does not rely on

traps. The efficiency of out-of-order scheduling is also improved by avoiding instructions

that modify a partial register and leave the rest of the register unchanged.

• No microcode. Complex instructions in x86 and other architectures use microcode. This

makes decoding inefficient. ForwardCom avoids microcode by using only instructions that

fit into the pipeline design. A few more complex instructions can be implemented with hard-

ware state machines or application-specific FPGAmodules.

• Function libraries. There is only one kind of function library that serves the purposes of

both static libraries, dynamic libraries, shared objects, and program plug-in modules. The

library code is linked in a way that makes it contiguous with the program code it serves.

Executable program files can be relinked to update or replace a linked library. Problems

with missing or incompatible library versions are avoided by this design.

• Stack size calculation. Stack overflow can be prevented by calculation of the maximum

stack size during the link process if the program has no recursive functions.

• Avoid memory fragmentation. The design of function libraries, stack size calculation, po-

sition independent code, and other efforts are able to reduce memory fragmentation to a

level where the TLB (translation lookaside buffer) can be replaced by a memory map with a

limited number of variable-size memory blocks in most cases.

• Error tracking and exception handling. The design has no traps for numerical exceptions

and no status register. Instead, floating point errors are indicated in propagating NAN pay-

loads. Integer overflow can be indicated in propagating extra vector elements if needed.

This makes out-of-order parallelism and SIMD parallelism simpler and more efficient.

• Avoid register spilling. Object files and library files contain information about which regis-

ters each function is using. This makes it possible to keep most or all variables in registers

without ever spilling to memory.

• Function calling convention. Call stack and data stack are separate. The function calling

convention is safe and efficient. Function parameters are transferred in registers, not on

the stack. Tail calls are always possible.

• User friendly assembly syntax. The ForwardCom assembler gets out of the habitual think-

ing that assembly syntax must be obscure and complicated. Adding two registers is as sim-

ple as int32 r1 = add(r2, r3), or even int r1 = r2 + r3. This is easily intelligible to
high-level language programmers and leaves no doubt about which operands are source

and destination. Branches and loops can be coded with C-style syntax such as

for (int r1 = 0; r1 < r2; r1++) { }

• Security. A lot of security features are part of the basic design. See page 109

• Free and open. A noncommercial development process and a free license improves the

possibilities for synergy between different hardware and software developers and university

scientists. Commercial CPU vendors have often produced suboptimal designs due to the

priority of short-term marketing goals. This is avoided with an open development process.

1.5 Comparison with other open instruction sets

A few other open instruction sets have been proposed, most notably RISC-V and OpenRISC.

Both are pure RISC designs with mostly fixed 32-bit instruction word sizes. These instruction
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sets are suitable for small systems where the use of silicon space is economized, but they are

not designed for high performance superscalar processors and they do not focus on details that

are critical for achieving maximum performance in bigger systems. The ForwardCom system is

thought as the next step towards making an open instruction set that is actually more efficient

than the best commercial instruction sets today.

A typical RISC design with the instruction size limited to 32 bits leaves only limited space for im-

mediate constants and addresses of memory operands. A medium-size program will need 32-bit

relative addresses of static memory operands to avoid overflow during the relocation process in

the linker. A 32-bit relative address requires several instructions in the pure RISC designs. For

example, to add a memory operand to the value of a register, you typically need five instructions

in a RISC design with only 32-bit instruction words: (1) load the lower part of the 32-bit address

offset, (2) add the upper part of the 32-bit address offset, (3) add the reference pointer or instruc-

tion pointer to this value, (4) read the memory operand from the calculated address, (5) do the

desired addition. The ForwardCom design does all this in a single instruction with double word

size. The speed advantage is obvious. The address calculation, load, and execution are done

at each their stage in the pipeline in order to achieve a smooth throughput of one instruction per

clock cycle in each pipeline.

Another important difference is that the previous RISC designs have limited support for vector

operations. The ForwardCom design introduces a new system of variable-length vector registers

that is more efficient and flexible than the best current commercial designs. Efficient vector oper-

ations are essential for obtaining maximum performance, and this has been an important priority

in the design of the ForwardCom architecture proposed here.
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Chapter 2

Basic architecture

This chapter gives an overview of the most important features of the ForwardCom instruction set

architecture. Details are given in the subsequent chapters.

2.1 A fully orthogonal instruction set

The ForwardCom instruction set is fully orthogonal in all respects. Orthogonal means that any

combination of operand type, addressing mode, etc. is possible for the same instruction.

Where other instruction sets have a large number of different instructions for different register

types, operand types, operand sizes, addressing modes, etc., ForwardCom has fewer instruc-

tions, but many variants of each instruction. This modular design makes the hardware imple-

mentation much simpler. The same instruction can use integer operands of all sizes and float-

ing point operands of all precisions. It can use register operands, memory operands or immedi-

ate operands. It can use many different addressing modes. Instructions can be coded in short

forms with two operands where the same register is used for destination and source operand,

or longer forms with three operands. It can work with scalars or vectors of any size. It can have

predication or masks for conditional execution, and it can have optional flag inputs for determin-

ing rounding mode, exception control, and other details, where appropriate. Data constants of all

types can be included in the instructions and compressed in various ways to reduce the instruc-

tion size.

Rationale

The orthogonality is implemented by a standardized modular design that makes the hardware

implementation simpler. It also makes compilation simpler and more flexible and makes it easier

for the compiler to convert linear code to vector code.

The support for immediate constants of all types is an improvement over current systems. Most

current systems store floating point constants in a data segment and access them through a 32-

bit address in the instruction code. This is a waste of data cache space and causes many cache

misses because the data are scattered around in different sections. Replacing a 32-bit address

with a 32-bit immediate constant makes the code more efficient without increasing the code size.

64-bit immediate constants are also possible at the cost of using instructions with triple size.

2.2 Instruction size

The ForwardCom instruction set uses a 32-bit word size for code. An instruction can consist of

one, two, or three 32-bit words. It is possible to add future extensions with instruction sizes of

four or more words, but there is currently no need for this.
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Rationale

A CISC architecture with many different instruction sizes is inefficient in superscalar processors

where we want to execute several instructions per clock cycle. The decoding front end is a se-

rious bottleneck, especially in the x86 architecture. The decoder has to determine the length of

the first instruction before it knows where the next instruction begins. The “instruction length de-

coding” is a fundamentally serial process which makes it difficult to decode multiple instructions

per clock cycle. Modern x86 microprocessors have an extra “micro-operations cache” after the

decoder in order to circumvent this bottleneck.

Here, it is desired to have as few different instruction sizes as possible and to make it easy to

determine the length of each instruction. We want a small instruction size for the most common

simple instructions, but we also need a larger instruction size in order to accommodate things

like a large register set, instructions with multiple operands, vector operations with advanced fea-

tures, 32-bit address offsets, and large immediate constants. This design is a compromise be-

tween code compactness, easy decoding, and space for advanced features. The instruction size

is indicated by only two bits. A decoder can find the instruction boundaries in n words by means

of a simple Boolean function of 2n inputs.

2.3 Register set

There are 32 general purpose registers (r0–r31) of 32 or 64 bits each. Small embedded systems

can use 32-bit registers while larger systems preferably have 64-bit registers. Attempts to exe-

cute a 64-bit instruction on a hardware that has only 32-bit registers will not cause an error, but

only the lower 32 bits of the result will be stored. For example, pointer arithmetics using 64-bit

instructions will work on both 32-bit and 64-bit systems without modifying the code.

The ForwardCom design has 32 vector registers (v0–v31) of variable length. The maximum vec-

tor length is different for different hardware implementations. The general purpose registers can

be used for integers of up to 64 bits as well as for pointers. The vector registers can be used for

scalars and vectors of integers and floating point numbers.

The following special registers are defined and visible at the application program level.

• Instruction pointer (IP)

• Data section pointer (DATAP)

• Thread data pointer (THREADP)

• Stack pointer (SP)

• Numeric control register (NUMCONTR)

The stack pointer is identical to r31. The other special registers cannot be accessed as ordinary

registers.

There is no dedicated flags register. Registers r0–r6 and v0–v6 can be used for masks, predi-

cates and floating point option flags to control attributes such as rounding mode and exception

control.

Any unused part of a register is always set to zero. This means that integer operations with an

operand size smaller than 64 bits and vector operations with a vector length smaller than the

maximum will always set any unused bits of the destination register to zero.
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Rationale

The number of registers is a compromise between code density and flexibility. The cost of spilling

registers to memory is usually important only in the critical innermost loop, which is unlikely to

need more than 32 registers.

We can avoid false dependencies on the previous value of a register by setting all unused regis-

ter bits to zero rather than leaving them unchanged. The hardware can save power by disabling

the unused parts of execution units and data buses.

A dedicated flags or status register is unfeasible for vector processing, parallel processing, out-

of-order processing, and instruction scheduling.

The reason for handling floating point scalars in the vector registers rather than in separate reg-

isters is to make it easy for a compiler to convert scalar code including function calls to vector

code. Floating point code often contains calls to mathematical library functions. A library function

with variable-length vectors as input and output can be used for both scalars and vectors, and

the compiler can easily vectorize code that contains such library function calls.

2.4 Vector support

A vector register can contain signed or unsigned integers of 8, 16, 32, 64, and optionally 128

bits, or floating point numbers with single and double precision. There is optional support for

floating point numbers with half precision and quadruple precision.

All elements of a vector must have the same type. The elements of a vector are processed in

parallel. For example, a vector addition will produce the sum of two vectors in a single operation.

The vector registers have variable length. Each vector register has extra bits for storing the length

of the vector. The maximum vector length depends on the hardware. For example, if the hard-

ware supports a maximum vector length of 64 bytes and a particular application needs only 16

bytes, then the vector length is set to 16.

Some instructions need to specify the length of a vector explicitly, for example when reading a

vector from memory. These instructions use a general purpose register for specifying the vec-

tor length. The length is usually indicated as the number of bytes, not the number of vector ele-

ments.

The maximum vector length supported by the processor must be a power of 2. The actual length

specified does not need to be a power of 2. If the specified length is longer than the maximum

length, then the maximum length is used.

The contents of a vector register can arbitrarily be interpreted as any of the types and element

sizes supported. For example, the hardware does not prevent the application of integer instruc-

tions on a vector that contains floating point data. It is the responsibility of the programmer that

the code makes sense.

2.5 Vector loops

A special addressing mode is provided to make vector loops more compact and efficient. It uses

a pointer P to the end of an array, and a negative index J, and calculates the address of a mem-

ory operand as P-J, where P and J are general purpose registers. This makes it possible to make

a loop through an array as illustrated by the following pseudocode:

P = address of array
J = size of array (in bytes)
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L = maximum vector length (depends on processor)
X = a vector register
P += J; // point to end of array
while (J > 0) {

X = whatever_operation(X, [P-J], vector_length = J)
J -= L;

}

This loop works in the following way: P points to the end of the array. J is the remaining number

of array bytes; counting down until the loop is finished. The loop reads one vector at a time from

the array at the address (P-J). J is larger than the maximum vector length L in all but the last it-

eration of the loop. This makes the processor use the maximum vector length. If the array size

is not divisible by the maximum vector length then the last iteration of the loop will use a smaller

vector length that fits the remaining number of elements. Obviously, the loop can contain any

number of vector read, vector write, and vector arithmetic instructions, using the same principle.

This loop will work on different processors with different maximum vector lengths without know-

ing the maximum vector length at compile time. Thus, the same piece of software will work on

different microprocessors with different vector lengths without the need to compile separately for

each microprocessor.

A further advantage is that no extra code is needed after the loop to handle remaining elements

in the case that the array size is not divisible by the vector length. The loop overhead can be re-

duced to a single instruction (sub_maxlen/jump_pos) which subtracts L from J and jumps back if

the result is positive.

Rationale

Most current systems have fixed vector lengths. If different processors have different vector

lengths then you have to compile the code separately for each vector length. Every time a new

processor with longer vectors comes on the market, you have to compile a new version of the

code for the new vector length, using newly defined extensions to the instruction set. It usually

takes several years for the new software to be developed and to penetrate the mainstream mar-

ket. It is so costly for software producers to develop, test, and maintain different versions of their

code for each vector length that this is rarely done.

A further problem with current systems is that it is impossible to save a vector register in a way

that is guaranteed to be compatible with future processors with longer vectors. Each new exten-

sion has historically involved new previously unknown instructions. This is no problem with the

ForwardCom design because the vector length is stored in the vector register itself. Instructions

are provided for saving and restoring vectors of variable length and for storing only the part of a

vector register that is actually used.

The ForwardCom design makes it possible to take advantage of a new processor with longer

vector registers immediately without recompiling the code. The loop method described above

makes this easy and very efficient. You do not need different versions of the code for different

processors.

It is possible to obtain the same effect without the special negative addressing mode by inverting

the sign of J and allowing a negative value in the register that specifies the vector length while

using the absolute value for the actual vector length. This solution is less elegant and more con-

fusing, but it may possibly be included in other instruction sets by allowing negative values when

specifying a vector length.

Loop unrolling is generally not necessary. The loop overhead is already reduced to a single in-

struction and a superscalar processor will execute multiple iterations in parallel if dependency
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chains are not too long. Loop unrolling with multiple accumulators may be useful for hiding a

loop-carried dependency. In this case, you will either insert a loop control instruction after each

section in the unrolled code or calculate the loop iteration count before the loop.

The ForwardCom design has no practical limit to the vector length that a microprocessor can

support. A large microprocessor with very long vectors can be useful for calculations with a high

amount of data parallelism. Other solutions to obtain high performance on parallel data process-

ing have been discussed, such as rolling register stacks and software pipelining, but it was con-

cluded that long vectors is the method that can be implemented most efficiently in the micropro-

cessor as well as in the compiler.

2.6 Maximum vector length

The maximum length of vector registers will be different for different processors. The maximum

length must be a power of 2. It can be as large as desired and should be at least 16 bytes. Each

instruction can use a smaller length, which does not need to be a power of 2.

The maximum vector length may be different for different element sizes, but it is recommended

to have the same maximum length for all operand types and element sizes. The maximum vec-

tor length must be the same for different types with the same element size. For example, the

maximum length for double precision floating point numbers must be the same as for 64-bit in-

tegers because loops are likely to contain both types when integer vectors are used as masks for

floating point vectors. The maximum length for a 32-bit element size cannot be less than for any

other element size or operand type. This rule guarantees that it is possible to save a complete

vector using a 32-bit operand type.

The maximum vector length should generally be the same for all instructions for the same data

type, but there may be exceptions for instructions that are particularly expensive to implement.

It may be possible for an application program or the operating system to reduce the maximum

vector length. This can be useful if a smaller vector length is more appropriate for a particular

purpose. It may also be possible to increase the apparent maximum vector length for purposes

of testing and emulation.

When an instruction specifies a longer vector than the maximum, then the maximum length is

used (unless the emulation of larger vectors is activated). This is necessary for the efficient im-

plementation of vector loops as described above on page 12. If the specified vector length is

zero or negative then the result will be a vector of zero length.

2.7 Instruction masks

Most instructions can have a mask register which can be used for conditional execution and for

specifying various options. Instructions with general purpose registers use one of the registers

r0–r6 as a mask register or predicate. Bit 0 of the mask register indicates whether the operation

is executed or not.

The instruction will produce the normal result when bit 0 of the mask is one, and a fallback value

when this bit is zero. The fallback value can be the value of the first source operand, a separate

register, or zero.

This mechanism can be vectorized. Instructions with vector registers use one of the vector reg-

isters v0–v6 as mask register. The calculation of each vector element is conditional on the corre-

sponding element in the mask register.

An arithmetic operation with a mask of zero can never generate an error condition. A memory

read or write with an illegal address and a mask of zero may or may not generate an error trap.
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Additional bits in the mask register are used for various options, overriding the values in the nu-

meric control register. See page 27 for details.

2.8 Addressing modes

All memory addressing is relative to a base pointer. Memory operands are addressed in this

general form:

Address = Base pointer + Index * Scale + Offset

Where Base pointer is a 64-bit pointer, Index is a 64-bit index register, Scale is a scale factor,

and Offset is a constant. A base pointer is always present; the other elements are optional. Small

embedded systems may use 32-bit registers rather than 64 bits.

The base pointer can be a general purpose register or it can be the instruction pointer (IP), data

section pointer (DATAP), thread data pointer (THREADP), or stack pointer (SP).

The index register can be one of the registers r0–r30. A value of 31 in the index register field

means no index register.

A limit can be applied to the index register in the form of an integer constant. A trap is generated

if the index register is bigger than the limit in an unsigned comparison.

The scale factor is equal to the operand size (in bytes) for scalar operands and broadcasts. The

scale factor is 1 for vector operands. A special addressing mode with Scale = -1 is also available,

as explained on page 12.

The offset is a sign-extended integer of 8, 16, or 32 bits. 8-bit offsets are multiplied by the operand

size. Offsets of 16 and 32 bits have no multiplier.

Memory operands in vector instructions can load a vector of a specified length, a scalar, or a

broadcast scalar. The length of the loaded or broadcast vector is specified by a general purpose

register. The specified length is the number of bytes. The number of vector elements is the num-

ber of bytes divided by the operand size. Register r31, which is the stack pointer, cannot be used

for specifying vector length. Instead, a value of 31 in the length register field will give a scalar.

Jumps and calls specify a target address relative to the instruction pointer. The relative address

is specified with a signed offset of 8, 16, 24, or 32 bits, multiplied by the code word size which is

4. This will cover an address range of ± 8 gigabytes with the 32-bit offset.

Rationale

A 64-bit flat address space is used. Relative addressing is used in order to avoid 64-bit addresses

in the instruction code. In the rare case that a 64-bit absolute address is needed, it must be loaded

into a register which is then used as a pointer.

Addressing with an index scaled by the operand size is useful for arrays. A limit can be applied

to the index so that array bounds can be checked without any extra instructions.

Addressing with a negative index is useful for the efficient implementation of vector loops de-

scribed on page 12.

The addressing modes specified here will cover all common applications, including arrays, vec-

tors, structures, classes, and stack frames.
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Chapter 3

Instruction formats

3.1 Formats and templates

All instructions use one of the general format templates shown below (the most significant bits

are shown to the left). The basic layout of the 32-bit code word is shown in template A. Template

B, C and D are derived from template A by replacing 8, 16, or 24 bits, respectively, with immedi-

ate data. Double-size and triple-size instructions can be constructed by adding one or two 32-bit

words to one of these templates. For example, template A with an extra 32-bit word containing

data is called A2. Template E2 is an extension to template A where the second code word con-

tains an extra register field, extra opcode bits, mode bits, option bits, and data.

Bits 2 3 6 5 1 2 5 3 5

Field IL Mode OP1 RD M OT RS Mask RT

Template A. Has three operand registers and a mask register.

Bits 2 3 6 5 1 2 5 8

Field IL Mode OP1 RD M OT RS IM1

Template B. Has two operand registers and an 8-bit immediate constant.

Bits 2 3 6 5 8 8

Field IL Mode OP1 RD IM2 IM1

Template C. Has one operand register two 8-bit immediate constants.

Bits 2 3 3 24

Field IL Mode OP1 IM3

Template D. Has no register and a 24-bit immediate constant.

Bits 2 3 6 5 1 2 5 3 5

Field IL Mode OP1 RD M OT RS Mask RT

Field IM6

Template A2. 2 words. As A, with an extra 32-bit immediate constant.
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Bits 2 3 6 5 1 2 5 8

Field IL Mode OP1 RD M OT RS IM1

Field IM6

Template B2. As B, with an extra 32-bit immediate constant.

Bits 2 3 6 5 8 8

Field IL Mode OP1 RD IM2 IM1

Field IM6

Template C2. As C, with an extra 32-bit immediate constant.

Bits 2 3 6 5 1 2 5 3 5

Field IL Mode OP1 RD M OT RS Mask RT

Bits 3 5 2 6 16

Field Mode2 RU OP2 IM5 IM4

Template E2. Has 4 register operands, mask, a 16-bit immediate constant,

and extra bits for mode, opcode, and options.

Bits 2 3 6 5 1 2 5 3 5

Field IL Mode OP1 RD M OT RS Mask RT

Field IM6

Field IM7

Template A3. 3 words. As A, with two extra 32-bit immediate constants.

Bits 2 3 6 5 1 2 5 8

Field IL Mode OP1 RD M OT RS IM1

Field IM6

Field IM7

Template B3. As B, with two extra 32-bit immediate constants.

Bits 2 3 6 5 1 2 5 3 5

Field IL Mode OP1 RD M OT RS Mask RT

Bits 3 5 2 6 16

Field Mode2 RU OP2 IM5 IM4

Field IM7

Template E3. As E2, with an extra 32-bit immediate constant.

The meaning of each field is described in the following table.
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Table 3.1: Fields in instruction templates

Field

name

Meaning Values

IL Instruc-

tion

length

0 or 1: 1 word = 32 bits

2: 2 words = 64 bits

3: 3 words (possibly more in future extensions if

mode > 3)

Mode Format Determines the format template and the use of

each field. Extended with the M bit when needed.

See details below.

Mode2 Format Extension to Mode.

OT Operand

type

and size

(OS)

0: 8 bit integer, OS = 1 byte

1: 16 bit integer, OS = 2 bytes

2: 32 bit integer, OS = 4 bytes

3: 64 bit integer, OS = 8 bytes

4: 128 bit integer, OS = 16 bytes (optional)

5: single precision float, OS = 4 bytes

6: double precision float, OS = 8 bytes

7: quadruple precision float, OS = 16 bytes (op-

tional)

The OT field is extended with the M bit when

needed.

M Operand

type or

mode

Extends the mode field when bit 1 and bit 2 of

Mode are both zero (general purpose registers).

Extends the OT field otherwise (vector registers).

OP1 Opcode Decides the operation, for example add or move.

OP2 Opcode Opcode extension for single-format instructions.

May also be used as an extension to IM5.

RD Desti-

nation

register

r0 – r31 or v0 – v31. Also used for first source

operand and fallback if the instruction format

does not specify enough operands.

RS Source

register

r0 – r31 or v0 – v31. Source register, pointer, or

fallback.

RT Source

register

r0 – r31 or v0 – v31. Source register, index, or

vector length.

RU Source

register

r0 – r31 or v0 – v31. Source register or fallback.

Mask mask

register

0-6 means that a general purpose register or

vector register is used for mask and option bits. 7

means no mask.

IM1–IM7 Imme-

diate

data

8, 16, 24, or 32 bits immediate operand or ad-

dress offset or option bits. Adjacent IM fields can

be merged to make a larger constant. IM5 in E

formats is mainly used for option bits.

Instructions have several different formats, defined by the IL and mode bits, according to table

3.2 below. The different formats specify different sizes of immediate data or memory operands

with different addressing modes.

Instructions can have up to three source operands (input), one destination operand (output), and

a mask. The destination operand always uses the RD field, except where the destination is a

memory operand. The source operands are using the available operand fields according to the

following algorithm: The required source operands are assigned to the available operand fields
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defined by table 3.2 in the following order of priority: immediate data field, memory operand, RT,

RS, RU, RD. The operands are assigned in reverse order so that the last operand gets the field

that comes first in this order of priority. For example, the instruction r1 = r2 - r3 using template A

will be RD = RS - RT. RD is used for both destination and the first source operand only if there

are no other vacant register fields.

The coding of instructions with two or three source operands is indicated in the table in the fol-

lowing way:

RD = f2(RS,RT) means that instructions with two input operands (f2) use the register specified in

RD as destination operand and RS and RT as source operands.

RD=f3(RD, RU, [RS+RT*OS+IM4]) means that instructions with three input operands (f3) use

the register specified in RD as both destination and the first source operand. The second source

operand is RU. The third source operand is a memory operand with RS as base pointer, RT as

index scaled by the operand size, and the constant IM4 as offset.

Instructions with only one input operand are coded as f2 with the first source operand omitted.

Table 3.2: List of instruction formats

For-

mat

name

IL Mode.
Mode2

Tem-

plate

Use

0.0 0 0 A Three general purpose register operands.

RD = f2(RS, RT). RD = f3(RD, RS, RT).

0.1 0 1 B Two general purpose registers and 8-bit imme-

diate operand.

RD = f2(RS, IM1). RD = f3(RD, RS, IM1).

0.2 0 2 A Three vector register operands.

RD = f2(RS, RT). RD = f3(RD, RS, RT).

0.3 0 3 B Two vector registers and a broadcast 8-bit

immediate operand.

RD = f2(RS, IM1). RD = f3(RD, RS, IM1).

0.4 0 4 A One vector register and memory operand.

Vector length specified by general purpose

register.

RD = f2(RD, [RS]). length=RT.

0.5 0 5 A One vector register and a memory operand

with base pointer and negative index. This is

used for vector loops as explained on page 12.

RD = f2(RD, [RS-RT]). length=RT.

0.6 0 6 A One vector register and a scalar memory

operand with base pointer and scaled index.

RD = f2(RD, [RS+RT*OS]).

0.7 0 7 B One vector register and a scalar memory

operand with base pointer and 8-bit offset.

RD = f2(RD, [RS+IM1*OS]).

0.8 0 0

M=1

A One general purpose register and a memory

operand with base pointer and scaled index.

RD = f2(RD, [RS+RT*OS]).

0.9 0 1

M=1

B One general purpose register and a memory

operand with base pointer and 8-bit offset.

RD = f2(RD, [RS+IM1*OS]).

1.0 1 0 A Single-format instructions. Three general

purpose register operands.

RD = f2(RS, RT). RD = f3(RD, RS, RT).
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1.1 1 1 C Single-format instructions. One general pur-

pose register and a 16-bit immediate operand.

RD = f2(RD, IM1-2).

1.2 1 2 A Single-format instructions. Three vector regis-

ter operands.

RD = f2(RS, RT). RD = f3(RD, RS, RT).

1.3 1 3 B Single-format instructions. Two vector regis-

ters and a broadcast 8-bit immediate operand.

RD = f2(RS, IM1). RD = f3(RD, RS, IM1).

1.4 1 4 C Single-format instructions. One vector register

and a broadcast 16-bit immediate operand.

RD = f2(RD, IM1-2).

1.5 1 5 Vacant. May be used for application-specific

vector instructions.

1.6 A 1 6 A Multiway jump instructions and system calls

with three register operands.

1.6 B 1 6 B Jump instructions with two register operands

and 8 bit offset.

1.7C 1 7 C Jump instructions with one register operand, 8

bit constant (IM2) and 8 bit offset (IM1).

1.7D 1 7 D Jump instructions with no register and 24 bit

offset.

1.8 1 0

M=1

B Single-format instructions. Two general

purpose registers and an 8-bit immediate

operand.

RD = f2(RS, IM1). RD = f3(RD, RS, IM1).

1.9 There is no format 1.9 because 1.1 has no M

bit.

2.0.0 2 0.0 E2 Three general purpose registers and a mem-

ory operand with base and 16 bit offset.

RD = f2(RT, [RS+IM4]).

RD = f3(RU, RT, [RS+IM4]).

2.0.1 2 0.1 E2 Two general purpose registers and a memory

operand with base, index and optional 16 bit

offset, no scale.

RD = f2(RU, [RS+RT+IM4]).

RD = f3(RD, RU, [RS+RT+IM4]).

2.0.2 2 0.2 E2 Two general purpose registers and a memory

operand with base, scaled index, and optional

16 bit offset.

RD = f2(RU, [RS+RT*OS+IM4]).

RD = f3(RD, RU, [RS+RT*OS+IM4]).

2.0.3 2 0.3 E2 Two general purpose registers and a memory

operand with base, scaled index, and 16-bit

limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*OS]).

Limit RT ≤ IM4 (unsigned).

Support for this format is optional.
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2.0.5 2 0.5 E2 One general purpose register and a memory

operand with base, scaled index, 16-bit offset,

and an 8-bit immediate operand using IM5

extended with OP2. Optional.

RD = f2([RS+RT*OS+IM4], IM5).

RD = f3(RU, [RS+RT*OS+IM4], IM5).

2.0.6 2 0.6 E2 Four general purpose registers.

RD = f2(RS, RT).

RD = f3(RU, RS, RT).

2.0.7 2 0.7 E2 Three general purpose registers and a 16-bit

integer with left shift.

RD = f2(RT, IM4).

RD = f3(RS, RT, IM4).

IM4 (signed) is shifted left by the 6-bit un-

signed value of IM5, or whithout shift if IM5 is

used for other purposes.

2.1 2 1 A2 Two general purpose registers and a memory

operand with base and 32 bit offset (IM6).

RD = f2(RT, [RS+IM6]).

RD = f3(RD, RT, [RS+IM6]).

2.2.0 2 2.0 E2 Two vector registers and a broadcast scalar

memory operand with base and 16 bit offset.

RD = f2(RU, [RS+IM4]).

RD = f3(RD, RU, [RS+IM4]).

Broadcast to length RT.

2.2.1 2 2.1 E2 Two vector registers and a memory operand

with base and 16 bit offset.

RD = f2(RU, [RS+IM4]).

RD = f3(RD, RU, [RS+IM4]).

Length=RT.

2.2.2 2 2.2 E2 Two vector registers and a scalar memory

operand with base and scaled index.

RD = f2(RU, [RS+RT*OS+IM4]).

RD = f3(RD, RU, [RS+RT*OS+IM4]).

2.2.3 2 2.3 E2 Two vector registers and a scalar memory

operand with base, scaled index, and 16-bit

limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*OS]).

Limit RT ≤ IM4 (unsigned).

2.2.4 2 2.4 E2 Two vector registers and a memory operand

with base and negative index.

RD = f2(RU, [RS-RT+IM4]).

RD = f3(RD, RU, [RS-RT+IM4]).

Length=RT.

2.2.5 2 2.5 E2 One vector register and a memory operand

with base, 16-bit offset, and an 8-bit immedi-

ate operand using IM5 extended with OP2.

Optional.

RD = f2([RS+IM4], IM5).

RD = f3(RU, [RS+IM4], IM5).

Length=RT.
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2.2.6 2 2.6 E2 Four vector registers.

RD = f2(RS, RT).

RD = f3(RU, RS, RT).

2.2.7 2 2.7 E2 Three vector registers and a broadcast imme-

diate half-precision float or 16-bit integer with

left shift.

RD = f2(RT, IM4).

RD = f3(RS, RT, IM4).

Floating point operands: IM4 is half precision.

Integer operands: IM4 (signed) is shifted left

by the 6-bit unsigned value of IM5, or whithout

shift if IM5 is used for other purposes.

2.3 2 3 A2 Three vector registers and a broadcast 32-bit

immediate operand.

RD = f2(RT, IM6).

RD = f3(RS, RT, IM6).

2.4 2 4 A2 One vector register and a memory operand

with base and 32 bit offset.

RD = f2(RD, [RS+IM6]). length=RT.

2.5 2 5 A2,

B2,

C2

Jump instructions for OP1 < 8. Single format

instructions with memory operands or mixed

register types for OP1 ≥ 8.

2.6 2 6 A2 Single-format instructions. Three vector regis-

ters and a 32-bit immediate operand.

RD = f2(RT, IM6).

RD = f3(RS, RT, IM6).

2.7 2 7 Currently unused.

2.8 2 0

M=1

A2 Three general purpose registers and a 32-bit

immediate operand.

RD = f2(RT, IM6).

RD = f3(RS, RT, IM6).

2.9 2 1

M=1

A2 Single-format instructions. Three general

purpose registers and a 32-bit immediate

operand.

RD = f2(RT, IM6).

RD = f3(RS, RT, IM6).

3.0.0 3 0.0 E3 Three general purpose registers and a mem-

ory operand with base and 32 bit offset.

RD = f2(RT, [RS+IM7]).

RD = f3(RU, RT, [RS+IM7]).

3.0.2 3 0.2 E3 Two general purpose registers and a memory

operand w. base, scaled index, and 32 bit

offset.

RD = f2(RU, [RS+RT*OS+IM7]).

RD = f3(RD, RU, [RS+RT*OS+IM7]).

3.0.3 3 0.3 E3 Two general purpose registers and a memory

operand with base, scaled index, and 32-bit

limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*OS]).

Limit RT ≤ IM7 (unsigned).
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3.0.5 3 0.5 E3 One general purpose register and a memory

operand with base, scaled index, 16-bit offset,

and a 32-bit immediate operand. Optional.

RD = f2([RS+RT*OS+IM4], IM7).

RD = f3(RU, [RS+RT*OS+IM4], IM7).

3.0.7 3 0.7 E3 Three general purpose registers and a 32-bit

integer with left shift.

RD = f2(RS, IM7 << IM4).

RD = f3(RS, RT, IM7 << IM4).

IM7 (signed) is shifted left by the unsigned

value of IM4.

3.1 3 1 A3,

B3

Jump instructions for OP1 < 8. Single format

instructions with memory operands or mixed

register types for OP1 ≥ 8.

3.2.0 3 2.0 E3 Two vector registers and a broadcast scalar

memory operand with base and 32 bit offset.

RD = f2(RU, [RS+IM7]).

RD = f3(RD, RU, [RS+IM7]).

Broadcast to length RT.

3.2.1 3 2.1 E3 Two vector registers and a memory operand

with base and 32 bit offset.

RD = f2(RU, [RS+IM7]).

RD = f3(RD, RU, [RS+IM7]).

Length=RT.

3.2.2 3 2.2 E3 Two vector registers and a scalar memory

operand w. base, scaled index, and 32-bit

offset. Optional.

RD = f2(RU, [RS+RT*OS+IM7]).

RD = f3(RD, RU, [RS+RT*OS+IM7]).

3.2.3 3 2.3 E3 Two vector registers and a scalar memory

operand with base, scaled index, and 32-bit

limit. Optional.

RD = f2(RU, [RS+RT*OS]).

RD = f3(RD, RU, [RS+RT*OS]).

Limit RT ≤ IM7 (unsigned).

3.2.5 3 2.5 E3 One vector register and a memory operand

with base, 16-bit offset, and a 32-bit immediate

operand. Optional.

RD = f2([RS+IM4], IM7).

RD = f3(RU, [RS+IM4], IM7).

Length=RT.

3.2.7 3 2.7 E3 Three vector registers and a broadcast single

precision float or 32-bit integer with left shift.

RD = f2(RT, IM7).

RD = f3(RS, RT, IM7).

Floating point operands: IM7 is single preci-

sion. Integer operands: IM7 (signed) is shifted

left by the unsigned value of IM4.

3.3 3 3 A3 Three vector registers and a broadcast 64-bit

immediate operand.

RD = f2(RT, IM6-7).

RD = f3(RS, RT, IM6-7).
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3.8 3 0

M=1

A3 Three general purpose registers and a 64-bit

immediate operand.

RD = f2(RT, IM6-7).

RD = f3(RS, RT, IM6-7).

3.9 There is no format 3.9 because 3.1 uses the M

bit.

4.x 3 4-7 Reserved for future 4-word instructions and

longer.

3.2 Coding of operands

Operand type

The type and size of operands is determined by the OT field as indicated above. The operand

type is 32 bit integer if there is no OT field unless otherwise specified. The operand size (OS)

is the size in bytes of a scalar operand or a vector element. This is equal to the number of bits

divided by 8.

Some instructions have optional support for half precision (float16). Half precision instructions

are coded with the value 1 in the OT field, corresponding to int16. Option bit 5 in the IM5 field in

E formats is used for indicating that operands are float16 rather than int16, except for add, sub,

mul, and compare instructions that have separate op1 values for float16.

Register type

The instructions can use either general purpose registers or vector registers. General purpose

registers are used for source and destination operands and for masks if the Mode field is 0 or 1

(with M = 0 or 1). Vector registers are used for source and destination operands and for masks

if Mode is 2-7. Jump instructions use vector registers if M = 1. A few single-format instructions

deviate from this rule and use mixed register types.

Pointer register

Instructions with a memory operand always use an address relative to a base pointer. The base

pointer can be a general purpose register, the data section pointer, the thread data pointer, the

instruction pointer, or the stack pointer. The pointer is determined by the RS field. This field is

interpreted as follows.

Single-size instructions with a memory operand (formats 0.4 - 0.9) can use any of the registers

r0-r31 as base pointer. r31 is the stack pointer.

Larger instructions with a memory operand and an offset field of at least 16 bits (formats 2.0.x,

2.1, 2.2.x, 2.4, 2.5, 2.5.2, 2.9, 3.0.x, 3.2.x) can use the same registers, except r28 - r30, which

are replaced by the thread pointer (THREADP), data section pointer (DATAP), and instruction

pointer (IP), respectively.

The instruction pointer may be used for addressing data in a read-only data section. This works

in the following way. The address of the end of the current instruction is used as a reference

point. This is the same as the address of the next instruction. The reason for using the end of

the instruction as reference point is that it makes relocation in the linker independent of the in-

struction length in most cases. This address is multiplied by 4 when used as a data address be-

cause the instruction pointer is addressing 32 bit word units while data pointers are addressing

byte units.
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Index register

Instruction formats with an index can use r0 - r30 as index in the RT field. A value of 31 in the

index field means no index. The signed index is multiplied by the operand size (OS) for formats

0.6, 0.8, 2.0.2, 2.0.3, 2.0.5, 2.2.3, 3.0.3, 3.2.3; by 1 for format 2.0.1; or by -1 for format 0.5 and

2.2.2. The result is added to the address given by the base pointer.

Offsets

Offsets can be 8, 16, or 32 bits. The value is sign-extended to 64 bits. An 8-bit offset is multiplied

by the operand size OS, as given by the OT field. An offset of 16 or 32 bits is not scaled. The

result is added to the address given by the base pointer and the index.

Limit on index

Formats 2.0.3, 2.2.3, 3.0.3, and 3.2.3 have a 16-bit or 32-bit limit on the index register. This is

useful for checking array limits. A trap is generated if the value of the index register, interpreted

as unsigned, is bigger than the unsigned limit. This feature is optional.

Immediate constants

Immediate constants can be 8, 16, 32, and 64 bits. The immediate fields are interpreted as fol-

lows.

If OT specifies an integer type then the field is interpreted as an integer. If the field is smaller

than the operand size then it is sign-extended to the appropriate size. If the field is larger than

the operand size then the superfluous upper bits are ignored. The truncation of a too large im-

mediate operand will not trigger any overflow condition.

If OT specifies a floating point type then the field is interpreted as follows. Immediate fields of

8 bits are interpreted as signed integers and converted to floating point numbers of the desired

precision. A 16-bit field is interpreted as a half precision floating point number (subnormal num-

bers are supported for float16). A 32-bit field is interpreted as a single precision floating point

number. The floating point constant is converted to a higher precision if necessary. A 64-bit field

is interpreted as a double precision floating point number. A 64-bit field is not allowed with a sin-

gle precision operand type.

Some instruction formats allow immediate integer constants with a left shift. Large integer con-

stants with a limited number of significant bits can be represented with fewer bits in this way.

Format 2.0.7 and 2.2.7 allow a signed 16-bit immediate constant in IM4 to be shifted left by the

unsigned value of IM5 to give a 64-bit signed value, except for instructions that use IM5 for other

purposes.

Format 3.0.7 and 3.2.7 allow a signed 32-bit immediate constant in IM7 to be shifted left by the

unsigned value of IM4. Any overflow beyond 64 bits is ignored.

Some single-format instructions also use shifted constants.

An instruction can be made compact by using the smallest size that fits the actual value of the

constant.

Option bits

Several instructions can have option bits that specify details of the operation, for example con-

dition codes in the compare instruction, sign of operands in the mul_add instruction, rounding

mode in integer division, or treatment of NAN values in max and min instructions.
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The option bits are coded mainly in the IM5 field in E formats. These bits are considered zero

in formats that do not have an IM5 field. Some single-format instructions use the IM1 field in B

formats for option bits.

Vector length

The vector length of memory operands is specified by r0-r30 in the RT field for formats with a

vector memory operand. A value of 31 in the RT field indicates a scalar with the same length as

the operand size (OS).

The value of the vector length register indicates the vector length in bytes (not the number of ele-

ments). If the value is bigger than the maximum vector length then the maximum vector length is

used. If the indicated vector length is zero or negative then the resulting vector will be empty and

nothing will be read or written.

The vector length must be a multiple of the operand size OS, as indicated by the OT field. If the

vector length is not a multiple of the operand size then the partial vector element will be zero.

The vector length for source operands in vector registers is stored in the register itself.

Combining vectors with different lengths

The length of the destination register of a vector instruction will be the same as the vector length

of the first source operand.

A consequence of this is that the length of the result is determined by the order of the operands

when vectors of different lengths are combined.

If the source operands have different lengths then the lengths will be adjusted as follows. If a

vector source operand is too long then the extra elements will be ignored. If a vector source

operand is too short then the missing elements will be zero.

A scalar memory operand is not broadcast but treated as a short vector. It is padded with zeroes

to the vector length of the destination.

A broadcast memory operand will use the vector length given by the vector length register. If this

is less than the length of the destination then it is padded with zeroes.

An immediate operand will be broadcast to the vector length of the destination. If there are no

other source operands then the destination will be a scalar.

Mask register and fallback register

The 3-bit mask field in formats with templates of type A or E indicates a mask register. Register

r0-r6 can be used as masks if the destination is a general purpose register. Vector register v0-v6

can be used as masks if the destination is a vector register. A value of 7 in the mask field means

no mask and unconditional execution using the options specified in the numeric control register.

Jump, call, return, and branch instructions cannot have a mask.

If the mask is a vector register then it is interpreted as a vector with the same element size as

indicated by the OT field. Each element of the mask register is applied to the corresponding ele-

ment of the result.

The mask has multiple purposes. The primary purpose is for conditional execution. An instruc-

tion is not executed if bit 0 of the mask is zero. In this case, the destination will get a fallback

value instead of the result of the calculation, and any numerical error condition will be suppressed.

Vector instructions are executed conditionally for each vector element separately, so that each

vector element is enabled if bit 0 of the corresponding vector element of the mask register is 1.
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The fallback value is taken from an extra register if the instruction has less than three source

operands and the format has a vacant register field, or from the first source register operand oth-

erwise. The fallback cannot be different from the first source register if the instruction has three

source operands, even if there is a vacant register field. If the instruction format has more than

one vacant register field, then the field that would be used for the first source operand if the in-

struction had three source operands is used for the fallback register.

Register r31 (stack pointer) and v31 cannot be used as fallback register. Instead, the fallback

value will be zero if a register number of 31 is indicated. Register r31 and v31 should not be

used as first source register if it is also used as fallback because this would cause ambiguity

about the fallback value. (The fallback value will not be zero in this case).

A memory write has no fallback register. Instead, the value of the memory operand will be un-

changed if the mask has a zero in bit 0.

The remaining bits of the mask are used for specifying various options. The meanings of these

mask bits are described in the next section.

3.3 Coding of masks

Amask register can be a general purpose register r0-r6 or a vector register v0-v6. A value of 7 in

the mask field means no mask.

The bits in the mask register are coded as follows.

Table 3.3: Bits in mask register and numeric control register

Bit

number

Meaning

0 Predicate or mask. The operation is executed only if

this bit is one.

1 Guaranteed to be ignored.

2-7 Numerical exception control. See page 106.

2 Floating point division by zero generates NAN

3 Floating point overflow generates NAN

4 Floating point underflow generates NAN

5 Floating point inexact generates NAN

Bits 2-7 may also be used for controlling integer

overflow (currently not used).

10-12 Floating point rounding mode:

000 = nearest, with ties to even

001 = down

010 = up

011 = towards zero

This feature is optional.

13 Support subnormal numbers in single and higher

precision. (Subnormal numbers are always sup-

ported for half precision). This feature is optional.

18-23 Instruction-specific option bits (currently not used).

26 - 30 Possible use for enabling numerical traps. Not used

in the standard version.
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31 Constant execution time. This bit makes instructions

take the same number of clock cycles regardless

of the values of mask and operands. The guaran-

tee provided by this bit is useful for cryptographic

applications. This feature is optional.

Bits 8, 16, 24, etc. in a vector mask register can be used like bit 0 for 8-bit and 16-bit operand

sizes. All other bits are reserved for future use.

Vector instructions treat the mask register as a vector with the same element size (OS) as the

operands. Each element of the mask vector has the bit codes as listed above. The different vec-

tor elements can have different mask bits.

The numeric control register (NUMCONTR) is used as mask when the mask field is 7 or absent.

The NUMCONTR register is broadcast to all elements of a vector, using as many bits of NUM-

CONTR as indicated by the operand size, when an instruction has no mask register. The number

of bits in NUMCONTR is implementation dependent (usually 16 or more). Any missing bits will

be zero. The same NUMCONTR value is applied to all vector elements. Bit 0 of NUMCONTR is

always 1.

The instruction-specific option bits (bit 18-23) may be used in the future for various options in

specific instructions. The option bits in the mask are considered zero in vector operands with an

8-bit or 16-bit operand type because each mask element has too few bits in this case.

3.4 Format for jump, call and branch instructions

Most branches in software are based on the result of an arithmetic or logic instruction (ALU). The

ForwardCom design combines the ALU instruction and the conditional jump into a single instruc-

tion. For example, a loop control can be implemented with a single instruction that counts down

and jumps until it reaches zero or counts up until it reaches a certain limit.

The jumps, calls, branches, and multiway branches will use the following formats.

Table 3.4: List of formats for control transfer instructions

For-

mat

IL Mode OP1 Tem-

plate

Description

1.6 A 1 6 OPJ A Multiway jump and calls with three regis-

ter operands.

1.6 B 1 6 OPJ B Short jump with two register operands

(RD, RS) and 8 bit jump offset (IM1).

1.7 C 1 7 OPJ C Short jump with one register operand

(RD), an 8-bit immediate constant (IM2)

and 8 bit jump offset (IM1).

1.7 D 1 7 0-15 D Jump or call with 24-bit jump offset

(IM3).

2.5.0 2 5 3 A2 Double size jump with three register

operands (RD, RS, RT), and a 24-bit

jump offset (IM6 bits 0-23). OPJ in IM6

bits 24-31.

2.5.1 2 5 1 B2 Double size jump with a register destina-

tion operand, a register source operand,

a 16-bit immediate operand (IM6 lower

half), and a 16-bit jump offset (IM6 upper

half). OPJ in IM1.
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2.5.2 2 5 2 B2 Double size jump with one register

operand (RD), a memory operand with

base RS and 16-bit address offset (IM6

lower half), and a 16-bit jump offset (IM6

upper half). OPJ in IM1. Optional.

2.5.4 2 5 4 C2 Double size jump with one register

operand (RD), one 8-bit immediate con-

stant (IM2) and 32 bit jump offset (IM6).

OPJ in IM1.

2.5.5 2 5 5 C2 Double size jump with one register

operand (RD), an 8-bit jump offset (IM2)

and a 32-bit immediate constant (IM6).

OPJ in IM1.

2.5.7 2 5 7 C2 Double size system call, 16 bit constant

(IM1-2) and 32-bit constant (IM6). No

OPJ.

3.1.0 3 1 0 A3 Triple size jump with two register

operands (RD, RT), a 24-bit jump offset

(IM6 bit 0-23), and a memory operand

with base RS and 32-bit address off-

set (IM7). OPJ in bits 24-31 of IM6.

Optional.

3.1.1 3 1 1 B3 Triple size jump with a register destina-

tion operand, a register source operand

(RS), a 32-bit jump offset (IM6), and a

32-bit immediate operand (IM7). OPJ in

IM1. Optional.

The jump, call, and branch instructions have signed jump offsets of 8, 16, 24, or 32 bits rela-

tive to the instruction pointer. Or, more precisely, relative to the end of the instruction. This jump

offset is multiplied by the instruction word size (= 4 bytes) to cover an address range of ± 512

bytes for short conditional jumps with 8 bits offset, ± 128 kilobytes for jumps and calls with 16

bits offset, ± 32 megabytes for 24 bits offset, and ± 8 gigabytes for 32 bits offsets.

The OPJ field defines the operation and jump condition. This field has 6 bits in the single size

version and 8 bits in the longer format versions. The two extra bits in the longer versions are re-

served for future security features. It is not possible to use a mask for additional jump conditions.

The versions with template C and C2 have no OT field. The operand type is 32-bit integer when

there is no OT field, unless otherwise noted. It is not possible to use formats with template C or

C2 with other operand types.

The instructions will use vector registers when there is an OT field and M = 1. In other words,

the combined ALU-and-branch instructions will use vector registers only when a floating point

type is specified (or 128-bit integer type, if supported). General purpose registers are used in all

other cases. Only the first element of a vector register is used. Logical instructions will interpret

the value in a vector register as an integer, when a floating point type is specified. Only the com-

pare instructions interpret the operands as floating point when a floating point type is indicated.

Branch instructions with addition and subtraction cannot use floating point operands. The codes

that these instructions would use are used for floating point compare instructions instead.

The combined ALU and conditional jump instructions can be coded in the formats listed above.

Subtraction with a constant cannot be coded in format 1.7 C. The assembler will replace sub-

traction with a small immediate constant by addition with the negative constant. The code space
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that would have been used by subtraction in format 1.7 C is instead used for coding direct jump

and call instructions with a 24-bit offset using format 1.7 D, where the lower three bits of OP1 are

used as part of the 24-bit offset.

Unconditional and indirect jumps and calls use the formats indicated above, where unused fields

must be zero. Bit 0 of the OPJ field is zero for unconditional jump instructions and one for call

instructions.

See page 46 for a list of OPJ condition codes.

3.5 Limitations in instruction formats

The large selection of instruction formats makes it possible for the programmer to combine reg-

ister operands, memory operands, and immediate constant operands almost freely. The assem-

bler will automatically select the smallest format that fits the specified operands. There are cer-

tain limitations, though, which are summarized below. These limitations are mainly due to the

limitation of instruction size. Instructions cannot be bigger than three 32-bit words in the current

ForwardCom standard. Longer instructions are avoided because they may impede performance

in the critical decoding stage of a microprocessor.

It is not possible to mix vector registers and general purpose registers. Destination register, source

registers, mask, and fallback must be all general purpose registers or all vector registers, except

where the instruction description specifies otherwise. Memory pointer, index, and vector length

are always using general purpose registers.

The destination that receives the result of an instruction must be a register, except for the mem-

ory store instruction and a few optional instructions.

Single-format instructions allow only specific types of operands, mainly registers, as specified by

the description of each instruction.

Mask registers can only be r0–r6 and v0–v6.

Index and vector length cannot be r31. Fallback cannot be r31 or v31.

Source operands must be organized in the order: registers, memory operand, immediate operand.

This is rarely a problem for general purpose register instructions because the assembler will re-

order the operands automatically where needed in most cases. However, the assembler cannot

reorder vector operands automatically because this would be invalid if the vectors have different

lengths. An assembly program with vector operands must have the source operands in the right

order.

No instruction can have more than one memory operand.

Few instructions can have more than one immediate operand. This is rarely a limitation because

the assembler will reduce, for example, int r1 = 2 + 3 to int r1 = 5.

Instructions with three source operands cannot have a fallback that is different from the first source

operand.

Instructions with a 64-bit or double precision immediate operand cannot have option bits different

from zero unless the constant can be compressed to a smaller size. A 64-bit integer constant will

be compressed if it can be expressed as a 32-bit operand with a left shift, for example

0x12345 << 30. A double precision floating point constant will be compressed if it can be ex-

pressed exactly with a lower precision. The assembler is doing these compressions automati-

cally.

There are certain limitations to instructions that have both a memory operand and an immedi-

ate constant operand. The immediate constant cannot be 64 bits or double precision unless it
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can be compressed to a smaller size. The memory address must be limited to 16 bits if the im-

mediate constant requires 32 bits. The address of a static data object requires 32 bits if a data-

size bigger than 32000 bytes is specified on the assembler command line. Static data can be

addressed with 16 bits if datasize is smaller than 32000. In other words, the combination of a

data object in static memory and a 32-bit constant is possible only if datasize is less than 32000.

A memory operand with a complex addressing mode is not possible if there is also an immediate

constant operand.

Other restrictions apply to conditional jumps. A conditional jump cannot have an immediate operand

requiring 64 bits. A 64-bit integer constant can only be used if it can be expressed as a 32-bit

signed integer (without shift). A double precision floating point constant can only be used if it can

be expressed exactly with a lower precision.

A conditional jump cannot have both a memory operand and an immediate operand. Memory

operands cannot have complex addressing modes. Masks cannot be used.

Not all conditional jump instructions can use vector registers. The following conditional jump in-

structions can use vector registers with float or double data type: compare, and, or, xor, test_bit,

test_bits_and, test_bits_or.

3.6 Assignment of opcodes

The opcodes and formats for new instructions can be assigned according to the following rules.

• Multi-format instructions. Often-used instructions that need to support many different operand

types, addressing modes, and formats use all or most of the following formats: 0.0 - 0.9,

2.0.x, 2.1, 2.2.x, 2.3, 2.4, 2.8, 3.0.x, 3.2.x, 3.3, and 3.8. The same value of OP1 is used in

all these formats. OP2 must be 0, except in formats 2.0.5 and 2.2.5 that use OP2 for other

purposes. Instructions with few source operands should have the lowest values of OP1.

Available OP1 values is a limited resource that should be economized. Instructions for inte-

gers only and instructions for floating point only may share the same OP1 value unless the

float16 type is clashing with int16.

• Control transfer instructions, i. e. jumps, branches, calls and returns, can be coded as

short instructions with IL = 1, mode = 6 - 7, and OP1 = 0 - 63 or as double-size instruc-

tions with IL = 2, mode = 5, OP1 = 0 - 7, and optionally as triple-size instructions with IL =

3, mode = 1, OP1 = 0-7. See page 28.

• Short single-format instructions with general purpose registers. Use mode 1.0, 1.1, and

1.8, with any value of OP1. Mode 1.0 is currently unused and may be reserved for future

purposes.

• Short single-format instructions with vector registers. Use mode 1.2, 1.3, and 1.4 with any

value of OP1.

• Double-size single-format instructions with general purpose registers can use mode 2.9

with any value of OP1, and mode 2.0.x (except 2.0.5) with any value of OP1 and OP2 6= 0.

Instructions with similar categoris should use the same value of OP2. If more combinations

are needed then use IM5 for further subdivision of the code space.

• Double-size single-format instructions with vector registers can use mode 2.6 with with any

value of OP1, and mode 2.2.x (except 2.2.5) with any value of OP1 and OP2 6= 0. Instruc-

tions with similar categoris should use the same value of OP2. If more combinations are

needed then use IM5 for further subdivision of the code space.

• Double-size single-format instructions with mixed vector and general purpose registers or

with memory operands can use mode 2.5 with OP1 in the range 8-63.
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• Triple-size single-format instructions with general purpose registers can use mode 3.0.x

with with any value of OP1 and OP2 6= 0.

• Triple-size single-format instructions with vector registers can use mode 3.2.x with with any

value of OP1 and OP2 6= 0.

• Triple-size single-format instructions with mixed register types can use mode 3.1 with with

OP1 in the range 8-63.

• Possible future instructions longer than three 32-bit words should be coded with IL = 3,

mode = 4-7.

• New options or other modifications to existing instructions can use IM5 bits in template E

or mask register bits for indicating options. A disadvantage of using IM5 for options is that

compressed immediate operands cannot be compressed as IM4 << IM5.

• New addressing modes and formats may be implemented as single-format read and write

instructions. Template E formats use Mode2 for distinguishing between different formats.

Other single-format templates may be divided into groups of eight consecutive OP1 values

with the same format. New addressing modes or other formats that apply to all multi-format

instructions can use vacant values of Mode2 with E templates.

• Format 1.0 is intended for single-format instructions with three general purpose registers.

There are currently no such instructions. Therefore, format 1.0 A or B may be used for

application-specific single-size instructions or for other purposes. Note that the M bit is not

available in format 1.0 because this bit is used for distinguishing format 1.8 from 1.0. This

means that format 1.0 cannot be used for vector instructions without violating the general

coding scheme.

• Format 1.5 is vacant to use for single-format instructions with vector registers.

Application-specific instructions may preferably use E template formats with OP2 6= 0. There are

many vacant opcodes in these formats. General multi-purpose instructions may use some of the

more crowded formats.

Unused register fields may have the same value as the first source register operand in order to

avoid false dependences. Unused mask fields have the value 7 in instructions that can have

a mask. All other unused fields must be zero. The instructions with the fewest input operands

should preferably have the lowest OP1 codes.

The file forwardcom_sourcecode_documentation has a checklist of what to do when making or

modifying instructions.
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Chapter 4

Instruction lists

The ForwardCom instructions are listed in a comma-separated file instruction_list.csv. This file is

intended for use by assemblers, disassemblers, debuggers and emulators. The list is subject to

possible future changes. Please remember to keep the lists in this document and the list in the

instruction_list.cvs file synchronized.

The instruction list file has the following fields:

Table 4.1: Fields in instruction list file

Field Meaning

Name Name of instruction as used by assembler.

Category 1: single format instruction,

2: unused,

3: multi-format instruction,

4: jump instruction.

Formats See table 4.2 below.

Template Hexadecimal number:

0xA - 0xE for template A - E,

0x0 for multiple templates.
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Variant D0: No destination operand, no operand type.

D1: No destination operand, but operand type specified.

D2: Operand type ignored.

D3: Destination register used for other purpose.

F0: Can have mask register, but not fallback register.

F1: Can have fallback register without mask register.

I2: Immediate source operand is integer regardless of

specified operand type.

M0: Memory operand is destination.

On: n bits of IM5 in E template format used for options

(IM5 can be used for shift count only if it is not used for

options).

R0: Destination is a general purpose register.

R1: First source operand is a general purpose register.

R2: Second source operand is a general purpose register.

RL: RT is a general purpose register specifying vector

length.

U0: Integer operands are unsigned.

U3: Integer operands are unsigned if option bit 3 is set.

H0: Half precision floating point if OT = 1.

H5: Half precision floating point if option bit 5 is set.

X0: Source register can be a special pointer (threadp,

datap, ip).

X1: Source register is special register.

X2: Source register is capabilities register.

X3: Source register is performance monitor register.

X4: Source register is system register.

Y0-4:Destination register is one of the above.

Source

operands

Number of source operands, including register, memory

and immediate operands, but not including mask, option

bits, vector length, and index.

OP1 Operation code OP1.

OP2 Additional operation code OP2. Zero if none.

Operand

types

general

purpose

registers

Hexadecimal number indicating required and optional sup-

port for each operand type with general purpose registers.

See table 4.3 below for meaning of each bit.

Operand

types

scalar

Hexadecimal number indicating required and optional sup-

port for each operand type for scalar operations in vector

registers. See table 4.3 below for meaning of each bit.

Operand

types

vector

Hexadecimal number indicating required and optional

support for each operand type for vector operations. See

table 4.3 below for meaning of each bit.

Immediate

operand

type

Type of immediate operand for single-format instructions.

See table 4.4 below.

Descrip-

tion

Description of the instruction and comments.
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Table 4.2: Meaning of formats field in instruction list file

Category Interpretation of formats field

1. Single

format

instruction

Number with three hexadecimal digits.

The leftmost digit is the value of the IL field (0-3).

The middle digit is he value of mode field or the combined

M+mode field (0-9).

The rightmost digit is the sub-mode defined by OP2 in E

template modes or OP1 in mode 2.5.x. Zero otherwise.

For example 0x223 means format 2.2.3.

3. Multi-

format

instruction

Hexadecimal number composed of one bit for each format supported:

0x0000001 Format 0.0: three general purpose registers.

0x0000002 Format 0.1: two general purpose registers,

8-bit immediate.

0x0000004 Format 0.2: Three vector registers.

0x0000008 Format 0.3: Two vectors, 8-bit immediate.

0x0000010 Format 0.4: One vector, memory operand.

0x0000020 Format 0.5: One vector, memory operand with

negative index.

0x0000040 Format 0.6: One vector, scalar memory

operand with index.

0x0000080 Format 0.7: One vector, scalar memory

operand with 8-bit offset.

0x0000100 Format 0.8: One g. p. register, memory

operand with index.

0x0000200 Format 0.9: One g. p. register, memory

operand with 8-bit offset.

0x0001000 Format 2.8: Three g. p. registers, 32-bit imme-

diate.

0x0002000 Format 2.1: Two g. p. registers, memory with

32-bit offset.

0x0004000 Format 2.3: Three vector registers, 32-bit

immediate.

0x0008000 Format 2.4: One vector register, memory with

32-bit offset.

0x0010000 Format 2.0.0: Three g. p. reg., memory with

16-bit offset.

0x0020000 Format 2.0.1: Two g. p. reg., memory with

unscaled index.

0x0040000 Format 2.0.2: Two g. p. reg., memory with

scaled index.

0x0080000 Format 2.0.3: Two g. p. reg., memory with

index and limit.

0x0400000 Format 2.0.6: Four g. p. reg.

0x0800000 Format 2.0.7: Three g. p. registers, 16-bit

shifted immediate.

0x1000000 Format 2.2.0: Two vector reg., scalar memory

w. 16-bit offset.

0x2000000 Format 2.2.1: Two vector reg., memory with

16-bit offset.

0x4000000 Format 2.2.2: Two vector reg., memory with

negative index.

0x8000000 Format 2.2.3: Two vector reg., scalar memory

w. index and limit.
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0x40000000 Format 2.2.6: Four vector reg.

0x80000000 Format 2.2.7: Three vector registers, 16-bit

shifted immediate.

0x100000000 Format 3.8: Three g. p. registers, 64-bit imme-

diate.

0x40000

0000

Format 3.3: Three vector registers, 64-bit

immediate.

0x100000

0000

Format 3.0.0: Three g. p. reg., memory with

32-bit offset.

0x800000

0000

Format 3.0.3: Two g. p. reg., memory with

index and 32-bit limit.

0x2000000

0000

Format 3.0.5: One g. p. reg., memory with

index and 16-bit offset, 32-bit immediate.

0x8000000

0000

Format 3.0.7: Three g. p. registers, 32-bit

shifted immediate.

0x10000000

0000

Format 3.2.0: Two vector reg., scalar memory

w. 32-bit offset.

0x20000000

0000

Format 3.2.1: Two vector reg., memory with

32-bit offset.

0x80000000

0000

Format 3.2.3: Two vector reg., scalar memory

index and 32-bit limit.

0x200000000

0000

Format 3.2.5: One vector reg., memory with

16-bit offset, and 32-bit immediate.

0x800000000

0000

Format 3.2.7: Three vector registers, float or

32-bit shifted immediate.

4. Jump

instruction

Hexadecimal number composed of one bit for each format supported:

0x00001 Format 1.6.0 B: Two registers, 8 bit offset.

0x00002 Format 1.7.1 C: One register, 8 bit immediate,

8 bit offset.

0x00010 Format 2.5.0 A: Three registers, 24 bit offset.

0x00020 Format 2.5.1 B: Two registers, 16 bit immedi-

ate, 16 bit offset.

0x00040 Format 2.5.2 B: One register, memory operand

with 16 bit address, 16 bit offset.

0x00080 Format 2.5.3 B: Unused.

0x00100 Format 2.5.4 C: One register, 8 bit immediate,

32 bit offset.

0x00200 Format 2.5.5 C: One register, 32 bit immedi-

ate, 8 bit offset.

0x01000 Format 3.1.0 A: Two registers, memory

operand w 32 bit address, 24 bit offset.

0x02000 Format 3.1.1 B: Two registers, 32 bit immedi-

ate, 32 bit offset.

0x10000 Format 1.6.1 B: Memory operand with 8 bit

offset.

0x20000 Format 1.6.2 A: Reg. and memory w. scaled

index.

0x40000 Format 1.6.3 A: Three registers.

0x100000 Format 1.7.0 D: No register, 24 bit address.

0x400000 Format 1.7.3 C: One register.

0x800000 Format 1.7.4 C: 16 bit immediate.

0x1000000 Format 1.7.5 C: 16 bit fixed immediate.
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0x2000000 Format 1.7.A C: Format 1.7 with 64 bit

operand size.

0x10000000 Format 2.5.1 X: Two registers, 2x16 bit imme-

diate.

0x20000000 Format 2.5.2 X: One register, memory operand

with 32 bit offset.

0x40000000 Format 2.5.4 X: 64 bit operand size.

0x80000000 Format 2.5.5 X: Conditional trap.

0x100000000 Format 2.5.7 C: System call, 16 bit function, 32

bit module.

0x1000000

0000

Format 3.1.1 X: System call, 32 bit function, 32

bit module.

Table 4.3: Indication of operand types supported for gen-

eral purpose registers, scalars in vector registers, or vec-

tors. The value is a hexadecimal number composed of one

bit for each operand type supported

0x0001 8-bit integer supported.

0x0002 16-bit integer supported.

0x0004 32-bit integer supported.

0x0008 64-bit integer supported.

0x0010 128-bit integer supported.

0x0020 single precision floating point supported.

0x0040 double precision floating point supported.

0x0080 quadruple precision floating point supported.

0x0100 8-bit integer optionally supported.

0x0200 16-bit integer optionally supported.

0x0400 32-bit integer optionally supported.

0x0800 64-bit integer optionally supported.

0x1000 128-bit integer optionally supported.

0x2000 single precision floating point optionally supported.

0x4000 double precision floating point optionally supported.

0x8000 quadruple precision floating point optionally supported.

Table 4.4: Immediate operand type for single-format in-

structions

0 none or multi-format.

2 8-bit signed integer.

3 16-bit signed integer.

4 32-bit signed integer.

5 64-bit signed integer.

6 8-bit signed integer shifted by specified count.

7 16-bit signed integer shifted by specified count.

8 16-bit signed integer shifted by 16.

9 32-bit signed integer shifted by 32.

18 8-bit unsigned integer.

19 16-bit unsigned integer.

20 32-bit unsigned integer.

21 64-bit unsigned integer.

24 two 8-bit unsigned integers.
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25 two 8-bit and one 6-bit unsigned integers.

26 two 16-bit unsigned integers.

27 one 16-bit and one 32-bit unsigned integer.

28 two 32-bit unsigned integers.

29 one 16-bit and two 8-bit unsigned integers.

34 8-bit signed integer converted to float.

35 16-bit signed integer converted to float.

64 half precision floating point.

65 single precision floating point.

66 double precision floating point.

100 determined by operand type.

in a number prefixed by ’i’ indicates an implicit value. The

implicit immediate operand with this value does not need

to be written in the assembly code.

Jump instructions are listed on page 46. All other categories of instructions are listed in the fol-

lowing tables.

4.1 List of multi-format instructions

The following list covers general instructions that can be coded in most or all of the formats as-

signed to multi-format instructions.

Table 4.5: List of multi-format instructions

Instruction OP1 Source

ope-

rands

Description

nop 0 0 No operation. p. 95

store 1 1 Store value to memory. p. 62

move 2 1 Copy value. p. 54

prefetch 3 1 Prefetch from memory. p. 61

sign_extend 4 1 Sign-extend smaller integer to 64 bits. p. 58

sign_extend_

add

5 2 Sign-extend smaller integer to 64 bits and add 64-bit regis-

ter. p. 58

compare 6 2 Compare (float16 only. optional). p. 65

compare 7 2 Compare (all other types). p. 65.

add 8 2 src1 + src2. p. 64

sub 9 2 src1 - src2. p. 72

sub_rev 10 2 src2 - src1. p. 72

mul 11 2 src1 · src2. p. 69
mul_hi 12 2 (src1 · src2) >> OS, signed (integer only). p. 70

mul_hi_u 13 2 (src1 · src2) >> OS, unsigned (integer only). p. 70

div 14 2 src1 / src2, signed division (optional for integer vectors). p.

66

div_u 15 2 src1 / src2, unsigned integer division (optional for vectors).

p. 67

div_rev 16 2 src2 / src1, signed division (optional for integer vectors). p.

66

div_rev_u 17 2 src2 / src1, unsigned division (optional for integer vectors).

p. 67

rem 18 2 Modulo or remainder, signed (optional for integer vectors).

p. 71
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rem_u 19 2 Modulo or remainder, unsigned (optional for integer vec-

tors). p. 71

min 20 2 Minimum of two numbers. p. 68

max 21 2 Maximum of two numbers. p. 67

and 26 2 Bitwise and. src1 & src2. p. 75

or 27 2 Bitwise or. src1 | src2. p. 76

xor 28 2 Bitwise exclusive or. src1 ^ src2. p. 76

mul_2pow 32 2 src1 * 2src2. Multiply by integer power of 2. Floating point
only. p. 70

shift_left 32 2 src1 << src2. Shift left. Integer only. p. 81

rotate 33 2 Rotate left if src2 positive, right if negative. p. 81

shift_right_s 34 2 src1 >> src2. Integer shift right with sign extension. p. 82

shift_right_u 35 2 src1 >> src2. Integer shift right with zero extension. p. 82

clear_bit 36 2 Clear bit. src1 & ~ (1 << src2). p. 78

set_bit 37 2 Set bit. src1 | (1 << src2). p. 78

toggle_bit 38 2 Toggle bit. src1 ^ (1 << src2). p. 78

test_bit 39 2 Test single bit. (src1 >> src2) & 1. p. 83

test_bits_and 40 2 Test if all indicated bits are 1. (src1 & src2) == src2. p. 84

test_bits_or 41 2 Test if at least one indicated bit is 1. (src1 & src2) != 0. p.

84

add 44 2 src1 + scr2 (float16 only. optional). p. 64

sub 45 2 src1 - scr2 (float16 only. optional). p. 72

mul 46 2 src1 * scr2 (float16 only. optional). p. 69

mul_add 49 3 ± src1 · src2 ± src3 (optional). p. 69

mul_add2 50 3 ± src1 · src3 ± src2 (optional). p. 69

add_add 51 3 ± src1 ± src2 ± src3 (optional). p. 64

select_bits 52 3 src1 & src3 | src2 & ~src3 p. 83

funnel_shift 53 3 Concatenate src1 and src2 and shift right by src3. p. 82

userdef56 -

userdef62

56-62 2 Reserved for user-defined instructions. p. 95

undef 63 2 Undefined code. Generates error or trap. p. 95

4.2 List of single-format instructions

These instructions are mostly available in only one or a few formats.

Table 4.6: List of single-format instructions with general

purpose registers

Instruction Format OP1 Description

move 1.1 C 0 Move 16-bit sign-extended constant to 32-bit general

purpose register. p. 54

move 1.1 C 1 Move 16-bit sign-extended constant to 64-bit general

purpose register. p. 54

move 1.1 C 3 Move 16-bit zero-extended constant to 64-bit general

purpose register. p. 54

move 1.1 C 4 RD = IM2 << IM1. Sign-extend IM2 to 32 bits and shift

left by the unsigned value IM1. p. 54

move 1.1 C 5 RD = IM2 << IM1. Sign-extend IM2 to 64 bits and shift

left by the unsigned value IM1. p. 54

add 1.1 C 6 Add 16-bit sign-extended constant to 32-bit general

purpose register. p. 64
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mul 1.1 C 8 Multiply 32-bit general purpose register by 16-bit sign-

extended constant. p. 69

add 1.1 C 10 RD += IM2 << IM1. Sign-extend IM2 to 32 bits, shift

left by the unsigned value IM1, add to RD. p. 64

add 1.1 C 11 RD += IM2 << IM1. Sign-extend IM2 to 64 bits, shift

left by the unsigned value IM1, add to RD. p. 64

and 1.1 C 12 RD &= IM2 << IM1. Sign-extend IM2 to 32 bits, shift

left by the unsigned value IM1, AND with RD. p. 75

and 1.1 C 13 RD &= IM2 << IM1. Sign-extend IM2 to 64 bits, shift

left by the unsigned value IM1, AND with RD. p. 75

or 1.1 C 14 RD |= IM2 << IM1. Sign-extend IM2 to 32 bits, shift left

by the unsigned value IM1, OR with RD. p. 76

or 1.1 C 15 RD |= IM2 << IM1. Sign-extend IM2 to 64 bits, shift left

by the unsigned value IM1, OR with RD. p. 76

xor 1.1 C 16 RD ^= IM2 << IM1. Sign-extend IM2 to 32 bits, shift

left by the unsigned value IM1, XOR with RD. p. 76

xor 1.1 C 17 RD ^= IM2 << IM1. Sign-extend IM2 to 64 bits, shift

left by the unsigned value IM1, XOR with RD. p. 76

add 1.1 C 18 RD += (IM1,IM2) << 16. Shift 16-bit zero-extended

constant left by 16 and add to 32-bit general purpose

register. p. 64

abs 1.8 B 0 Absolute value of integer. IM1 determines handling of

overflow: 0: wrap around, 1: saturate, 2: zero. p. 63

bitscan 1.8 B 2 Bit scan forward or reverse. Find index to first or last

set bit. p. 77

roundp2 1.8 B 3 Round up or down to nearest power of 2. p. 71

popcount 1.8 B 4 Count the number of bits that are 1. p. 81

read_spec 1.8 B 32 Read special register RS into g. p. register RD. p. 99

write_spec 1.8 B 33 Write g. p. register RS to special register RD. p. 99

read_capabi-

lities

1.8 B 34 Read capabilities register RS into g. p. register RD. p.

96

write_capabi-

lities

1.8 B 35 Write g. p. register RS to capabilities register RD. p. 96

read_perf 1.8 B 36 Read performance counter. p. 98

read_perfs 1.8 B 37 Read performance counter, serializing. p. 98

read_sys 1.8 B 38 Read system register RS into g. p. register RD. p. 99

write_sys 1.8 B 39 Write g. p. register RS to system register RD. p. 99

push 1.8 B 56 Push g. p. register RS to stack with pointer RD. p. 61

pop 1.8 B 57 Pop g. p. register RS from stack with pointer RD. p. 60

input 1.8 B 62 Read RD from input port with address IM1 or RS (privi-

leged instruction). p. 95

output 1.8 B 63 Write RD to output port with address IM1 or RS (privi-

leged instruction). p. 96

truth_tab3 2.0.6 E 48.1 Boolean function of three inputs, given by a truth table.

p. 85

move_bits 2.0.7 E 0.1 Replace one or more contiguous bits at one position

of RS with contiguous bits from another position of RT.

Optional. p. 80

move 2.9 A 0 Load 32-bit constant into the high part of a general pur-

pose register. The low part is zero. RD = IM6 << 32.

p. 54
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insert_hi 2.9 A 1 Insert 32-bit constant into the high part of a general

purpose register, leaving the low part unchanged. RD =

(RT & 0xFFFFFFFF) | (IM6 << 32). p. 53

add 2.9 A 2 Add zero-extended 32-bit constant to general purpose

register. p. 64

sub 2.9 A 3 Subtract zero-extended 32-bit constant from general

purpose register. p. 72

add 2.9 A 4 Add 32-bit constant to high part of general purpose

register. RD = RT + (IM6 << 32). p. 64

and 2.9 A 5 AND high part of general purpose register with 32-bit

constant. RD = RT & (IM6 << 32). p. 75

or 2.9 A 6 OR high part of general purpose register with 32-bit

constant. RD = RT | (IM6 << 32). p. 76

xor 2.9 A 7 XOR high part of general purpose register with 32-bit

constant. RD = RT ^ (IM6 << 32). p. 76

address 2.9 A 32 RD = RS + IM6, RS can be THREADP (28), DATAP

(29) or IP (30). p. 94

Table 4.7: List of single-format instructions with vector

registers and mixed register types

Instruction Format OP1.

OP2

Description

get_len 1.2 A 0 Get length of vector register RT into general purpose

register RD. p. 52

get_num 1.2 A 1 Get length of vector register RT divided by the operand

size. p. 52

set_len 1.2 A 2 RD = vector register RS with length changed to value of

RT. p. 57

set_num 1.2 A 3 Change the length of vector register RS to RT·OS. p.
57

insert 1.2 A 4 Replace one element in vector RD, starting at offset

RT·OS, with scalar RS. p. 53
extract 1.2 A 5 Extract one element from vector RS, starting at offset

RT·OS, with size OS into scalar in vector register RD.

p. 52

broad 1.2 A 6 Broadcast first element of vector RS into all elements of

RD with length RT bytes. p. 52

compress_

sparse

1.2 A 8 Compress sparse vector elements indicated by mask

bits into contiguous vector. (optional). p. 50

ex-

pand_sparse

1.2 A 9 Expand contiguous vector into sparse vector with po-

sitions indicated by mask bits. RT = length of output

vector. (optional). p. 51

bits2bool 1.2 A 12 The lower n bits of RT are unpacked into a boolean

vector RD with length RS, with one bit in each element,

where n = RS / OS. p. 77

shift_expand 1.2 A 16 Shift vector RS up by RT bytes and extend the vector

length by RT. The lower RT bytes of RD will be zero. p.

57

shift_reduce 1.2 A 17 Shift vector RS down RT bytes and reduce the length

by RT. The lower RT bytes are lost. p. 58
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shift_up 1.2 A 18 Shift elements of vector RS up RT elements. The lower

RT elements of RD will be zero, the upper RT elements

are lost. p. 58

shift_down 1.2 A 19 Shift elements of vector RS down RT elements. The

upper RT elements of RD will be zero, the lower RT

elements are lost. p. 57

div_ex 1.2 A 24 Divide vector of double-size signed integers RS by

signed integers RT. RS has element size 2·OS. These
are divided by the even numbered elements of RT with

size OS. The truncated results are stored in the even-

numbered elements of RD. The remainders are stored

in the odd-numbered elements of RD. (Optional). p. 67

div_ex_u 1.2 A 25 Same, with unsigned integers. (Optional). p. 67

mul_ex 1.2 A 26 Multiply even-numbered signed integer vector elements

to double size result. p. 70

mul_ex_u 1.2 A 27 Multiply even-numbered unsigned integer vector ele-

ments to double size result. p. 70

sqrt 1.2 A 28 Square root (floating point, optional). p. 72

add_ss 1.2 A 32 Add integer vectors, signed with saturation (optional).

p. 73

add_us 1.2 A 33 Add integer vectors, unsigned with saturation (optional).

p. 73

sub_ss 1.2 A 34 Subtract integer vectors, signed with saturation (op-

tional). p. 75

sub_us 1.2 A 35 Subtract integer vectors, unsigned with saturation (op-

tional). p. 73

mul_ss 1.2 A 36 Multiply integer vectors, signed with saturation (op-

tional). p. 74

mul_us 1.2 A 37 Multiply integer vectors, unsigned with saturation (op-

tional). p. 74

add_oc 1.2 A 38 add with overflow check (optional). p. 73

sub_oc 1.2 A 39 subtract with overflow check (optional). p. 75

mul_oc 1.2 A 40 multiply with overflow check (optional). p. 74

div_oc 1.2 A 41 divide with overflow check (optional). p. 74

add_c 1.2 A 42 Add with carry. Vector has two elements. The upper

element is used as carry on input and output (optional).

p. 73

sub_b 1.2 A 43 Subtract with borrow. Vector has two elements. The

upper element is used as borrow on input and output

(optional). p. 75

read_spev 1.2 A 56 read special vector register. Length RT. p. 99

read_call_

stack

1.2 A 58 read internal call stack. RD = vector register destina-

tion of length RS, RT-RS = internal address (privileged

instruction). p. 97

write_call_

stack

1.2 A 59 write internal call stack. RD = vector register source

of length RS, RT-RS = internal address (privileged

instruction). p. 97

read_mem-

ory_ map

1.2 A 60 read memory map. RD = vector register destination

of length RS, RT-RS = internal address (privileged

instruction). p. 97

write_mem-

ory_ map

1.2 A 61 write memory map. RD = vector register source of

length RS, RT-RS = internal address (privileged instruc-

tion). p. 97
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input 1.2 A 62 read from input port. RD = vector register, RT = port

address, RS = vector length (privileged instruction). p.

95

output 1.2 A 63 write to output port. RD = vector register source

operand, RT = port address, RS = vector length (privi-

leged instruction). p. 96

gp2vec 1.3 B 0 Move value of general purpose register RS to scalar in

vector register RD. p. 53

vec2gp 1.3 B 1 Move value of first element of vector register RS to

general purpose register RD. p. 59

make_sequen-

ce

1.3 B 3 Make a vector with RS sequential numbers. First value

is IM1. p. 80

insert 1.3 B 4 Replace one element in vector RD, starting at offset

IM1·OS, with first element in RS. p. 53
extract 1.3 B 5 Extract one element from vector RS, starting at offset

IM1·OS into a scalar in vector register RD. p. 52

compress 1.3 B 6 Compress vector to half the length and half the ele-

ment size. Double precision → single precision, 64-bit

integer → 32-bit integer, etc. p. 49

expand 1.3 B 7 Expand vector to the double length and the double el-

ement size. Half precision → single precision, 32-bit

integer → 64-bit integer, etc. p. 51

float2int 1.3 B 12 Conversion of floating point to integer with the same

operand size. The rounding mode is specified in IM1.

p. 52

int2float 1.3 B 13 Conversion of integer to floating point with same

operand size. p. 53

round 1.3 B 14 Round floating point to integer in floating point repre-

sentation. The rounding mode is specified in IM1. p.

71

round2n 1.3 B 15 Round to nearest multiple of 2n.
RD = 2n· round(2−n· RS). n is a signed integer constant

in IM1 (optional). p. 72

abs 1.3 B 16 Absolute value of integer. p. 63

fp_category 1.3 B 17 Check if floating point numbers belong to the categories

indicated by constant. p. 79

broad 1.3 B 18 Broadcast 8-bit constant into all elements of RD with

length RS (31 in RS field gives scalar output). p. 49

broadcast_

max

1.3 B 19 Broadcast 8-bit constant into all elements of RD with

maximum vector length. p. 49

byte_reverse 1.3 B 20 Reverse the order of bytes in each element of vector. p.

77

bit_reverse 1.3 B 20 Reverse the order of bits in each element of vector

(optional). p. 77

bitscan 1.3 B 21 Bit scan forward or reverse. Find index to lowest set bit.

p. 77

popcount 1.3 B 22 Count the number of bits that are 1 (optional for vec-

tors). p. 81

bool2bits 1.3 B 25 A boolean vector with n elements is packed into the

lower n bits of RD, taking bit 0 of each element. The

length of RD is at least sufficient to contain n bits. p. 78

bool_reduce 1.3 B 26 Reduce a boolean vector to the AND, NAND, OR, NOR

combination of all elements. p. 77
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fp_category_

reduce

1.3 B 27 Test whether a floating point vector contains any el-

ements belonging to specified categories, such as

infinity, zero, normal positive, etc. p. 79

push 1.3 B 56 Push vector register RS to stack with pointer RD. p. 61

pop 1.3 B 57 Pop vector register RS from stack with pointer RD. p.

60

clear 1.3 B 58 Clear vector register RS. p. 59

move 1.4 C 0 Move 16 bit integer constant to 16-bit scalar (optional).

p. 54

add 1.4 C 1 Add broadcasted 16 bit constant to 16-bit vector ele-

ments (optional). p. 64

and 1.4 C 2 AND broadcasted 16 bit constant with 16-bit vector

elements (optional). p. 75

or 1.4 C 3 OR broadcasted 16 bit constant with 16-bit vector ele-

ments (optional). p. 76

xor 1.4 C 4 XOR broadcasted 16 bit constant with 16-bit vector

elements (optional). p. 76

move 1.4 C 8 RD = IM2 << IM1. Sign-extend IM2 to 32 bits and shift

left by the unsigned value IM1 to make 32 bit scalar

(optional). p. 54

move 1.4 C 9 RD = IM2 << IM1. Sign-extend IM2 to 64 bits and shift

left by the unsigned value IM1 to make 64 bit scalar

(optional). p. 54

add 1.4 C 10 RD += IM2 << IM1. Add broadcast shifted signed

constant to 32-bit vector elements (optional). p. 64

add 1.4 C 11 RD += IM2 << IM1. Add broadcast shifted signed

constant to 64-bit vector elements (optional). p. 64

and 1.4 C 12 RD &= IM2 << IM1. AND broadcast shifted signed

constant with 32-bit vector elements (optional). p. 75

and 1.4 C 13 RD &= IM2 << IM1. AND broadcast shifted signed

constant with 64-bit vector elements (optional). p. 75

or 1.4 C 14 RD |= IM2 << IM1. OR broadcast shifted signed con-

stant with 32-bit vector elements (optional). p. 76

or 1.4 C 15 RD |= IM2 << IM1. OR broadcast shifted signed con-

stant with 64-bit vector elements (optional). p. 76

xor 1.4 C 16 RD ^= IM2 << IM1. XOR broadcast shifted signed

constant with 32-bit vector elements (optional). p. 76

xor 1.4 C 17 RD ^= IM2 << IM1. XOR broadcast shifted signed

constant with 64-bit vector elements (optional). p. 76

move 1.4 C 32 Move converted float16 constant to single precision

scalar (optional). p. 54

move 1.4 C 33 Move converted float16 constant to double precision

scalar (optional). p. 54

add 1.4 C 34 Add broadcast float16 constant to single precision

vector (optional). p. 64

add 1.4 C 35 Add broadcast float16 constant to double precision

vector (optional). p. 64

mul 1.4 C 36 Multiply broadcast half precision floating point constant

with single precision vector (optional). p. 69

mul 1.4 C 37 Multiply broadcast half precision floating point constant

with double precision vector (optional). p. 69

add 1.4 C 40 add constant to float16 vector (optional). p. 64

mul 1.4 C 41 multiply float16 vector with constant (optional). p. 69
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concatenate 2.2.6 E 0.1 A vector RU of length RT and a vector RS of length RT

are concatenated into a vector RD of length 2·RT. p. 51
permute 2.2.6 E 1.1 The vector elements of RU are permuted within each

block of size RT bytes, using indices in RS. Each in-

dex is relative to the beginning of a block. An index out

of range produces zero. The maximum block size is

implementation dependent.

interleave 2.2.6 E 2.1 Interleave elements of vectors RU and RS of length

RT/2 to produce vector RD of length RT. Even-

numbered elements of the destination come from RU

and odd-numbered elements from RS. (optional). p. 55

truth_tab3 2.2.6 E 48.1 Boolean function of three inputs, given by a truth table.

p. 85

move_bits 2.2.7 E 0.1 Replace one or more contiguous bits at one position

of RS with contiguous bits from another position of RT.

Optional. p. 80

mask_length 2.2.7 E 1.1 Make mask with true in the first RT bytes. Option bits in

IM4. p. 80

repeat_block 2.2.7 E 8.1 Repeat a block of data to make a longer vector. RS

is input vector containing data block to repeat. IM4 is

length in bytes of the block to repeat (must be a mul-

tiple of 4). RT is the length of destination vector RD.

(optional). p. 56

repeat_within

_blocks

2.2.7 E 9.1 Broadcast the first element of each block of data in a

vector to the entire block. RS is input vector containing

data blocks. IM4 is length in bytes of each block (must

be a multiple of the operand size). RT is length of des-

tination vector RD. The operand size must be at least 4

bytes. (optional). p. 56

load_hi 2.6 A 0 Make vector of two elements. dest[0] = 0, dest[1] =

IM6. p. 54

insert_hi 2.6 A 1 Make vector of two elements. dest[0] = src1[0], dest[1]

= IM6. p. 53

make_mask 2.6 A 2 Make vector where bit 0 of each element comes from

bits in IM6, the remaining bits come from RT. p. 80

replace 2.6 A 3 Replace elements in RT by constant IM6. p. 80

replace_even 2.6 A 4 Replace even-numbered elements in RT by constant

IM6. p. 56

replace_odd 2.6 A 5 Replace odd-numbered elements in RT by constant

IM6. p. 57

broad 2.6 A 6 Broadcast 32-bit or float32 constant into all elements of

RD with length RT (31 in RT field gives scalar output).

p. 49

permute 2.6 A 8 The vector elements of RS are permuted within each

block of size RT bytes. The 4·n bits of IM6 are used as
index with 4 bits for each element in blocks of size n.

The same pattern is used in each block. The number of

elements in each block, n = RT / OS ≤ 8. p. 55

replace 3.1 A 32 Replace elements in RT by constant IM6-7. p. 56

broad 3.1 A 33 Broadcast 64-bit or float64 constant into all elements of

RD with length RT (31 in RT field gives scalar output).

p. 49
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Table 4.8: List of single-format instructions with memory

operands.

Instruction Format OP1,

OP2

Description

store 2.5 B 8 Store 32-bit constant IM6 to memory operand [RS+IM1]

(optional). p. 62

fence 2.5 B 16 Memory fence at address [RS+IM6]. read, write or full

indicated by IM1. p. 60

com-

pare_swap

2.5 B 18 Atomic compare and exchange with address [RS+IM6].

Optional. p. 94

read_insert 2.5 A 32 Replace one element in vector RD, starting at offset

RT·OS, with scalar memory operand [RS+IM6] (op-
tional). p. 55

extract_store 2.5 A 40 Extract one element from vector RD, starting at offset

RT·OS, with size OS into memory operand [RS+IM6]

(optional). p. 59

4.3 List of control transfer instructions

Table 4.9: Condition codes for control transfer instructions

with integer operands in general purpose registers

OPJ bit 0

of OPJ

Instruction Comment

0-7 part of

offset

jump. Unconditional jump with

24-bit offset

Format 1.7 D. Bit 0-2 of OPJ

are part of offset. p. 92

8-15 part of

offset

call. Unconditional call with 24-bit

offset

Format 1.7 D. Bit 0-2 of OPJ

are part of offset. p. 92

0-1 invert sub/jump_zero,

sub/jump_nzero

Not format 1.7. Not floating

point. p. 87

2-3 invert sub/jump_neg,

sub/jump_nneg

Not format 1.7. Not floating

point. p. 87

4-5 invert sub/jump_pos,

sub/jump_npos

Not format 1.7. Not floating

point. p. 87

6-7 invert sub/jump_overfl,

sub/jump_noverfl

Not format 1.7. Not floating

point. p. 88

8-9 invert sub/jump_borrow,

sub/jump_nborrow

Not format 1.7. Not floating

point. p. 88

10-11 invert and/jump_zero

and/jump_nzero

Not format 1.7. p. 88

12-13 invert or/jump_zero

or/jump_nzero

Not format 1.7. p. 89

14-15 invert xor/jump_zero,

xor/jump_nzero

Not format 1.7. p. 89

16-17 invert add/jump_zero,

add/jump_nzero

Not floating point. p. 86

18-19 invert add/jump_neg,

add/jump_nneg

Not floating point. p. 86

20-21 invert add/jump_pos,

add/jump_npos

Not floating point. p. 86
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22-23 invert add/jump_overfl,

add/jump_noverfl

Not floating point. p. 86

24-25 invert add/jump_carry,

add/jump_ncarry

Not floating point. p. 86

26-27 invert test_bit/jump_true,

test_bit/jump_false

p. 89

28-29 invert test_bits_and/jump_true,

test_bits_and/jump_false

p. 89

30-31 invert test_bits_or/jump_true,

test_bits_or/jump_false

p. 90

32-33 invert compare/jump_equal,

compare/jump_nequal

p. 90

34-35 invert compare/jump_sbelow,

compare/jump_saboveeq

p. 90

36-37 invert compare/jump_sabove,

compare/jump_sbeloweq

p. 90

38-39 invert compare/jump_ubelow,

compare/jump_uaboveeq

p. 90

40-41 invert compare/jump_uabove,

compare/jump_ubeloweq

p. 90

42-47 invert Reserved for future use.

48-49 invert increment_compare/jump_below,

/jump_aboveeq

p. 87

50-51 invert increment_compare/jump_above,

/jump_beloweq

p. 87

52-53 invert sub_maxlen/jump_pos,

sub_maxlen/jump_npos

p. 88

54-57 Reserved for future use.

58-59 0 jump

1 call

Indirect jump or call with memory

operand.

Format 1.6 B and 2.5.2. p. 92

58-59 0 jump

1 call

Unconditional direct jump or call 2.5.4, and 3.1.1. p. 92

60-61 0 jump_

relative

1 call_

relative

Jump or call with relative address

in memory, table index, and arbi-

trary reference point

Format 1.6 A and 2.5.2. p. 93

60-61 0 jump

1 call

Indirect jump or call to value of

register

Format 1.7 C. p. 92

62 0 return Format 1.6 C. p. 93

62 0 sys_return Format 1.7 C. p. 100

63 1 sys_call. ID in register Format 1.6 A. p. 100

63 1 sys_call. ID in constants Format 2.5.7 and 3.1.1. p. 100

63 1 trap or filler Format 1.7 C. p. 100

63 1 Conditional traps Format 2.5.5. p. 101

Table 4.10: Condition codes for control transfer instructions

with floating point operands in vector registers

OPJ bit 0

of OPJ

Instruction Comment

32-33 invert compare/jump_equal,

compare/jump_nequal

false if unordered. p.

91
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0-1 invert compare/jump_equal_uo,

compare/jump_nequal_uo

true if unordered. p. 91

34-35 invert compare/jump_below,

compare/jump_aboveeq

false if unordered. p.

91

2-3 invert compare/jump_below_uo,

compare/jump_aboveeq_uo

true if unordered. p. 91

36-37 invert compare/jump_above,

compare/jump_beloweq

false if unordered. p.

91

4-5 invert compare/jump_above_uo,

compare/jump_beloweq_uo

true if unordered. p. 91

38-39 invert compare/jump_abs_below,

compare/jump_abs_aboveeq

false if unordered. p.

91

6-7 invert compare/jump_abs_below_uo,

compare/jump_abs_aboveeq_uo

true if unordered. p. 91

40-41 invert compare/jump_abs_above,

compare/jump_abs_beloweq

false if unordered. p.

91

8-9 invert compare/jump_abs_above_uo,

compare/jump_abs_beloweq_uo

true if unordered. p. 91

24-25 invert fp_category/jump_true,

fp_category/jump_false

p. 91

The following instructions treat floating point operands as integers in vector registers:

10-11 invert and/jump_zero

and/jump_nzero

p. 88

12-13 invert or/jump_zero

or/jump_nzero

p. 89

14-15 invert xor/jump_zero,

xor/jump_nzero

p. 89

26-27 invert test_bit/jump_true,

test_bit/jump_false

p. 89

28-29 invert test_bits_and/jump_true,

test_bits_and/jump_false

p. 89

30-31 invert test_bits_or/jump_true,

test_bits_or/jump_false

p. 90

See page 85 for detailed descriptions of control transfer instructions.
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Chapter 5

Description of instructions

5.1 Data move and conversion instructions

broad

format opcode operands

1.2 A 6 vector and g.p. register

1.3 B 18 g.p. register, and 8-bit signed constant

2.6 6 g.p. register, and 32-bit signed or float constant

3.1 33 g.p. register, and 64-bit signed or double constant

float v0 = broad(v1, r2)

float v0 = broad(r2, 2.5)

Broadcast a constant or the first element of a source vector into all elements of the destination

vector with the length in bytes indicated by a general purpose register.

This instruction can have a mask but not a fallback register. The fallback value is zero.

(This instruction is not called broadcast because that is a reserved keyword).

broadcast_max

format opcode operands

1.3 B 19 vector and 8-bit signed constant

float v0 = broadcast_max(1)

Broadcast a small constant to all elements of a vector with maximum length.

compress

format opcode operands

1.3 B 6 vectors

double v0 = compress(v1, 0)

All the elements of a vector are converted to half the element size. The length of the output vec-

tor will be half the length of the input vector. The OT field specifies the operand type of the input

vector. Double precision floating point numbers are converted to single precision. Integer ele-

ments are converted to half the size. Support for the following conversions are optional: single

precision float to half precision, quadruple precision to double precision, 8-bit integer to 4-bit.

Overflow options and rounding mode are specified in IM1 as follows:
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IM1 bits meaning

bit 0-2 Floating point exception control:

000 = exceptions are controlled by NUMCONTR. See page 106

001 = overflow generates NAN code

010 = underflow generates NAN code

011 = overflow and underflow generate NAN code

100 = underflow and inexact generate NAN code

101 = overflow, underflow, and inexact generate NAN code

111 = no conditions generate NAN code

bit 0-2 Integer overflow control:

000 = integer overflow wraps around

100 = signed integer overflow gives zero

101 = signed integer overflow gives signed saturation

110 = unsigned integer overflow gives zero

111 = unsigned integer overflow gives unsigned saturation

bit 3-5 Floating point rounding mode:

000 = rounding mode determined by NUMCONTR

001 = odd if not exact

100 = nearest, with ties to even

101 = down

110 = up

111 = towards zero

The rounding mode ”odd if not exact” works in the following way: Truncate the superfluous man-

tissa bits. If the result is not exact then set the least significant bit to 1. This rounding mode is

needed to avoid double rounding errors when rounding in multiple steps. Use odd rounding mode

except in the last step. For example, to convert from double precision to half precision, use the

odd rounding mode in the first step from double to single precision, then use ”nearest or even” in

the last step from single to half precision.

Overflow in integer conversion can be detected by doing the conversion twice, using an ”over-

flow gives zero” option and the corresponding saturation option. Overflow has occurred if the two

results are different.

NANs are converted by preserving the least significant bits of the payload and the quiet bit. This

differs from most other microprocessors, which preserve the most significant bits of binary float-

ing point NAN payloads.

compress_sparse

format opcode operands

1.2 A 8 vectors. Optional

int32 v0 = compress_sparse(v1), mask = v2

Compress sparse vector elements indicated by mask bits into contiguous vector.

The algorithm of this instruction is: Start with a zero-length destination vector. For each element

in the mask vector that is true, take an element from the corresponding position in the source

vector and append it to the destination vector. The length of the destination vector will be the

number of true mask elements times the element size.

This instruction cannot have a fallback register.
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concatenate

format opcode operands

2.2.6 0.1 vectors

float v0 = concatenate(v1, v2, r3)

A vector v1 of length r3 bytes and a vector v2 of length r3 bytes are concatenated into a result

vector of length 2·r3, with v2 in the high end.

This instruction cannot have a mask.

expand

format opcode operands

1.3 B 7 vectors

float v0 = expand(v1, 0)

This is the opposite of compress. The length of the output vector is double the length of the input

vector if the maximum vector length is not exceeded.

The OT field specifies the operand type of the output vector. Single precision floating point num-

bers are converted to double precision. Integers are converted to the double size by sign-extension

or zero-extension. Support for the following conversions are optional: half precision float to sin-

gle precision, double precision to quadruple precision, 4-bit integer to 8-bit.

Options are specified in IM1:

IM1 bits meaning

bit 0-1 integer options:

00 = sign extension

10 = zero extension

expand_sparse

format opcode operands

1.2 A 9 vectors. Optional

int32 v0 = expand_sparse(v1, r2), mask = v3

This is the opposite of compress_sparse.

Expand a contiguous vector into a sparse vector with positions indicated by mask bits.

The second operand is a general purpose register indicating the length in bytes of the output

vector.

The algorithm of this instruction is:

Set an index i1 to position zero in the source vector.

Let another index i2 loop through the elements of the mask vector. For each i2 do:

if mask[i2] then

destination[i2] = source[i1]; increment i1

else

destination[i2] = 0

end for

The length of the destination vector will be the number of true mask elements times the element

size. This instruction cannot have a fallback register.
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extract

format opcode operands

1.2 A 5 vectors

1.3 B 5 vectors

float v0 = extract(v1, r2)

float v0 = extract(v1, 5)

Extract one element from the source vector at the given position and broadcast it into all ele-

ments of vector register RD with same length and operand size as the source vector. The index

can be a constant or a general purpose register. This index indicates which vector element to

extract. The size of the vector elements must match the operand type.

An index out of range will produce zero. An operand size of 128 bits can be used, even if this

size is not otherwise supported. This instruction cannot have a mask.

float2int

format opcode operands

1.3 B 12 vectors

int32 v0 = float2int(v1, 0)

Conversion of floating point values to integers with the same operand size.

float16 is converted to int16. float32 is converted to int32. float64 is converted to int64.

The bits in IM1 specify rounding mode and error control, according to the following table:

IM1 bit Meaning

0-2 overflow control:

000 = integer overflow wraps around

100 = signed integer overflow gives zero

101 = signed integer overflow gives signed saturation

110 = unsigned integer overflow gives zero

111 = unsigned integer overflow gives unsigned saturation

3-4 rounding mode:

00 = nearest, with ties to even

01 = down

10 = up

11 = truncate towards zero

5 0: NAN gives 0. 1: NAN gives MIN_INT

To check for overflow: Compare the results for overflow gives zero and overflow gives saturation.

To check if the result is exact: Compare the results for round down and round up.

get_len

format opcode operands

1.2 A 0 vectors

Get length in bytes of vector register RT into general purpose register RD.

This instruction cannot have a mask.

get_num

format opcode operands

1.2 A 1 vectors
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Get the number of elements in vector register RT into general purpose register RD. This is equal

to the length divided by the operand size. The result is a 64-bit integer.

This instruction cannot have a mask.

gp2vec

format opcode operands

1.3 B 0 g.p register in, vector register out

int64 v0 = gp2vec(r1)

Move integer value of general purpose register RS to scalar in vector register RD.

insert

format opcode operands

1.2 A 4 vectors

1.3 B 4 vectors

float v0 = insert(v0, v1, r2)

float v0 = insert(v0, v1, 5)

Replace one element in the first vector with the first element of the second vector. The index to

the position of replacement can be a constant or a general purpose register. This index indicates

which vector element to replace. The size of the vector elements must match the operand type.

The destination register must be the same as the first source operand.

An index out of range will leave the vector unchanged. An operand size of 128 bits can be used,

even if this size is not otherwise supported.

This instruction cannot have a mask.

insert_hi

format opcode operands

2.9 1 general purpose register, 32-bit immediate constant

2.6 1 vector register, 32-bit immediate constant

int64 r0 = insert_hi(r1, 2)

float v0 = insert_hi(v1, 2.1)

Insert 32-bit constant into the high part of a general purpose register, leaving the low part un-

changed.

dest = (src1 & 0xFFFFFFFF) | (IM6 << 32).

Make a vector of two elements. A constant is inserted into the second element, leaving the first

element unchanged.

dest[0] = src1[0], dest[1] = IM6.

int2float

format opcode operands

1.3 B 13 vectors

int64 v0 = int2float(v1, 0)

Conversion of signed or unsigned integers to floating point numbers with same operand size.

int16 is converted to float16. int32 is converted to float32. int64 is converted to float64.
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Options are coded in IM1:

IM1

bit number

Meaning

0 The integer is unsigned

2 Inexact result gives NAN. See page 106.

interleave

format opcode operands

2.2.6 2.1 vectors. Optional

float v0 = interleave(v1, v2, r3)

Interleave the inputs from two vectors, v1 and v2, so that the even-numbered elements come

from v1 and the odd-numbered elements come from v2. The length in bytes of the destination

vector is indicated by a general purpose register, r3. The length of each input vector is half the

indicated value.

This instruction can have a mask but not a fallback register. The fallback value is zero.

load_hi

format opcode operands

2.5 0 vector. 32 bit immediate constant

float v0 = load_hi(1.2)

Make vector of two elements. dest[0] = 0, dest[1] = IM6.

move

format opcode operands

multi 2 all types

1.1 C 0 32-bit register = 16-bit sign-extended constant

1.1 C 1 64-bit register = 16-bit sign-extended constant

1.1 C 3 64-bit register = 16-bit zero-extended constant

1.1 C 4 32-bit register = 8-bit sign-extended constant with left shift

1.1 C 5 64-bit register = 8-bit sign-extended constant with left shift

1.4 C 0 vector register 16-bit scalar = 16-bit constant. Optional

1.4 C 8 vector register 32-bit scalar = 8-bit sign extended constant

with left shift. Optional

1.4 C 9 vector register 64-bit scalar = 8-bit sign extended constant

with left shift. Optional

1.4 C 32 vector register single precision scalar = float16 immediate

constant. Optional

1.4 C 33 vector register double precision scalar = float16 immediate

constant. Optional

Copy A value from a register, memory operand or immediate constant to a register. If the des-

tination is a vector register and the source is an immediate constant then the result will be a

scalar. The value will not be broadcast because there is no other input operand that specifies

the vector length. If a vector is desired then use the broadcast instruction instead.

The move instruction with an immediate operand is the preferred method for setting a register to

zero.
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permute

format opcode operands

2.2.6 1.1 vectors

2.6 8 vectors and 32 bit immediate constant

float v0 = permute(v1, v2, r3)

float v0 = permute(v1, r3, 5)

This instruction permutes the elements of a vector v1. The vector is divided into blocks of size r3

bytes each. The block size must be a power of 2 and a multiple of the operand size. Elements

can be moved arbitrarily between positions within each block, but not between blocks. Each ele-

ment of the output vector is a copy of an element in the input vector, selected by the correspond-

ing index in an index vector v2 or a constant. The indexes are relative to the start of the block

they belong to, so that an index of zero will select the first element in the block of the input vec-

tor and insert it in the corresponding position of the output vector. The same element in the input

vector can be copied to multiple elements in the output vector. An index out of range will produce

a zero. The indexes are interpreted as integers regardless of the operand type.

The permute instruction has two versions. The first version specifies the indexes in a vector with

the same length and element size as the input vector.

The second version specifies the indexes as a 32-bit immediate constant with 4 bits per element.

This constant is split into a maximum of 8 elements with 4 bits in each, where the least signifi-

cant four bits is index for the first element in the block. If the blocks have more than 8 elements

each then the sequence of 8 elements is repeated to fill a block. The same pattern of indexes

will be applied to all blocks in the second version of the permute instruction.

The maximum block size for the permute instruction is implementation-dependent and given by a

special register. The reason for this limitation of block size is that the complexity of the hardware

grows quadratically with the block size. A full permutation is possible if the vector length does not

exceed the maximum block size. A trap is generated if r3 is bigger than the maximum block size.

The outputs of multiple permute instructions can be combined by using indexes out of range to

produce zeroes for unused outputs and then combine the outputs of multiple permutes by bitwise

OR. The fallback value is zero if a mask is used.

Permute instructions are essential for a vector processor because it is often necessary to rear-

range data to facilitate the vector processing. These instructions are useful for reordering data,

for transposing a matrix, etc.

Permute instructions can also be used for parallel table lookup when the block size is big enough

to contain the entire table.

Finally, permute instructions can be used for gathering and scattering data within an area not

bigger than the vector length or the block size.

read_insert

format opcode operands

2.5 A 32 vectors. Optional

int32 v0 = read_insert(v0, r1, [r2+0x8, scalar])

Replace one element in vector RD, starting at offset RT·OS, with scalar memory operand [RS+IM6].
(OS = operand size).
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repeat_block

format opcode operands

2.2.7 8.1 vectors. Optional

float v0 = repeat_block(v1, r2, 8)

Repeat a block of data to make a longer vector. This is the same as broadcast, but with a larger

block of data. v1 is an input vector containing a data block to repeat. A constant (IM4) is the

length in bytes of the block to repeat. This must be a multiple of 4. r2 is the length in bytes of

the result vector. This instruction is useful for matrix multiplication.

This instruction cannot have a mask.

repeat_within_blocks

format opcode operands

2.2.7 9.1 vectors. Optional

float v0 = repeat_within_blocks(v1, r2, 8)

This divides a vector into blocks and broadcasts the first element of each block to the rest of the

block. The block size is given by a constant (IM4). This must be a multiple of the operand size,

and at least 4 bytes. There may be a maximum limit to the block size. r2 is the length in bytes of

the resulst vector. This instruction is useful for matrix multiplication.

For example, if the input vector contains (0,1,2,3,4,5,6,7,8) and the block size is 3 times the

operand size, then the result will be (0,0,0,3,3,3,6,6,6).

This instruction cannot have a mask.

replace

format opcode operands

2.6 3 vectors and 32-bit immediate constant

3.1 32 vectors and 64-bit immediate constant. Optional

int32 v0 = replace(v1, 1), mask=v2, fallback=v3

double v0 = replace(v1, 2.3)

All elements of src1 are replaced by the integer or floating point constant src2.

When used without a mask, the constant is simply broadcast to make a vector of the same length

as src1. This is useful for broadcasting a constant to all elements of a vector. Only the length of

src1 (in bytes) is used, not its contents, when this instruction is used without a mask.

When used with a mask, the elements of src1 are selectively replaced. Elements that are not

selected by the mask will be taken from a fallback register.

replace_even

format opcode operands

2.6 4 vectors and 32-bit immediate constant

Same as replace. Only even-numbered vector elements are replaced.
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replace_odd

format opcode operands

2.6 5 vectors and 32-bit immediate constant

Same as replace. Only odd-numbered vector elements are replaced.

set_len

format opcode operands

1.2 2 vectors

v1 = set_len(v2, r3)

Sets the length of a vector register to the number of bytes specified by a general purpose regis-

ter. If the specified length is more than the maximum length for the specified operand type then

the maximum length will be used.

If the output vector is longer than the input vector then the extra elements will be zero. If the out-

put vector is shorter than the input vector then the extra elements will be discarded.

This instruction cannot have a mask.

set_num

format opcode operands

1.2 3 vectors

v1 = set_num(v2, r3)

The length of a vector register is changed to the value of general purpose register. The length is

indicated as number of elements. If the length is increased then the extra elements will be zero.

If the length is decreased then the superfluous elements are lost.

This instruction differs from set_len by multiplying the length by the operand size. This instruction

cannot have a mask.

shift_down

format opcode operands

1.2 19 vectors

int32 v0 = shift_down(v1, r2)

Shift elements of a vector down by the number of elements (n) indicated by general purpose reg-

ister. The upper n elements of the result will be zero, the lower n elements are lost. The length of

the vector is not changed.

This instruction differs from shift_reduce by indicating the shift count as a number of elements

rather than a number of bytes, and by not changing the length of the vector.

This instruction cannot have a mask.

shift_expand

format opcode operands

1.2 16 vectors

int32 v0 = shift_expand(v1, r2)
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The length of a vector is expanded by the specified number of bytes by adding zero-bytes at the

low end and shifting all bytes up. If the resulting length is more than the maximum vector length

for the specified operand type then the upper bytes are lost.

This instruction cannot have a mask.

shift_reduce

format opcode operands

1.2 17 vectors

int32 v0 = shift_reduce(v1, r2)

The length of a vector is reduced by the specified number of bytes by removing bytes at the low

end and shifting all bytes down. If the resulting length is less than zero then the result will be a

zero-length vector. The specified operand type is ignored.

This instruction cannot have a mask.

shift_up

format opcode operands

1.2 18 vectors

int32 v0 = shift_up(v1, r2)

Shift elements of a vector up by the number of elements (n) indicated by general purpose reg-

ister. The lower n elements of RD will be zero, the upper n elements are lost. The length of the

vector is not changed.

This instruction differs from shift_expand by indicating the shift count as a number of elements

rather than a number of bytes, and by not changing the length of the vector.

This instruction cannot have a mask.

sign_extend

format opcode operands

multi 4 general purpose registers and integer scalar

int8 r0 = sign_extend(r1) // result is 64 bits

int16 v0 = sign_extend(v1) // lower 16 bits of each 64-bit element is extended to 64 bits

int32 v0 = sign_extend([r1, scalar]) // memory operand is 32 bits, result is 64 bits scalar

Sign-extend smaller integer to 64 bits.

The input can be an 8-bit, 16-bit, or 32-bit integer. This integer is sign-extended to produce a 64-

bit output. Floating point types cannot be used.

If the input is a vector then only the first element in each 64-bit block of the input vector is used.

To convert all elements, use the expand instruction instead (page 51).

sign_extend_add

format opcode operands

multi 5 general purpose registers

int8 r0 = sign_extend_add(r1, r2)

int32 r0 = sign_extend_add(r1, [r2]), options = 2
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src2 is an integer of the specified size, often a memory operand. This integer is sign-extended

to produce a 64-bit integer. The sign-extended value is optionally shifted left by a value of 1 .. 3,

specified in the options. The result is added to the 64-bit integer in src1 and the result is stored

in the 64-bit destination register.

This instruction is useful for converting relative pointers to absolute pointers, where the reference

point is in src1. The relative pointer may be scaled by a factor of 1, 2, 4, or 8, corresponding to a

shift count or 0, 1, 2, or 3, respectively. Support for larger scale factors is optional.

This instruction does not sign-extend when the operand size is 64 bits, but it can still add and

shift 64-bit integers.

This instruction will not generate traps in case of signed or unsigned overflow.

vec2gp

format opcode operands

1.3 B 1 vector register in, g.p. register out

int64 r0 = vec2gp(v1)

Copy value of first element of vector register RS to general purpose register RD. Integers are

sign-extended. Single precision floating point values are zero-extended.

5.2 Data read and write instructions

address

format opcode operands

2.9 A 32 general purpose register

int64 r1 = address([mydata])

Gives the address of a data object in static memory.

The value must be shifted two places to the right if used as the target for a jump or call instruc-

tion, because code addresses are based on 32-bit words rather than bytes.

clear

format opcode operands

1.3 B 58 vector. Optional

clear(v5) // clear one vector register

clear(v5, 8) // clear vector registers v5 - v8

Clear one or more vector registers by setting the length to zero. A cleared register is regarded as

unused.

It may be advantageous to clear vector registers after use. This will mean that there is less data

to save during a task switch.

extract_store

format opcode operands

2.5 A 40 vector. Optional

int32 [r3+8, scalar] = extract_store(v1, r2)
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Extract one element from vector RD, starting at offset RT·OS, with size OS into memory operand

[RS+IM6].

(OS = operand size).

fence

format opcode operands

2.5 B 16 memory operand and immediate. Optional

int32 fence([r1], 2)

Memory fence at address [RS+IM6].

Options indicated by IM1:

IM1 value meaning

1 read fence

2 write fence

3 read and write fence

move

The move instruction, described at page 54 can read a register from a memory operand.

pop

format opcode operands

1.8 B 57 general purpose registers. Optional

1.3 B 57 vector registers. Optional

// pop 64-bit register r5 off the general stack:
pop(r5)
// pop 32-bit registers r2-r6 from stack pointed to by r1:
int32 pop(r1, r2, 6)
// read 16-bit registers r2-r6 from FIFO buffer pointed to by r1:
int16 pop(r1, r2, 6+0x40)
// pop vector registers v0-v31 off the general stack:
pop(v0, 31)

The pop instruction can pop one or more registers from a stack. It is possible to have multiple

data stacks. The pop instruction can restore values saved by the push instruction described on

page 61.

An optional first register indicates a stack pointer. The default stack pointer (SP) is used if not

specified. An optional last operand is an index of the last register to pop. Note that the last reg-

ister is specified as an integer, not a register name. The syntax for the POP instruction has no

equal sign.

The operand size indicates the size of each stack space for general purpose registers. The stack

pointer is incremented by the specified size for each general purpose register popped. Allowed

operand sizes are int8, int16, int32, and int64. The default size is 64 bits. The stack pointer is

incremented by 8 bytes when int64 is specified, even if the processor supports only int32. The

operand size indicates the stack granularity and alignment for vector registers.

FILO MODE (First In Last Out)
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The stack is growing backwards by default. If registers r1, r2, r3 have been stored by the push

instruction while decrementing the stack pointer, then they can be restored in the reverse order

(r3, r2, r1) while incrementing the stack pointer. The register with the highest index is read from

the lowest address. The stack pointer is incremented by the amount that was occupied by each

register. The size occupied by a vector register depends on how much of the vector register is

actually used, i.e. the length. The precise length occupied by a vector register is implementation-

dependent.

FIFO MODE (First In First Out)

The pop instruction always increments the pointer by the specified register size after each read.

If the values have been stored in FIFO mode then it is convenient to restore the registers in the

forward order (e.g. r1, r2, r3, ...) rather than the reverse order. It is possible to read the regis-

ters in the forward order by adding 0x40 to the last operand. This may be used as a read-and-

increment-pointer instruction.

Vector registers

Vector registers are stored in an implementation-dependent way by the push instruction. The

stored image includes information about the actual vector length. See the description of the push

instruction on page 61 for more details. Vector registers stored with the push instruction can be

restored by the pop instruction.

Error conditions

An error occurs if the last register has a lower index than the first register.

An error also occurs if the pointer register itself is popped.

Alignment errors may occur if different register sizes are mixed on the same stack.

It is not possible to interrupt the pop operation until it is finished. Any external interrupt will be

postponed until all registers have been popped and the stack pointer has been updated.

prefetch

format opcode operands

multi 3 memory operand. Optional

Prefetch memory operand into cache for later read or write. Different variants (not yet defined)

can be specified by option bits in IM5 for formats with E template.

push

format opcode operands

1.8 B 56 general purpose register. Optional

1.3 B 56 vector register. Optional

// push 64-bit register r5 on the general stack:
push(r5)
// push 32-bit registers r2-r6 on stack pointed to by r1:
int32 push(r1, r2, 6)
// store 16-bit registers r2-r6 in forward order to buffer r1:
int16 push(r1, r2, 6+0x80)
// push vector registers v0-v31 on the general stack:
push(v0, 31)

The push instruction can push the values of one or more registers on a stack. It is possible to

have multiple data stacks. The values can be restored by the pop instruction described on page

60.
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An optional first register indicates a stack pointer. The default stack pointer (SP) is used if not

specified. An optional last operand is an index of the last register to push. Note that the last reg-

ister is specified as an integer, not a register name. The syntax for the PUSH instruction has no

equal sign.

The operand size indicates the size of each stack space for general purpose registers. The stack

pointer is decremented (or incremented) by the specified size for each general purpose register

pushed. Allowed operand sizes are int8, int16, int32, and int64. The default size is 64 bits. The

stack pointer is adjusted by 8 bytes when int64 is specified, even if the processor supports only

int32. The operand size indicates the stack granularity and alignment for vector registers.

FILO MODE (First In Last Out)

The stack is growing backwards by default. The stack pointer is decremented by the specified

register size before storing each register. The last register is stored at the lowest address. The

size occupied by a vector register depends on how much of the vector register is actually used,

i.e. the length. The precise length occupied by a vector register is implementation-dependent.

FIFO MODE (First In First Out)

It is possible to make a forward-growing buffer for general purpose registers by adding 0x80 to

the last operand. This may be used as a store-and-increment-pointer instruction. The pointer is

incremented by the specified size after each store.

Vector registers

Vector registers are stored in an implementation-dependent way by the push instruction. The

stored image includes information about the actual vector length. The microprocessor may com-

press the data or it may insert extra space for optimal alignment of memory access. The pro-

grammer should make no assumption about how the vector elements are stored. A pushed vec-

tor register can only be restored by a pop instruction on the same or an identical microprocessor

that pushed it. If the memory image is moved before restoring, it must be moved by a multiple

of the maximum vector lenth. The maximum amount of memory occupied by a pushed vector

register is 8 bytes plus the maximum vector length. An empty vector register occupies at most 8

bytes.

Error conditions

An error occurs if the last register has a lower index than the first register.

An error also occurs if the pointer register itself is pushed.

Alignment errors may occur if different register sizes are mixed on the same stack.

It is not possible to interrupt the push operation until it is finished. Any external interrupt will be

postponed until all registers have been pushed and the stack pointer has been updated.

store

format opcode operands

multi 1 memory operand and g.p. or vector register

2.5 B 8 memory operand and 32-bit constant

int32 [r0+r1*4] = r2

float [r0, length = r1] = v2

float [r0 + 0x10] = 2.5

Write the value of a register or constant to a memory operand.

The size of the memory operand is determined by the operand size OS when a scalar memory

operand is specified, or by the vector length register in RS when a vector operand is specified.

An immediate constant cannot be bigger than 32 bits. A 64 bit integer constant can only be used

if it fits into a 32-bit signed integer. A float64 constant can only be used if it can be represented
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as single precision without loss of precision.

The hardware must be able to handle memory operand sizes that are not powers of 2 without

touching additional memory (read and rewrite beyond the memory operand is not allowed un-

less access from other threads is blocked during the operation and any access violation is sup-

pressed). It is allowed for the hardware to write the operand in a piecemeal fashion.

Masked operation with a mask of zero will leave the corresponding memory element untouched.

An explicit fallback value cannot be specified.

5.3 General arithmetic instructions

abs

format opcode operands

1.8 B 0 g.p. registers

1.3 B 16 vector registers

int32 r0 = abs(r1, 1)

Absolute value of signed number.

Signed integers can overflow when the input is the minimum value. The handling of overflow for

signed integers is controlled by the constant IM1 as follows:

IM1 result when input is INT_MIN

0 INT_MIN (wrap around)

1 INT_MAX (saturation)

2 zero
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add

format opcode operands

multi 8 all standard types

multi 44 float16. Optional

1.1 C 6 32-bit register and 16-bit sign-extended constant

1.1 C 10 32-bit register and 8-bit sign-extended constant shifted left

by another constant.

1.1 C 11 64-bit register and 8-bit sign-extended constant shifted left

by another constant.

1.1 C 18 32-bit register and 16-bit zero-extended constant shifted

left by 16

2.9 2 g.p. register and 32-bit zero-extended constant

2.9 4 g.p. register and 32-bit constant shifted left by 32

1.4 C 1 vector of 16-bit integer elements and broadcast 16 bit

integer constant. Optional

1.4 C 10 vector of 32-bit integer elements and broadcast 8-bit

sign-extended constant shifted left by another constant.

Optional

1.4 C 11 vector of 64-bit integer elements and broadcast 8-bit

sign-extended constant shifted left by another constant.

Optional

1.4 C 34 single precision floating point vector and broadcast float16

constant. Optional

1.4 C 35 double precision floating point vector and broadcast

float16 constant. Optional

1.4 C 40 float16 vector and broadcast float16 constant. Optional

int32 r0 = r1 + r2

int32 r0 = r1 + 2

int32+ r0 += 4

int32+ r0++

float v0 = v1 + [r2 + 8, length = r5]

Addition.

If you want to add a 64-bit constant to a general purpose register, and triple size instructions are

not supported, then add the lower half first using the zero-extended version, and then add the

upper half using the shifted version.

add_add

format opcode operands

multi 51 all types. Optional

This gives two additions in one instruction:

dest = ± src1 ± src2 ± src3

For optimal precision with floating point operands, the intermediate sum of the two numerically

largest operands should preferably be calculated first with extended precision.

The signs of the operands can be inverted as indicated by the following option bits:

Table 5.3: Control bits for add_add
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Option

bits

Meaning

bit 0 change sign of src1

bit 1 change sign of src2

bit 2 change sign of src3

There is no sign change if there are no option bits.

This instruction may be supported for integer operands or floating point or both.

compare

format opcode operands

multi 6 float16

multi 7 all other types

Examples:

int8 r0 = r1 > r2

uint8 r0 = r1 > r2

float v0 = v1 <= 2.3

int32 r0 = compare(r1, 2), mask=r3, fallback=r4, options=0b1001

The compare instruction compares two source operands and generates a boolean scalar or vec-

tor where bit 0 indicates the result. This instruction can do different compare operations depend-

ing on option bits 0-4 defined according to the following table:

Table 5.4: Condition codes for compare instruction

Bit

3-2-1-0

Meaning for integer Meaning for floating point

_ 0 0 0 a = b a = b

_ 0 0 1 a 6= b a 6= b

_ 0 1 0 a < b a < b

_ 0 1 1 a ≥ b a ≥ b

_ 1 0 0 a > b a > b

_ 1 0 1 a ≤ b a ≤ b

_ 1 1 0 abs(a) < abs(b)

_ 1 1 1 abs(a) ≥ abs(b)

0 _ _ _ compare as signed unordered gives 0

1 _ _ _ compare as unsigned unordered gives 1

Option bit 3 indicates how to threat floating point NAN inputs. A compare operation is considered

unordered if at least one floating point input operand is NAN. The translation of high level lan-

guage operators to ordered and unordered compare operations are listed on page 91.

The result is indicated in bit 0 of the destination register. It is 1 for true and 0 for false. The re-

maining bits are copied from a mask register, or zero if there is no mask register. The number of

mask bits available depends on the hardware implementation (typically 16 or 32).

The condition code is zero (indicating compare for equal) if there are no option bits.

A fallback register can be used as operand for an extra boolean operation, with or without a mask.

Only bit 0 of the fallback register is used. This option is controlled by option bits 4-5:

65



Table 5.5: Alternative use of fallback register

bit 5 bit 4 Output with mask Output without mask

0 0 mask ? result : fallback result

0 1 mask && result && fallback result && fallback

1 0 mask && (result || fallback) result || fallback
1 1 mask && (result ^ fallback) result ^ fallback

div

format opcode operands

multi 14 all types. Optional for integer vectors

int32 r0 = r1 / r2

int32 r0 = div(r1, r2), options = 3

float v0 = v1 / [r2, length = r5]

Signed division.

This instruction has multiple rounding modes. The rounding mode for integer operands is con-

trolled by option bits (IM5) as follows:

Table 5.6: division instructions

Option bits

0-1

Meaning

0 0 Truncate towards zero (default)

0 1 Down

1 0 Up

1 1 Nearest, with ties to even

other values Reserved for future use

Truncation is used with integer operands if there are no option bits.

The rounding mode for floating point operands is controlled by the mask or numeric control regis-

ter. Option bits must be zero for floating point operands.

Division of floating point operands by zero gives ±INF (or NAN if exceptions are enabled).

Division of integer values by zero gives the maximum or minimum possible value, i.e. INT_MAX

or INT_MIN, according to the sign of the dividend. Overflow occurs by division of INT_MIN by -1.

The result will wrap around to give INT_MIN.

Float16 operands can be used if option bit 5 is set and operand type is 1 (optional).

div_rev

format opcode operands

multi 16 all types. Optional for integer vectors

int32 r0 = 10 / r2

int32 v0 = div_rev(v1, v2), options = 4

Same as div, with the two source operands swapped.

The rounding mode is controlled in the same way as for the div instruction.
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div_rev_u

format opcode operands

multi 17 all integer types. Optional for integer vectors

uint32 r0 = 10 / r2

uint32 v0 = div_rev(v1, v2), options = 4

Unsigned integer division. Same as div_u, with the two source operands swapped.

The rounding mode is controlled in the same way as for the div instruction, see page 66

div_u

format opcode operands

multi 15 all integer types. Optional for integer vectors

uint32 r0 = r1 / r2

uint32 v0 = div_u(v1, v2), options=4

Unsigned integer division.

The rounding mode is controlled in the same way as for the div instruction, see page 66

Division by zero gives the maximum possible value, i.e. UINT_MAX.

div_ex

format opcode operands

1.2 A 24 Integer vectors. Optional for more than one element

Divide vector of double-size signed integers RS by signed integers RT. RS has element size

2·OS. These are divided by the even numbered elements of RT with size OS. The truncated re-
sults are stored in the even-numbered elements of RD. The remainders are stored in the odd-

numbered elements of RD. (OS = operand size).

div_ex_u

format opcode operands

1.2 A 25 Integer vectors. Optional for more than one element

Divide vector of double-size unsigned integers RS by unsigned integers RT. RS has element size

2·OS. These are divided by the even numbered elements of RT with size OS. The truncated re-
sults are stored in the even-numbered elements of RD. The remainders are stored in the odd-

numbered elements of RD. (OS = operand size).

max

format opcode operands

multi 21 all types

int32 r0 = max(r1, r2)

float v0 = max(v1, v2), options = 2

Get the highest of two numbers.

Table 5.7: Option bits for max
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Option

bits

Integer operands floating point operands

bit 0 0: NANs propagate

1: get src2 if src1 is NAN

bit 1 max(abs(src1), abs(src2))

bit 3 unsigned

bit 5 float16 (optional)

Floating point NAN values are propagated if option bit 0 is 0 (in accordance with the 2019 revi-

sion of the IEEE-754 floating point standard). Setting option bit 0 to one makes the instruction

equivalent to the high-level language code: max(src1,src2) = src1 > src2 ? src1 : src2. This is

useful when compiling high-level language code. The instruction will give src2 if src1 is NAN in

this case.

Option bit 1 gives the maximum of absolute values for floating point operands.

Integer operands are treated as signed if option bit 3 is 0, or unsigned if option bit 3 is 1.

Float16 operands can be used with option bit 5 set and operand type = 1.

min

format opcode operands

multi 20 all types

int32 r0 = min(r1, r2)

float v0 = min(v1, v2), options = 4

Get the smallest of two numbers.

Table 5.8: Option bits for min

Option

bits

Integer operands floating point operands

bit 0 0: NANs propagate

1: get src2 if src1 is NAN

bit 1 min(abs(src1), abs(src2))

bit 2 return zero if either operand

is negative

return zero if either operand

is negative

bit 3 unsigned

bit 5 float16 (optional)

Floating point NAN values are propagated if option bit 0 is 0 (in accordance with the 2019 revi-

sion of the IEEE-754 floating point standard). Setting option bit 0 to one makes the instruction

equivalent to the high-level language code: min(src1,src2) = src1 < src2 ? src1 : src2. This is

useful when compiling high-level language code. The instruction will give src2 if src1 is NAN in

this case.

Option bit 1 gives the minimum of absolute values for floating point operands.

Option bit 2 sets a lower limit of 0. This will clamp src1 to the interval from 0 to src2.

Integer operands are treated as signed if option bit 3 is 0, or unsigned if option bit 3 is 1.

Float16 operands can be used with option bit 5 set and operand type = 1.
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mul

format opcode operands

multi 11 all standard types

multi 46 float16. Optional

1.1 C 8 general purpose register and 16-bit sign-extended integer

constant

1.4 C 36 single precision floating point vector and broadcast float16

constant. Optional

1.4 C 37 double precision floating point vector and broadcast

float16 constant. Optional

1.4 C 41 half precision floating point vector and broadcast float16

constant. Optional

int32 r0 = r1 * r2

float v0 *= 5.0

Multiplication.

The same instruction can be used for signed and unsigned integers.

mul_add, mul_add2

format opcode operands

multi 49 mul_add: dest = ± src1 · src2 ± src3. All types. Optional

multi 50 mul_add2: dest = ± src1 · src3 ± src2. All types. Optional

Fused multiply and add.

The fused multiply-and-add instruction can often improve the performance of floating point code

significantly. The intermediate product is calculated with extended precision according to the

IEEE 754-2008 standard.

The signs of the operands can be inverted as indicated by the following option bits

Table 5.9: Control bits for mul_add and mul_add2

Option

bits

Meaning

bit 0 change sign of product in even-numbered

vector elements

bit 1 change sign of product in odd-numbered

vector elements

bit 2 change sign of addend in even-numbered

vector elements

bit 3 change sign of addend in odd-numbered

vector elements

bit 5 float16 operands (optional).

These option bits make it possible to do multiply-and-add, multiply-and-subtract, multiply-and-

reverse-subtract, etc. It can also do multiply with alternating add and subtract, which is useful in

calculations with complex numbers. There is no sign change if there are no option bits.

Support for integer operands is optional. Support for floating point operands is optional but de-

sired.
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mul_ex

format opcode operands

1.2 A 26 integer vectors

int32 v0 = mul_ex(v1, v2)

Extended multiply, signed.

Multiply even-numbered signed integer vector elements to double size result. The result extends

into the next odd-numbered vector element.

mul_ex_u

format opcode operands

1.2 A 27 integer vectors

uint32 v0 = mul_ex_u(v1, v2)

Extended multiply, unsigned.

Multiply even-numbered unsigned integer vector elements to double size result. The result ex-

tends into the next odd-numbered vector element.

mul_hi

format opcode operands

multi 12 integer vectors

int32 r0 = mul_hi(r1, r2)

int32 v0 = mul_hi(v1, 2)

High part of signed integer product.

dest = (src1 · src2) >> OS

where OS is the operand size in bits.

A 32-bit operand size is used if 64 bits is specified on a hardware that has only 32-bit registers.

mul_hi_u

format opcode operands

multi 13 integer vectors

uint32 r0 = mul_hi_u(r1, r2)

High part of unsigned integer product.

dest = (src1 · src2) >> OS

where OS is the operand size in bits.

A 32-bit operand size is used if 64 bits is specified on a hardware that has only 32-bit registers.

mul_2pow

format opcode operands

multi 32 all floating point types

Multiply by power of 2.

dest = src1 * 2src2
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src1 and dest are floating point vectors, while src2 is interpreted as a signed integer vector with

the same element size as src1 and dest.

Overflow will produce infinity. The instruction produces zero rather than a subnormal number in

case of underflow, regardless of control bits in the mask or numeric control register.

speed has priority here. This instruction will typically take a single clock cycle, while floating point

multiplication by a power of 2 takes multiple clock cycles. This is useful for fast multiplication or

division by a power of 2.

This instruction has the same op1 code as shift_left, but applies to floating point types only.

rem

format opcode operands

multi 18 g.p. registers. Optional for vectors

int32 r0 = r1 % r2

For integer operands, the rem instruction gives the remainder of integer division (according to

the C++11 standard). This is defined as rem(a,b) = a - a / b * b.

This implies that rem(a,0) = a, and that rem(a,b) is negative only if a is negative.

The operation for floating point operands is not defined yet.

rem_u

format opcode operands

multi 19 g.p. registers. Optional for vectors

uint32 r0 = r1 % r2

Unsigned remainder.

An integer a modulo zero gives a.

round

format opcode operands

1.3 B 14 floating point vectors

float v0 = round(v1, 0)

Round floating point number to integer in floating point representation.

The rounding mode is specified in bit 0-1 of IM1. See table 3.3 page 27.

roundp2

format opcode operands

1.8 B 3 g.p. registers

int64 r0 = roundp2(r1, 1)

Round unsigned integer up or down to the nearest power of 2.

Options:
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IM1 bits meaning

bit 0 0: Round down to power or 2:

dest = 1 « bitscan_reverse(src1).

1: Round up to power or 2:

dest = ((src1 & (src1-1)) == 0) ? src1 : 1 « (bitscan_reverse(src1) + 1)

bit 4 0: returns 0 if the input is 0.

1: returns -1 if the input is 0.

bit 5 0: returns 0 if the result overflows.

1: returns -1 if the result overflows.

round2n

format opcode operands

1.3 B 15 vector registers. Optional

float v0 = round2n(v1, -4)

Round to nearest multiple of 2n.
dest = 2n· round(2−n· src1)
n is a signed integer constant in IM1.

sqrt

format opcode operands

1.2 A 28 floating point vectors. Optional

Square root.

Float16 operands can be used if operand type is 1 (optional).

sub

format opcode operands

multi 9 all standard types

multi 45 float16. Optional

2.9 3 g.p. register and 32-bit zero-extended constant

int32 r0 = r1 - r2

int32 r0 = r1 - 2

int32+ r0 -= 4

int32+ r0–

float v0 = v1 - [r2 + 8, length = r5]

Subtraction.

sub_rev

format opcode operands

multi 10 all types

int32 r0 = 1 - r2

int32 v0 = - v2 + v1

float v0 = -v1 + [r2 + 8, length = r5]

Reverse subtraction.

dest = src2 - src1.
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5.4 Arithmetic instructions with carry, overflow check, or satura-

tion

These instructions do not generate traps on overflow because they provide alternative ways of

handling overflow.

abs

see page 63.

add_c

format opcode operands

1.2 A 42 integer vectors with two elements. Optional

Addition with carry.

The vector has two elements. The upper element of src1 is used as carry in. The upper element

of dest is used as carry out. Only the lower element of src2 is used.

Longer vectors are not supported. See page 177 for an alternative for longer vectors.

add_oc

format opcode operands

1.2 A 38 vector registers. Optional

Integer addition with overflow check.

Instructions with overflow check use the even-numbered vector elements for arithmetic instruc-

tions. Each following odd-numbered vector element is used for overflow detection.

Overflow conditions are indicated with the following bits:

bit 0. Unsigned integer overflow (carry or borrow).

bit 1. Signed integer overflow.

The values are propagated so that the overflow result of the operation is OR’ed with the corre-

sponding values of both input operands.

add_ss

format opcode operands

1.2 A 32 integer vectors. Optional

Add signed integers with saturation.

Overflow and underflow produces INT_MAX and INT_MIN.

add_us

format opcode operands

1.2 A 33 integer vectors. Optional

Add unsigned integers with saturation.

Overflow produces UINT_MAX.
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compress_ss

format opcode operands

1.2 A 5 integer vectors. Optional

Compress, signed with saturation.

Same as compress (see page 49). Integers are treated as signed and compressed with satura-

tion. Floating point operands cannot be used. Masks cannot be used and overflow traps cannot

be enabled for this instruction.

compress_us

format opcode operands

1.2 A 6 integer vectors. Optional

Compress, unsigned with saturation.

Same as compress (see page 49). Integers are treated as unsigned and compressed with satu-

ration. Floating point operands cannot be used. Masks cannot be used and overflow traps can-

not be enabled for this instruction.

div_oc

format opcode operands

1.2 A 41 vector registers. Optional

Divide signed integers with overflow check.

See add_oc for options.

mul_oc

format opcode operands

1.2 A 40 vector registers. Optional

Multiply integers with overflow check.

See add_oc for options.

mul_ss

format opcode operands

1.2 A 36 integer vectors. Optional

Multiply signed integers with saturation.

Overflow and underflow produces INT_MAX and INT_MIN.

mul_us

format opcode operands

1.2 A 37 integer vectors. Optional

Multiply unsigned integers with saturation.

Overflow produces UINT_MAX.
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sub_b

format opcode operands

1.2 A 43 integer vectors with two elements. Optional

Subtraction with borrow.

The vector has two elements. The upper element of src1 is used as borrow in. The upper ele-

ment of dest is used as borrow out. Only the lower element of src2 is used.

Longer vectors are not supported. See page 177 for an alternative for longer vectors.

sub_oc

format opcode operands

1.2 A 39 vector registers. Optional

Subtract integers with overflow check.

See add_oc for options.

sub_ss

format opcode operands

1.2 A 34 integer vectors. Optional

Subtract signed integers with saturation.

Overflow and underflow produces INT_MAX and INT_MIN.

sub_us

format opcode operands

1.2 A 35 integer vectors. Optional

Subtract unsigned integers with saturation.

Overflow and underflow produces UINT_MAX and 0.

5.5 Logic and bit manipulation instructions

and

format opcode operands

multi 26 all types

1.1 C 12 32-bit register and 8-bit signed constant shifted left by

another constant

1.1 C 13 64-bit register and 8-bit signed constant shifted left by

another constant

2.9 5 g.p. register and 32-bit constant shifted left by 32

1.4 C 2 vector of 16-bit integers, and broadcast 16-bit constant.

Optional

1.4 C 12 vector of 32-bit integers, and broadcast sign-extended

8-bit constant shifted left by another constant. Optional

1.4 C 13 vector of 64-bit integers, and broadcast sign-extended

8-bit constant shifted left by another constant. Optional

int32 r0 = r1 & r2

int32 v0 = v1 & 2
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Bitwise boolean and.

Floating point operands are treated as integers.

Do not use a floating point type with a constant operand unless you want the operand to be inter-

preted as floating point.

or

format op-

code

operands

multi 27 all types

1.1 C 14 32-bit register and 8-bit signed constant shifted left by another

constant

1.1 C 15 64-bit register and 8-bit signed constant shifted left by another

constant

2.9 6 g.p. register and 32-bit constant shifted left by 32

1.4 C 3 vector of 16-bit integers, and broadcast 16-bit constant. Optional

1.4 C 14 vector of 32-bit integers, and broadcast sign-extended 8-bit

constant shifted left by another constant. Optional

1.4 C 15 vector of 64-bit integers, and broadcast sign-extended 8-bit

constant shifted left by another constant. Optional

int32 r0 = r1 | r2
int32 v0 = v1 | 2

Bitwise boolean or.

Floating point operands are treated as integers.

Do not use a floating point type with a constant operand unless you want the operand to be inter-

preted as floating point.

xor

format op-

code

operands

multi 28 all types

1.1 C 16 32-bit register and 8-bit signed constant shifted left by another

constant

1.1 C 17 64-bit register and 8-bit signed constant shifted left by another

constant

2.9 7 g.p. register and 32-bit constant shifted left by 32

1.4 C 4 vector of 16-bit integers, and broadcast 16-bit constant. Optional

1.4 C 16 vector of 32-bit integers, and broadcast sign-extended 8-bit

constant shifted left by another constant. Optional

1.4 C 17 vector of 64-bit integers, and broadcast sign-extended 8-bit

constant shifted left by another constant. Optional

int32 r0 = r1 ^ r2

int32 v0 = v1 ^ 2

Bitwise boolean exclusive or.

Floating point operands are treated as integers.

Do not use a floating point type with a constant operand unless you want the operand to be inter-

preted as floating point.
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bit_reverse byte_reverse

format opcode operands

1.3 B 20 vectors

int32 v0 = byte_reverse(v1, 0)

int32 v0 = bit_reverse(v1, 1)

IM1 = 0: Reverse the order of bytes within each vector element. This is useful for converting big-

endian file data.

IM1 = 1: Reverse the order of bits in each element of a vector.

bits2bool

format opcode operands

1.2 A 12 integer vectors

int32 v0 = bits2bool(r1, v2)

Expand contiguous bits in a vector register to a boolean vector with each bit of the source go-

ing into bit 0 of each element of the destination. The remaining bits of each element are copied

from the first element of the mask or the numeric control register. The number of mask or NUM-

CONTR bits available is implementation dependent.

The length in bytes of the result vector is specified by a general purpose register in RS.

This instruction cannot have a fallback register.

bitscan

format opcode operands

1.8 B 2 general purpose registers

1.3 B 21 integer vectors. Optional

int32 r0 = bitscan(r1, 0)

int64 v0 = bitscan(v1, 1)

Bit scan forward or reverse. Option bits are given in the second operand:

IM1 bits meaning

bit 0 0: forward scan. Find index to the lowest set bit.

1: reverse scan. Find index to the highest set bit.

bit 4 0: returns 0 if the input is 0.

1: returns -1 if the input is 0.

bool_reduce

format opcode operands

1.3 B 26 integer vectors

int32 v0 = bool_reduce(v1, 2)

A boolean vector is reduced by combining bit 0 of all elements.

The boolean function is determined by the immediate operand as follows:

Table 5.10: Control byte for bool_reduce

Immediate

operand

Boolean function
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0 AND. Output is true if all elements are true

1 NAND. Output is true if at least one element

is false

2 OR. Output is true if at least one element is

true

3 NOR. Output is true if all elements are false

The output is a vector with one element. The element size is the same as for the input operand.

Bit 0 contains the boolean result. The other bits will be zero. This instruction cannot have a mask.

bool2bits

format opcode operands

1.3 B 25 integer vectors

int64 v0 = bool2bits(v1)

A boolean vector with n elements is packed into the lower n bits of RD, taking bit 0 of each ele-

ment. The length of RD will be at least sufficient to contain n bits.

This instruction cannot have a mask.

clear_bit

format opcode operands

multi 36 all types

Clear bit number src2 in src1.

dest = src1 & ~(1 << src2).

Floating point operands are treated as integers.

set_bit

format opcode operands

multi 37 all integer types

Set bit number src2 in src1 to one.

dest = src1 | (1 << src2)

toggle_bit

format opcode operands

multi 38 all types

Change the value of bit number src2 in src1 to its opposite.

dest = src1 ^ (1 << src2)

compare

See page 65
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fp_category

format opcode operands

1.3 B 17 floating point vectors

float v0 = fp_category(v1, 0x30)

The input is a floating point vector. The output is a boolean vector where bit 0 of each element

indicates if the input vector belongs to any of the categories indicated by the bits in the immedi-

ate operand IM1. Any floating point value will belong to one, and only one, of these categories.

Table 5.11: Control bits for fp_category

Bit number Category

0 ± NAN

1 ± Zero

2 − Subnormal

3 + Subnormal

4 − Normal

5 + Normal

6 − Infinite

7 + Infinite

The remaining bits of the output are taken from the numeric control register. The number of NUM-

CONTR bits available is implementation dependent. This instruction cannot have a mask.

Float16 operands can be used with operand type = 1.

fp_category_reduce

format opcode operands

1.3 B 27 floating point vectors

float v0 = fp_category_reduce(v1, 0xC1)

A floating point vector is analyzed and each element is classified as belonging to one of the eight

categories listed below. The output is true if at least one vector element belongs to any of the

categories indicated by the bits in the immediate operand.

For example, category_reduce(v1, 0xC1) will give true if at least one element of the vector is not

a finite value.

Bit number Category

0 at least one element is NAN

1 at least one element is ± zero

2 at least one element is negative subnormal

3 at least one element is positive subnormal

4 at least one element is negative normal

5 at least one element is positive normal

6 at least one element is negative infinity

7 at least one element is positive infinity

The output is a boolean vector with one element. The element size is the same as for the in-

put operand. Bit 0 contains the result. The other bits will be zero. This instruction cannot have

a mask.

Float16 operands can be used with operand type = 1.
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make_mask

format opcode operands

2.6 2 integer vectors

int32 v0 = make_mask(v1, 2), mask=v3

Make a mask from the bits of the 32-bit integer constant src2. Each bit of the constant goes into

bit 0 of one element of the output. The remaining bits of each element are taken from a mask

register, or from NUMCONTR if there is no mask. The number of mask or NUMCONTR bits

available is implementation dependent. The length of the output is the same as the length of

src1. If there are more than 32 elements in the vector then the bit pattern of src2 is repeated.

make_sequence

format opcode operands

1.3 B 3 all vectors

int32 v0 = make_sequence(r1, 2)

Makes a vector of sequential numbers. The number of elements is indicated by a general pur-

pose register. The first element is equal to the immediate operand IM1, the next element is IM1+1,

etc. IM1 must be an integer in the range -128 →127.

mask_length

format opcode operands

2.2.7 1.1 integer vectors

int64 v0 = mask_length(v1, r2, 0), options=2

Make a boolean vector to mask the first n bytes of a vector, where n is the value of a general

purposer register r2.

The result vector will have the same length as the input vector v1. r2 indicates the length of the

part that is enabled by the mask.

The following option bits can be specified:

bit 0 = 0: bit 0 will be 1 in the first n bytes in the output and 0 in the rest.

bit 0 = 1: bit 0 will be 0 in the first n bytes in the output and 1 in the rest.

bit 1 = 1: copy remaining bits from input vector v1 into each vector element.

bit 2 = 1: copy remaining bits from the numeric control register.

bit 4 = 1: broadcast remaining bits from a constant (IM4) into all 32-bit words of the result.

Bit 1-7 of IM4 go to bit 1-7 of the result.

Bit 8-11 of IM4 go to bit 20-23 of the result.

Bit 12-15 of IM4 go to bit 26-29 of the result.

Output bits that are not set by any of these options will be zero. If multiple options are specified,

the results will be OR’ed.

This instruction can have a mask but not a fallback register. The fallback value is zero.

move_bits

format opcode operands

2.0.7 0.1 general purpose registers. Optional

2.2.7 0.1 integer vectors. Optional

int16 r0 = move_bits(r1, r2, 3, 4, 5)
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int32 v0 = move_bits(v1, v2, 3, 4, 5)

Extract, insert, or move bit fields.

Takes one or more contiguous bits from position src4 in the second source operand (src2) and

insert them into position src3 in the first source operand (src1). The remaining bits of src1 are

unchanged.

The third source operand (src3) is the bit position in src2 to take bits from.

The fourth source operand (src4) is the bit position to insert the bits in.

The fifth source operand (src5) is the number of bits to move.

The first two source operands must be registers, the remaining operands must be constants.

Definition:

m = (1 << src5) - 1

b = src2 >> src3

dest = (src1 & ~(m<<src4)) | (b & m) << src4

Examples:

int16 r1 = 0x1234

int16 r2 = 0xABCD

// extract 4 bits from r2, starting from position 8, and insert into position 0 of r1:

int16 r0 = move_bits(r1, r2, 8, 0, 4) // = 0x123B

// insert 8 bits from position 0 of r2 into position 4 of r1:

int16 r0 = move_bits(r1, r2, 0, 4, 8) // = 0x1CD4

// move 4 bits from position 8 in r2 into the same position of r1:

int16 r0 = move_bits(r1, r2, 8, 8, 4) // = 0x1B34

popcount

format opcode operands

1.8 B 4 general purpose registers. Optional

1.3 B 22 integer vectors. Optional

int32 r0 = popcount(r1)

int32 v0 = popcount(v1)

The popcount instruction counts the number of 1-bits in an integer. It can also be used for parity

generation.

rotate

format opcode operands

multi 33 all integer types

dest = rotate(src1, src2)

Rotate the bits of src1 left if src2 is positive, or right if src2 is negative.

shift_left

format opcode operands

multi 32 all integer types

Shift integer left.

dest = src1 << src2

The result is zero if src2 is outside the range 0 ≤ src2 < number_of_bits.
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This instruction has the same op1 code as mul_2pow, but applies to integer operand types only.

shift_right_s

format opcode operands

multi 34 all integer types

Shift integer right with sign extension (arithmetic shift).

int32 dest = src1 >> src2

The result is 0 or -1 if src2 is outside the range 0 ≤ src2 < number_of_bits.

shift_right_u

format opcode operands

multi 35 all integer types

Shift integer right with zero extension (logical shift).

uint32 dest = src1 >> src2

The result is zero if src2 is outside the range 0 ≤ src2 < number_of_bits.

funnel_shift

format opcode operands

multi 53 all integer types

int64 r1 = funnel_shift(r2, r3, r4)

int64 v1 = funnel_shift(v2, v3, r4)

This instruction concatenates two bit fields and shifts this to the right. This is useful for dealing

with unaligned bit fields or unaligned vectors.

dest = src1 >> src3 | src2 << (operand_size - src3)

For general purpose registers: Operand 1 (low) and operand 2 (high), with n bits each, are con-

catenated into a bit field with 2n bits. This bit field is shifted right by the number of bits indicated

by the third operand. The lower n bits of the result are returned. The result is zero if src3 is out-

side the range 0 ≤ src3 < n.

For vector registers: This instruction is shifting whole vectors rather than vector fields when the

operands are vector registers. The shift count is counting vector elements rather than bits. Vec-

tor operand 1 (low) with n elements and vector operand 2 (high), with n elements or less, are

concatenated into a larger vector with at most 2n elements. This concatenated vector is shifted

down by the number of elements indicated by the third operand. The lower n elements of the re-

sult are returned. The result is zero if src3 is outside the range 0 ≤ src3 < n.

Some implementations may work slowly for high shift counts.

This instruction will rotate a vector if both input vectors are the same.

A funnel shift in the opposite direction can be made by swapping the first two operands and sub-

tracting the shift count from the operand size.
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select_bits

format opcode operands

multi 52 all integer types

int32 r0 = select_bits(r1, r2, r3)

dest = src1 & src3 | src2 & ~src3

This instruction combines bits from the first two source operands, using the third source operand

as selector.

test_bit

format opcode operands

multi 39 all integer types

Test the value of bit number src2 in src1, and make it the least significant bit of the output, to use

as a boolean. The result is zero if src2 is out of range.

result = (src1 >> src2) & 1.

The result is indicated in bit 0 of the destination register. The remaining bits of the output may be

taken from a mask register or numeric control register.

A fallback register can be used as an operand for an extra boolean operation, with or without

a mask. Only bit 0 of the fallback register is used. The boolean operation is controlled by op-

tion bits 0-1. Option bit 2 inverts the result, bit 3 inverts the fallback, and bit 4 inverts the mask.

These options are summarized in the following table, giving the value of bit 0 of the destination

register.

Table 5.12: Alternative use of mask and fallback register

controlled by option bits

bit 4 bit 3 bit 2 bit 1 bit 0 Output

0 0 0 0 0 mask ? result : fallback

0 0 1 0 0 mask ? !result : fallback

0 1 0 0 0 mask ? result : !fallback

0 1 1 0 0 mask ? !result : !fallback

1 0 0 0 0 !mask ? result : fallback

1 0 1 0 0 !mask ? !result : fallback

1 1 0 0 0 !mask ? result : !fallback

1 1 1 0 0 !mask ? !result : !fallback

0 0 0 0 1 mask & result & fallback

0 0 1 0 1 mask & !result & fallback

0 1 0 0 1 mask & result & !fallback

0 1 1 0 1 mask & !result & !fallback

1 0 0 0 1 !mask & result & fallback

1 0 1 0 1 !mask & !result & fallback

1 1 0 0 1 !mask & result & !fallback

1 1 1 0 1 !mask & !result & !fallback

0 0 0 1 0 mask & (result | fallback)
0 0 1 1 0 mask & (!result | fallback)
0 1 0 1 0 mask & (result | !fallback)
0 1 1 1 0 mask & (!result | !fallback)
1 0 0 1 0 !mask & (result | fallback)
1 0 1 1 0 !mask & (!result | fallback)
1 1 0 1 0 !mask & (result | !fallback)
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1 1 1 1 0 !mask & (!result | !fallback)
0 0 0 1 1 mask & (result ^ fallback)

0 0 1 1 1 mask & (!result ^ fallback)

0 1 0 1 1 mask & (result ^ !fallback)

0 1 1 1 1 mask & (!result ^ !fallback)

1 0 0 1 1 !mask & (result ^ fallback)

1 0 1 1 1 !mask & (!result ^ fallback)

1 1 0 1 1 !mask & (result ^ !fallback)

1 1 1 1 1 !mask & (!result ^ !fallback)

The value of mask is 1 if there is no mask register. The remaining bits are copied from the mask

register if option bit 5 is set, or from the numeric control register if there is no mask and bit 5 is

set. The remaining bits are zero if option bit 5 is not set. The number of mask or NUMCONTR

bits available depends on the hardware implementation (typically 16 or 32 bits).

test_bits_and

format opcode operands

multi 40 all integer types

Test if the indicated bits are all 1.

result = ((src1 & src2) == src2)

The result is indicated in bit 0 of the destination register. The remaining bits of the output may be

taken from a mask register or numeric control register.

A fallback register can be used as an operand for an extra boolean operation, with or without a

mask. Only bit 0 of the fallback register is used. These options are controlled by option bits 0-4

in the same way as for test_bit, as indicated in table 5.12.

The remaining bits are copied from the mask register if option bit 5 is set, or from the numeric

control register if there is no mask and bit 5 is set. The remaining bits are zero if option bit 5 is

not set. The number of mask or NUMCONTR bits available depends on the hardware implemen-

tation (typically 16 or 32 bits).

test_bits_or

format opcode operands

multi 41 all integer types

Test if at least one of the indicated bits is 1.

result = ((src1 & src2) != 0)

The result is indicated in bit 0 of the destination register. The remaining bits of the output may be

taken from a mask register or numeric control register.

A fallback register can be used as an operand for an extra boolean operation, with or without a

mask. Only bit 0 of the fallback register is used. These options are controlled by option bits 0-4

in the same way as for test_bit, as indicated in table 5.12.

The remaining bits are copied from the mask register if option bit 5 is set, or from the numeric

control register if there is no mask and bit 5 is set. The remaining bits are zero if option bit 5 is

not set. The number of mask or NUMCONTR bits available depends on the hardware implemen-

tation (typically 16 or 32 bits).
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truth_tab3

format opcode operands

2.0.6 48.1 general purpose registers. optional

2.2.6 48.1 integer vectors. optional

int32 r0 = truth_tab3(r1, r2, r3, 0xF2), options=0

int32 v0 = truth_tab3(v1, v2, v3, 0xF2), options=0

This instruction can make an arbitrary bitwise boolean function of three integer variables, ex-

pressed by an 8-bit truth table in an immediate constant. Each bit of the result is the arbitrary

boolean function of the corresponding bits of the three input registers. The boolean function is

calculated for each bit position separately. Three bits from the three input registers are combined

into a 3-bit index, where the bit from the first input register goes into the least significant bit and

the bit from the last input register goes into the most significant bit. This index is then selecting

one bit from the truth table to go into the result.

For example, the boolean function F = A & ∼ B | C has the truth table 0b11110010 or 0xF2.

This can be used as a universal instruction for bitwise logic functions of up to three inputs. Func-

tions of two inputs can be obtained by using the same register for two of the three input registers.

This instruction can also be used for manipulating masks where only bit 0 contains the boolean

result. The remaining bits are controlled by options according to the table below. This is useful

when the result is used as a mask for floating point instructions:

Table 5.13: Options for truth_tab3

Options Meaning

0 all bits contain boolean results

1 bit 0 contains a boolean result. The remain-

ing bits are zero

2 bit 0 contains a boolean result. The remain-

ing bits are taken from a mask or numeric

control register. The number of mask or

NUMCONTR bits available is implementa-

tion dependent.

5.6 Combined arithmetic/logic and branch instructions with integer

operands

These instructions are doing an arithmetic or logic operation and a conditional jump depending

on the result. Each instruction can be coded in a number of different formats described on page

28.

The instructions are listed below in pairs, where the second instruction has the branch condition

inverted.

These instructions cannot have a mask. The destination operand, if any, should preferably be

the same as the first source operand for optimal performance. The second source operand may

be a register, a memory operand, or an immediate constant with no more than 32 bits.
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add/jump_zero

format op-

code

instruction operands

all 16 add/jump_zero integer

all 17 add/jump_nzero integer

int32 r1 = add(r1, 5), jump_zero Label

Add two integer operands and jump if the result is zero.

add/jump_neg

format op-

code

instruction operands

all 18 add/jump_neg integer

all 19 add/jump_nneg integer

Add two integer operands and jump if the signed result is negative.

The result will wrap around in the case of overflow and jump if the result has the sign bit set.

add/jump_pos

format op-

code

instruction operands

all 20 add/jump_pos integer

all 21 add/jump_npos integer

Add two integer operands and jump if the signed result is positive.

The result will wrap around in the case of overflow and jump if the result is not zero and does not

have the sign bit set.

add/jump_overflow

format op-

code

instruction operands

all 22 add/jump_overflow integer

all 23 add/jump_noverflow integer

Add two signed integer operands and jump if the result overflows.

add/jump_carry

format op-

code

instruction operands

all 24 add/jump_carry integer

all 25 add/jump_ncarry integer

Add two unsigned integer operands and jump if the operation produces a carry.
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increment_compare/jump_above/below

format op-

code

instruction operands

all 48 increment_compare/jump_below integer

all 49 increment_com-

pare/jump_aboveeq

integer

all 50 increment_compare/jump_above integer

all 51 increment_compare/jump_beloweq integer

Add 1 to the first source operand and jump if the signed result is less than a certain limit. The

result is saved in the destination operand. This is useful for implementing a simple “for” loop.

The result will wrap around from INT_MAX to INT_MIN in case of overflow.

sub/jump_zero

format op-

code

instruction operands

Not 1.7 0 sub/jump_zero integer

Not 1.7 1 sub/jump_nzero integer

Subtract two integer operands and jump if the result is zero.

The assembler will automatically convert a sub/jump_zero instruction with a small constant to an

add/jump_zero instruction with the negative constant if this makes it fit into format 1.7.

sub/jump_neg

format op-

code

instruction operands

Not 1.7 2 sub/jump_neg integer

Not 1.7 3 sub/jump_nneg integer

Subtract two integer operands and jump if the signed result is negative.

The result will wrap around in the case of overflow and jump if the result has the sign bit set.

The assembler will automatically convert a sub/jump_neg instruction with a small constant to an

add/jump_neg instruction with the negative constant if this makes it fit into format 1.7.

sub/jump_pos

format op-

code

instruction operands

Not 1.7 4 sub/jump_pos integer

Not 1.7 5 sub/jump_npos integer

Subtract two integer operands and jump if the signed result is positive.

The result will wrap around in the case of overflow and jump if the result is not zero and does not

have the sign bit set.

The assembler will automatically convert a sub/jump_pos instruction with a small constant to an

add/jump_pos instruction with the negative constant if this makes it fit into format 1.7.
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sub/jump_overflow

format op-

code

instruction operands

Not 1.7 6 sub/jump_overflow integer

Not 1.7 7 sub/jump_noverflow integer

Subtract two signed integer operands and jump if the result overflows.

The assembler will automatically convert a sub/jump_overflow instruction with a small constant

to an add/jump_overflow instruction with the negative constant if this makes it fit into format 1.7.

sub/jump_borrow

format op-

code

instruction operands

Not 1.7 8 sub/jump_borrow integer

Not 1.7 9 sub/jump_nborrow integer

Subtract two unsigned integer operands and jump if the operation produces a borrow.

The assembler will automatically convert a sub/jump_borrow instruction with a small constant to

an add/jump_carry instruction with the negative constant if this makes it fit into format 1.7.

sub_maxlen/jump_pos

format op-

code

instruction operands

1.7C, 2.5.1B,

2.5.4C

52 sub_maxlen/jump_pos integer

1.7C, 2.5.1B,

2.5.4C

53 sub_maxlen/jump_npos integer

Subtract the maximum vector length (in bytes) from a general purpose register and jump if the

result is positive. The immediate operand indicates the operand type for which the maximum

vector length is obtained. The operand size for the source and destination register is 64 bits in

C formats.

This instruction makes it easy to implement the type of vector loop described on on page 12. A

high-level assembly syntax is described on page 162.

and/jump_zero

format op-

code

instruction operands

Not 1.7 10 and/jump_zero all

Not 1.7 11 and/jump_nzero all

Bitwise and. Jump if zero.

dest = src1 & src2

jump if dest == 0

All operands are treated as integers. Floating point operands are treated as unsigned integer

scalars in vector registers.

88



or/jump_zero

format op-

code

instruction operands

Not 1.7 12 or/jump_zero all

Not 1.7 13 or/jump_nzero all

Bitwise or. Jump if zero.

dest = src1 | src2
jump if dest == 0

All operands are treated as integers. Floating point operands are treated as unsigned integer

scalars in vector registers.

xor/jump_zero

format op-

code

instruction operands

Not 1.7 14 xor/jump_zero all

Not 1.7 15 xor/jump_nzero all

Bitwise exclusive or. Jump if zero.

dest = src1 ^ src2

jump if dest == 0

All operands are treated as integers. Floating point operands are treated as unsigned integer

scalars in vector registers.

test_bit/jump_true

format op-

code

instruction operands

all 26 test_bit/jump_true all

all 27 test_bit/jump_false all

int test_bit(r1, 3), jump_true target

if (int r1 & 8) {jump target}

Test a single bit in the first source operand as indicated by the an index in the second source

operand and jump if the indicated bit is 1. There is no destination operand.

jump if ((src1 >> src2) & 1) == 1

All operands are treated as unsigned integers. Floating point operands are treated as integer

scalars in vector registers.

test_bits_and/jump_true

format op-

code

instruction operands

all 28 test_bits_and/jump_true all

all 29 test_bits_and/jump_false all

int test_bits_and(r1, 7), jump_true target

if (int (r1 & 7) == 7) {jump target}

Test the AND combination of the bits indicated by the second source operand. Jump if the indi-

cated bits are all 1. There is no destination operand.
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jump if (src1 & src2) == src2

All operands are treated as unsigned integers. Floating point operands are treated as integer

scalars in vector registers.

test_bits_or/jump_true

format op-

code

instruction operands

all 30 test_bits_or/jump_true all

all 31 test_bits_or/jump_false all

int test_bits_or(r1, 7), jump_true target

if (int r1 & 7) {jump target}

Test the OR combination of the bits indicated by the second source operand. Jump if at least

one of the indicated bits is 1. There is no destination operand.

jump if (src1 & src2) != 0

All operands are treated as unsigned integers. Floating point operands are treated as integer

scalars in vector registers.

integer compare and branch instructions

int64 compare(r1, r2), jump_equal target

Compare instructions have no destination operand. Overflow cannot occur.

op-

code

instruction jump condition

32 compare/jump_equal r1 = r2

33 compare/jump_nequal r1 6= r2

34 compare/jump_sbelow r1 < r2, signed

35 compare/jump_saboveeq r1 ≥ r2, signed

36 compare/jump_sabove r1 > r2, signed

37 compare/jump_sbeloweq r1 ≤ r2, signed

38 compare/jump_ubelow r1 < r2, unsigned

39 compare/jump_uaboveeq r1 ≥ r2, unsigned

40 compare/jump_uabove r1 > r2, unsigned

41 compare/jump_ubeloweq r1 ≤ r2, unsigned

5.7 floating point branch instructions

The conditional jump instructions use general purpose registers for integer operands with at

most 64 bits, and vector registers when a floating point type is specified. Only the first element

of a floating point vector is used.

Addition and subtraction instructions with conditional branching do not support floating point

operands.

floating point compare and branch instructions

double compare(v1, v2), jump_above target

Compare instructions have no destination operand. Overflow cannot occur.
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0.0 and -0.0 are treated as equal.

The unordered versions of floating point compare instructions are true when any input operand

is NAN. The versions without _uo suffix are false when any operand is NAN. The unordered ver-

sions are needed because conditions are often inversed in the compilation process. For example

the inverse of compare/jump_below is not compare/jump_aboveeq but compare/jump_aboveeq_uo.

This is a consequence of the rule that all comparisons except ’!=’ return false when the inputs

are unordered, i.e. when at least one operand is NAN, according to the IEEE-754 standard for

floating point arithmetic.

op-

code

instruction jump condition high level language

32 compare/jump_equal v1 = v2 a == b

0 compare/jump_equal_uo v1 = v2

33 compare/jump_nequal v1 6= v2

1 compare/jump_nequal_uo v1 6= v2 a != b

34 compare/jump_below v1 < v2 a < b

2 compare/jump_below_uo v1 < v2 !(a >= b)

35 compare/jump_aboveeq v1 ≥ v2 a >= b

3 compare/jump_aboveeq_uo v1 ≥ v2 !(a < b)

36 compare/jump_above v1 > v2 a > b

4 compare/jump_above_uo v1 > v2 !(a <= b)

37 compare/jump_beloweq v1 ≤ v2 a <= b

5 compare/jump_beloweq_uo v1 ≤ v2 !(a > b)

38 compare/jump_abs_below abs(v1) < abs(v2)

6 compare/jump_abs_below_uo abs(v1) < abs(v2)

39 compare/jump_abs_aboveeq abs(v1) ≥ abs(v2)

7 compare/jump_abs_aboveeq_uo abs(v1) ≥ abs(v2)

40 compare/jump_abs_above abs(v1) > abs(v2)

8 compare/jump_abs_above_uo abs(v1) > abs(v2)

41 compare/jump_abs_beloweq abs(v1) ≤ abs(v2)

9 compare/jump_abs_beloweq_uo abs(v1) ≤ abs(v2)

24 fp_category/jump_true value belongs to one

of the indicated cate-

gories

25 fp_category/jump_false value does not belong

to any of the indicated

categories

The _abs conditions ignore the sign bits and compare the absolute values of the two operands.

The fp_category/jump_true instruction tests if the value of the first operand belongs to any of the

categories indicated by the second source operand, which is an integer. The categories are indi-

cated according to table 5.11 on page 79

5.8 Unconditional and indirect jump, call, and return instructions

Control transfer instructions are available in a number of different formats, described on page 28.
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Direct jump

format op-

code

operands

1.7 D 0 jump with 24 bit relative address

2.5.4 C 58 jump with 32 bit relative address

3.1.1 B 58 jump with 64 bit absolute address (optional)

jump Label

...

Label:

Unconditional jump.

Direct function call

format op-

code

operands

1.7 D 8 call with 24 bit relative address

2.5.4 C 59 call with 32 bit relative address

3.1.1 B 59 call with 64 bit absolute address (optional)

call Function_name

Function call.

The return address is stored on the call stack. The calling conventions are described in chapter

11.4.

Indirect jump

format op-

code

operands

1.6 B 58 64 bit absolute address in memory operand with 8 bit offset

1.7 C 60 64 bit absolute address in register

1.6 A 60 Multi-way jump with table of relative addresses (see below)

2.5.2 B 58 Absolute address in memory operand with 32 bit offset

jump (r1) // jump to 64-bit address in r1
jump ([r2]) // jump to 64-bit address in memory operand

Indirect call

format op-

code

operands

1.6 B 59 64 bit absolute address in memory operand with 8 bit offset

1.7 C 61 64 bit absolute address in register

1.6 A 61 Multi-way call with table of relative addresses (see below)

2.5.2 B 59 Absolute address in memory operand with 32 bit offset

call (r1) // call to 64-bit address in r1
call ([r2]) // call to 64-bit address in memory operand
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Relative and multi-way jump and call

format op-

code

operands

1.6 A 60 Jump with table of relative addresses.

Has reference point, base and scaled index

2.5.2 B 60 Jump with relative address.

Has reference point, base and offset

1.6 A 61 Call with table of relative addresses.

Has reference point, base and scaled index

2.5.2 B 61 Call with relative address.

Has reference point, base and offset

int16 jump_relative (r8, [r10+r20*2]) // 16-bit signed table entries
int32 jump_relative (r8, [r10+16]) // 32-bit signed table entries

The multi-way and relative jump and call instructions, jump_relative and call_relative, are us-

ing pointers stored in memory relative to an arbitrary reference point. These instructions are

intended to facilitate multi-way branches (switch/case statements), function tables in code in-

terpreters, virtual function tables in object oriented languages with polymorphism, and general

use of relative pointers. The relative pointers stored in memory use 8, 16, or 32 bits, depending

on the distance to the reference point, while absolute pointers need 64 bits. This saves memory

space and cache space.

Relative pointers to jump or call addresses are stored in memory as signed offsets relative to

an arbitrary reference point. The reference point may be the table address, the ip_base, or any

reference point defined by the programmer. The operand type specifies the size of the table en-

tries.

This instruction works as follows. Calculate the address of a table entry as the base pointer plus

the offset (unscaled) or the index (RT) scaled by the operand size. Read a relative pointer from

this address, sign-extend to 64 bits, and scale by 4. Then add the reference point (RD). Jump or

call to the calculated address. The array index (RT) is scaled by the operand size, while the table

entries are scaled by the instruction word size (4). The reference point must be aligned by 4.

This instruction in format 1.6A has base pointer in RS, scaled index in RT, and reference point in

RD. Format 2.5.2B has base pointer in RS, unscaled index in IM6 and reference point in RD.

A table of pointers used by the table-based jump_relative and call_relative instructions is prefer-

ably placed in the constant data section (CONST). This makes it possible to use the table base

as reference point. This also improves security by giving read-only access to the table.

These instructions cannot have a mask and will not generate overflow traps in case of overflow

in the address calculation, but you will get access violation traps when attempting to access an

illegal memory address.

return

format op-

code

operands

1.6 C 62

Return from function call. The return address is taken from the call stack.

Return instructions do not need a stack offset when the calling conventions specified in chapter

11.4 are used.
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breakpoint

format op-

code

operands

1.7 C 63

This instruction is used as a debug breakpoint.

It is the same as trap(1). The complete instruction code word is 0x7FE00001.

filler

format opcode operands

1.7 C 63

This instruction is used for filling unused code memory. It will generate a trap (interrupt) if exe-

cuted.

All fields are filled with ones. The complete instruction code word is 0x7FFFFFFF.

System call, system return, and traps

See page 100.

5.9 Miscellaneous instructions

address

format opcode operands

2.9 B 32 g.p. registers

int64 r1 = address [memory_label]

Calculate an address relative to a pointer by adding a 32-bit sign-extended constant to a special

pointer register. The pointer register can be THREADP (28), DATAP (29), IP (30) or SP(31).

compare_swap

format opcode operands

2.5 A 18 g. p. registers and memory operand with 32 bit offset.

Optional

int32 r1 = compare_swap(r1, r2, [r3+0x100])

Atomic compare and swap instruction, used for thread synchronization and for lock-free data

sharing between threads. src1 and src2 are register operands, src3 is a memory operand, which

must be aligned to a natural address. All operands are treated as integers, regardless of the

specified operand type. The operation is:

temp = src3;
if (temp == src1) src3 = src2;
return temp;

This instruction cannot have a mask.

Further atomic instructions can be implemented if needed, preferably with the same format and

consecutive values of OP1.
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nop

format opcode operands

multi 0

3.0 0

No operation. Used as a filler to replace removed code or to align code entries.

Unused bits may be used for debugging information, etc.

The processor is allowed to skip NOPs as fast as it can at an early stage in the pipeline. These

NOPs cannot be used as timing delays, only as fillers.

undef

format opcode operands

multi 63

Undefined code. Guaranteed to generate error trap or error halt in all implementations.

userdef

format opcode operands

multi 56-62 any types

Reserved for user-defined instructions.

5.10 System instructions

These instructions cannot have a mask.

input

format opcode operands

1.8 B 62 general purpose registers

1.2 A 62 vector registers

int32 r0 = input(r1, 4)

int64 v0 = input(r1, r2)

Read from input port into register RD. Privileged instruction.

General purpose register input with immediate port address:

The immediate operand contains a port address in the interval 0 - 254. Register RS is ignored.

General purpose register input with port address in register:

The immediate operand is 255. Register RS contains a 64 bit port address.

Vector register input with port address in register:

RS = port address. RT = vector length in bytes,

Vector input is not necessarily supported for all input ports.

Masks are not necessarily supported.
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output

format opcode operands

1.8 B 63 general purpose registers

1.2 A 63 vector registers

int32 output(r1, r2, 4)

int64 output(v0, r1, r2)

Write register value RD to output port. Privileged instruction.

General purpose register output with immediate port address:

The immediate operand contains a port address in the interval 0 - 254. Register RS is ignored.

General purpose register output with port address in register:

The immediate operand is 255. Register RS contains a 64 bit port address.

Vector register output with port address in register:

RS = port address. RT = vector length in bytes,

Vector output is not necessarily supported for all output ports.

Masks are not necessarily supported.

read_capabilities, write_capabilities

format opcode operands

1.8 B 34 read_capabilities(capabilities register, constant)

1.8 B 35 write_capabilities(g.p. register, constant)

Preliminary specification.

Read or write processor capabilities register. These registers are used for indicating capabili-

ties of the processor, such as support for optional instructions and limitations to vector lengths.

These registers are initialized with their default values at program start.

The immediate constant in IM1 may determine details of the operation.

Table 5.14: List of capabilities registers

Capa-

bilities

register

number

Meaning

capab0 Microprocessor model or brand ID

capab1 Microprocessor version number

capab2 Disable error traps. Bit 0: unknown instructions, bit

1: wrong instruction operands, bit 2: array overflow,

bit 3: memory read violation, bit 4: memory write

violation, bit 5: misaligned memory access.

capab4 Code cache size, level 1

capab5 Data cache size, level 1

capab8 Support for operand sizes in general purpose regis-

ters. Bit 0: int8, bit 1: int16, bit 2: int32, bit 3: int64

capab9 Support for operand sizes in vector registers.

Bit 0: int8, bit 1: int16, bit 2: int32, bit 3: int64, bit

4: int128, bit 5: float32, bit 6: float64, bit 7: float128,

bit 8: float16.

capab12 Maximum vector length for general instructions.

capab13 Maximum vector length for permute instructions.
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capab14 Maximum block size for permute instructions.

capab15 Maximum vector length for compress_sparse and

expand_sparse.

Some capabilities registers can be modified for test purposes or to tell the software not to use a

specific instruction.

Setting bits in capab2 will suppress error traps. Instead, the errors will be counted in perfor-

mance counter registers described on page 98. To test if a particular instruction is supported,

set bit 0 in capab2, reset the performance counter, try to execute the instruction, and read the

performance counter again.

Changing the values of the maximum vector length has the following effects. If the maximum

length is reduced below the physical capability then any attempt to make a longer vector will

result in the reduced length. The behavior of vector registers that already had a longer length

before the maximum length was reduced, is implementation dependent. If the maximum vec-

tor length is set to a higher value than the physical capability then any attempt to make a vector

longer than the physical capability will cause a trap to facilitate emulation, if the platform supports

emulation.

Capabilities registers 12-15 can be increased for the purpose of emulation. The value of capabil-

ities registers 12-15 must be powers of 2.

read_memory_map, write_memory_map

format opcode operands

1.2 A 60 vector = read_memory_map(base, index)

1.2 A 61 write_memory_map(vector, base, index)

Preliminary specification.

int64 v0 = read_memory_map(r2, r3)

Read memory map and save it to a vector register. Privileged instruction.

RD = destination vector register, RT-RS = internal address.

int64 write_memory_map(v1, r2, r3)

Write a vector register to memory map. RD = vector register source. RT-RS = internal address.

Privileged instruction.

read_call_stack, write_call_stack

format opcode operands

1.2 A 58 read_call_stack(r1, r2)

1.2 A 59 write_call_stack(v1, r2, r3)

Preliminary specification.

int64 v0 = read_call_stack(r1, r2)

Read the internal call stack into a vector register. This instruction is used for saving the internal

call stack to system memory in case of overflow. Privileged instruction.

RD = destination vector register, RT-RS = internal address.

int64 write_call_stack(v1, r2, r3)

Write a vector register to the internal call stack. This instruction is used for restoring the internal

call stack. Privileged instruction.
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read_perf

format opcode operands

1.8 B 36 performance counter register, constant

int64 r0 = read_perf(perf1, 1)

A number of internal registers are used for counting performance related events. This instruction

reads performance counter registers and performance related information. Some performance

counters may be implementation-specific.

Table 5.15: List of performance counter registers

Perfor-

mance

counter

Second

operand

Meaning

perf0 -1 Reset all performance counters

perf1 1 CPU clock cycles

perf1 0 Reset CPU clock cycles counter

perf2 1 Number of instructions executed

perf2 2 Number of double size instructions

perf2 3 Number of triple size instructions

perf2 4 General purpose register instructions

perf2 5 G. p. register instructions with mask zero

perf2 0 Reset counters

perf3 1 Vector instructions executed

perf3 0 Reset counter

perf4 1 Vector registers in use. Returns one bit for each

vector register

perf5 1 Jumps, calls, and return instructions

perf5 2 Direct, unconditional jumps, calls, and returns

perf5 3 Indirect jumps and calls

perf5 4 Conditional jumps

perf5 0 Reset counters

perf16 1 Unknown instructions attempted

perf16 2 Wrong operands for instruction

perf16 3 Array overflow

perf16 4 Memory read violation

perf16 5 Memory write violation

perf16 6 Memory access misaligned

perf16 62 Code address where first error occurred

perf16 63 Type of first error

perf16 0 Reset error counters

The perf16 register is useful for detecting errors when error traps are disabled using the capabili-

ties registers described on page 96.

read_perfs

format opcode operands

1.8 B 37 performance counter register, constant

This is the same as the read_perf instruction, but serializing. The pipeline is flushed before read-

ing the counter so that no instruction can execute out of order with read_perfs.
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read_spec, write_spec

format opcode operands

1.8 B 32 read_spec(special register, constant)

1.8 B 33 write_spec(g.p. register, constant)

int64 r0 = read_spec(spec1, 0)

int64 r1 = read_spec(datap)

Read a special system register. The following special registers are currently defined. The size is

64 bits. These registers are initialized with their default values at program start.

The immediate operand (IM1) is currently unused. This instruction cannot have a mask.

Table 5.16: List of special registers

Special reg-

ister name

number Meaning

numcontr spec0 Numeric control register

threadp spec1 Thread environment block pointer

datap spec2 Data section pointer

read_spev

format opcode operands

1.2 A 56 special vector register, general purpose register

int64 v0 = read_spev(spec0, r2)

Read special vector register spev1 into vector register result with length r2 bytes.

The following special registers are currently defined:

Table 5.17: Special registers that can be read into vectors

Special

register

number

Meaning

spec0 Numeric control register (NUMCONTR). The value is

broadcast into all elements of the destination register with

the indicated operand size and length.

spec48 Name of processor. The output is a zero-terminated UTF-

8 string containing the brandname and model name of the

microprocessor.

read_sys, write_sys

format opcode operands

1.8 B 38 read_sys(system register, constant)

1.8 B 39 write_sys(g.p. register, constant)

Read or write system register. Details are not defined yet. These instructions are privileged.
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sys_call

System calls use ID numbers rather than addresses to identify system functions. The ID is the

combination of a module ID identifying a particular system module or device driver and a function

ID identifying a particular function within this module. The module ID and the function ID are both

16 or 32 bits, so that the combined system call ID is up to 64 bits. The sys_call instruction has

the following variants:

Table 5.18: Variants of system call instruction

Format Operand

type

Register

operands

Module ID Function ID

1.6 A 32 bit 3 RT bit 16-31 RT bit 0-15

1.6 A 64 bit 3 RT bit 32-63 RT bit 0-31

2.5.1 B 32 bit 2 IM6 bit 16-31 IM6 bit 0-15

2.5.7 C 64 bit 0 IM6 bit 0-31 IM1,IM2 bit 0-15

3.1.2 B 64 bit 2 IM7 bit 0-31 IM6 bit 0-31

The sys_call instruction can indicate a block of memory to be shared with the system function.

The address of the memory block is pointed to by the register specified in RS and the length is

in register RD. This memory block, which the caller must have access rights to, is shared with

the system function. The system function will get the same access rights to this block as the call-

ing thread has, i. e. read access and/or write access. This is useful for fast transfer of data be-

tween the caller and the system function. No other memory is accessible to both the caller and

the called function. If the RS and RD fields are both r0 then no memory block is shared. If RS

and RD are both SP then all the application’s data memory is shared. The sys_call instruction in

format 2.5.7 has no register operands and no shared memory block. System calls cannot have a

mask.

Parameters for system functions are transferred in registers, following the same calling conven-

tions as normal functions. The registers used for function parameters are usually different from

the registers in the RD, RS and RT fields. Function parameters that do not fit into registers must

reside in the shared memory block.

sys_return

format opcode operands

1.7 C 62

Return from system call.

trap

format op-

code

instruction immediate operand

1.7 C 63 trap 0-254

1.7 C 63 filler 255

Traps work like interrupts. The unconditional trap has an 8-bit interrupt number in IM1. This is an

index into the interrupt vector table, which initially starts at absolute address zero. The uncondi-

tional trap instruction may use IM2 for additional information.

A trap instruction with all 1’s in all fields (opcode 0x7FFFFFFF) can be used as filler in unused

parts of code memory.
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conditional trap

format op-

code

instruction immediate operand

2.5.5C 63 compare,

trap_uabove

limit

Conditional traps are currently not supported.

The conditional trap generates a trap if the specified condition is true.

IM2 contains the interrupt number.

IM6 contains an immediate operand

Compare/trap_uabove will generate a trap if RD > IM6. This is useful for checking if an array

index exceeds the upper bound. The lower bound does not have to be checked because we use

unsigned compare.

5.11 Common operations that have no dedicated instruction

This section discusses some common operations that are not implemented as single instruc-

tions, and how to code these operations in software.

Change sign

For integer operands, do a reverse subtract from zero. For floating point operands, use the tog-

gle_bit instruction on the sign bit.

Not

To invert all bits in an integer, do an XOR with -1. To invert a Boolean, do an XOR with 1.

Rotate through carry

Rotates through carry are rarely used, and common implementations can be very inefficient.

A left rotate through carry can be replaced by an add_c with the same register in both source

operands.

Horizontal vector add

See example 14.10.

5.12 Unused instructions

Unused instructions and opcodes can be divided into three types:

1. The opcode is reserved for future use. Attempts to execute it will trigger a trap (synchronous

interrupt) which can be used for generating an error message or for emulating instructions

that are not supported.

2. The opcode is guaranteed to generate a trap, not only in the present version, but also in all

future versions. This can be used as a filler in unused parts of the memory or for indicating

unrecoverable errors. It can also be used for emulating user-specific instructions.

3. The error is ignored and does not trigger a trap. It can be used for future extensions that

improve performance or functionality, but which can be safely ignored when not supported.
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All three types are implemented, where type 1 is the most common.

Nop instructions with nonzero values in unused fields are type 3. These instructions are ignored.

Prefetch and fence instructions with no memory operand, with nonzero values in unused fields,

or with undefined values in IM6 are type 3. These instructions are ignored.

Unused bits in masks and numeric control register are type 3. These bits are ignored.

Trap instructions and conditional trap instructions with nonzero values in unused fields or un-

defined values in any field are type 2. These instructions are guaranteed to generate a trap. A

special version of the trap instruction is intended as filler in unused or inaccessible parts of code

memory.

The undef instruction is type 2. It is guaranteed to generate a trap in all systems. It can be used

for testing purposes and emulation.

The userdef__ instructions are type 1. These instructions are reserved for user-defined and

application-specific purposes.

Instructions with erroneous coding should preferably behave as type 1. This includes instruction

codes with nonzero values in unused fields, operand types not supported, or any other bit pat-

tern with no defined meaning in any field. Type 3 behavior may alternatively be allowed in these

cases. If so, the instruction should behave as if it were coded correctly.

All other opcodes not explicitly defined are type 1. These may be used for future instructions.

Small systems with no operating system and no trap support should define alternative behavior.

5.13 Proposed new instructions

This section describes proposals for new single-format instructions. The descriptions are prelimi-

nary and not certain to be implemented.

Reciprocal

Calculates 1/x with reduced precision.

Depending on hardware technology, it may be possible to calculate a reciprocal or division faster

with less precision.

ReciprocalSquareRoot

Calculates 1/sqrt(x) with reduced precision.

Depending on hardware technology, it may be possible to calculate a reciprocal square root

faster with less precision.

Augmented addition

This instruction will produce the difference between the exact sum of two floating point numbers

and the same sum rounded to the current precision (float or double). Augmented addition is de-

fined in the IEEE754-2019 standard.

This instruction is useful for high precision math.
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No instruction for augmented multiplication is proposed because the mul_add instruction can

produce the same result.

Long integer addition

This instruction will treat vector registers of any length as large integers. The instruction will cal-

culate the sum or difference of two such large integers. A third operand is a single-bit carry input.

Instructions with multiple outputs are best avoided in ForwardCom for reasons of hardware de-

sign. Instead you will need two instructions for producing the sum and the carry out bit, respec-

tively.

The following option bits are provided:

• subtract or add

• use or ignore carry in

• produce sum or carry out

This instruction is useful for arbitrary precision math.

Dot product

This instruction will calculate a floating point expression of the form ± a0 ∗ b0 ± a1 * b1, where

a0 is a vector element with even index, and a1 is the following vector element with odd index.

b0 and b1 are similar elements of a second vector. Intermediate values are calculated with extra

precision.

The main purpose of this instruction is to solve a precision problem that occurs in complex num-

ber math and elsewhere. A modern compiler will likely code an expression like the above using a

fused multiply-and-add instruction. This will make the calculation asymmetric because one mul-

tiplication has higher precision than the other. The consequence is that X*Y and Y*X may pro-

duce different results, where X and Y are complex numbers. The proposed instruction solves this

problem by calculating both multiplications with the same high precision.

The following option bits are provided:

• change the sign of a0

• change the sign of a1

• swap b0 and b1

• store the result in y0 or y1, where y0,y1 are elements of the result vector. The other ele-

ment of y will receive a corresponding element of a third source vector c0,c1

This instruction will be useful for complex number multiplication and division, as well as cross

products, dot products, and other applications, with high precision.

It is possible to do a complex number multiplication by using this instruction twice. First calculate

the real part of the product by changing the sign of a1, then calculate the imaginary part of the

product by swapping b0 and b1 and placing it in y1, while retaining the real part in y0.
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Chapter 6

Other implementation details

6.1 Endianness

The memory organization is little endian. Instructions for byte swapping are provided for reading

and writing big endian binary data files.

Rationale

The storage of vectors in memory would depend on the element size if the organization was big

endian. Assume, for example, that we have a 128 bit vector register containing four 32-bit inte-

gers, named A, B, C, D. With little endian organization, they are stored in memory in the order:

A0, A1, A2, A3, B0, B1, B2, B3, C0, C1, C2, C3, D0, D1, D2, D3,

where A0 is the least significant byte of A and D3 is the most significant byte of D. With big en-

dian organization we would have:

A3, A2, A1, A0, B3, B2, B1, B0, C3, C2, C1, C0, D3, D2, D1, D0.

This order would change if the same vector register is organized, for example, as eight integers

of 16 bits each or two integers of 64 bits each. In other words, we would need different read and

write instructions for different vector organizations.

Little endian organization is more common for a number of reasons that have been discussed

many times elsewhere.

6.2 Pointers and addresses

ForwardCom is using a flat memory model with 64-bit addresses. Pointers stored in registers

contain absolute addresses with 64 bits. A lower number of bits is allowed for systems with a

smaller address space.

Function pointers and code pointers must be divisible by 4 because the code consists of 4-byte

words.

Data pointers and function pointers stored in data memory may contain absolute or relative ad-

dresses. Absolute pointers need to be initialized before they are used. There are three different

ways to accomplish this:

1. Initialize the data to an absolute address. This is possible, but it is not recommended be-

cause the data section containing an absolute address will be position-dependent. A partic-

ular platform may or may not support position-dependent code.

2. Make a start-up code that initializes the pointer, using a relative address for calculation.
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3. Store a relative pointer and calculate the full address in the running program. This is ex-

plained below

Relative pointers can be more compact than absolute pointers. A relative pointer is storing the

address of a function, code label, or data label relative to an arbitrary reference point. The refer-

ence point must be placed in a section with the same address regime as the target that we want

to address – either IP-based or DATAP-based or THREADP-based.

A relative pointer may be scaled by a power of 2. For example, it is useful to scale a relative

code pointer by 4 because all code addresses are divisible by 4. This allows us to use fewer

bits for the relative pointer. The relative pointer may be a signed integer of 8, 16, or 32 bits. The

number of bits must be sufficient to contain the distance between the target and the reference

point, divided by the scale factor, in a signed integer. The calculation of the scaled relative ad-

dress is done by the linker.

A relative pointer must be converted to an absolute pointer before it can be used for address-

ing a target. The sign_extend_add instruction is useful for converting a relative pointer to an ab-

solute pointer. This instruction will read the relative pointer, sign-extend it to 64 bits, optionally

scale it by a factor of 2, 4, or 8, and then add the address of the reference point. This method

can be used for data pointers as well as code pointers. See page 165 for details.

Relative code pointers can also be used directly in the jump_relative or call_relative instruction.

This instruction will read one entry from an indexed list of relative addresses, sign extend the rel-

ative address, scale it by 4, add an arbitrary reference point, and then jump or call to the calcu-

lated address. This is a very compact and efficient way of implementing a multiway jump or call,

such as a switch/case statement or function table. See page 167 for an example. The jump_rel-

ative instruction can also be used without an index if you have just one relative code pointer.

(page 166)

Direct jump and call instructions and conditional jump instructions use relative addresses of 8,

16, 24, or 32 bits stored as part of the instruction. The least significant two bits of relative code

addresses are not stored because they are always zero. The target address of a relative jump or

call is calculated in the following way. The relative address is multiplied by 4 and sign-extended

to 64 bits. The address of the end of the instruction (beginning of next instruction) is added to

this value to get the address of the target.

Indirect jump and call instructions can use a pointer containing an absolute address. The pointer

can be a register or a memory operand initialized as described above.

6.3 Implementation of call stack

The ForwardCom design defines two separate stacks, one for local data and one for function

return addresses. There are several advantages to having separate stacks for data and return

addresses.

A separate return stack improves the security by preventing buffer overflow errors from overwrit-

ing return addresses. This makes a common hacking method impossible and prevents program-

ming errors from leading the program astray.

The separate return stack will usually be small enough to fit on the CPU chip. This makes func-

tion call and return efficient. Only in case of deeply recursive function calls will it be necessary to

spill the stack to RAM memory.

There is no need for a branch predictor to predict return addresses because the return address

is immediately available in the CPU.
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A joint stack for data and return addresses has the disadvantage that the stack pointer is mod-

ified by the ALU at the end of the pipeline, while it is needed at the beginning of the pipeline for

pushing and popping return addresses. Today, advanced CPUs have a complicated ”stack en-

gine” to mirror or predict the stack pointer at the beginning of the pipeline to avoid the pipeline-

length delay between changing the stack pointer and using it in call and return instructions. A

separate on-chip call stack eliminates the need for such a stack engine. Call and return instruc-

tions can be handled at an early stage in the pipeline without having to wait for any other instruc-

tions that might change the stack pointer at the end of the pipeline.

A function is always sure to return to the correct place even if the data stack is compromised by

a mismatch between caller and callee regarding the number or type of function parameters.

There is no need to save and restore a link register in non-leaf functions, such as several RISC

architectures require.

A disadvantage of a separate on-chip call stack is that it has to be saved and restored during a

task switch, unless the chip has multiple call stacks. Special instructions are needed to read and

write the call stack for the sake of task switching and stack unwinding.

The function calling conventions defined in chapter 11.4 will work with a separate call stack as

well as with a unified stack, but it is recommended to have a separate call stack. The program-

mer is free to make one or more data stacks.

6.4 Floating point errors and exceptions

The traditional ways of detecting floating point errors is to check a global status register or to use

traps (software interrupts). Both methods are problematic and inefficient for SIMD processing

and for out-of-order processing. A global status register does not tell where the error occurred

or how many errors occurred. It is a problem for out-of-order processing that all floating point

operations can write to the floating point status register. ForwardCom has no status register for

this reason. In fact, the ForwardCom hardware design may not support instructions with multiple

output registers.

Traps are avoided too because traps have to occur in order. This means that all instructions

would have to execute speculatively until all preceding instructions that might possibly generate

traps have retired.

See www.agner.org/optimize/nan_propagation.pdf for a detailed discussion of these problems.

The ForwardCom design can overcome these problems by signaling numerical exceptions in

the same register that outputs the normal result of an instruction. This behavior is controlled by

bits 2-5 in the mask register or the numerical control register. Floating point exceptions will gen-

erate a NAN with a payload that indicates the kind of error and its position if these bits are en-

abled. The NAN code will appear in the specific vector element that caused the exception, and

this value will propagate to the end result if the sequence of instructions allows it. This method

is sure to give deterministic results regardless of out-of-order processing and parallelism. The

propagation of NAN values is further explained on page 107.

The exception indications are as follows:

Table 6.1: Floating point results with and without excep-

tions enabled

Error type Option bit Result

inexact rounded result

inexact bit 5 NAN(1)

underflow ± 0

underflow bit 4 NAN(2)
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division by zero ± INF

division by zero bit 2 NAN(3)

overflow ± INF

division overflow bit 3 NAN(4)

multiplication overflow bit 3 NAN(5)

addition overflow bit 3 NAN(6)

conversion overflow bit 3 NAN(7)

other overflow bit 3 NAN(8)

∞−∞ NAN(0x20)

0/0 NAN(0x21)

∞/∞ NAN(0x22)

0 ∗∞ NAN(0x23)

invalid remainder NAN(0x24)

sqrt of negative NAN(0x25)

invalid pow NAN(0x28)

log of negative NAN(0x29)

other math functions NAN(0x2A - 0xFF)

Bits 0-7 of the NAN payload contains the exception code according to the table above. The quiet

bit of the NAN is set. The remaining bits of the NAN payload contain the code address where the

error occurred, with all bits inverted (lower 14 bits of the address for single precision, lower 43

bits for double precision, 64 bits for quadruple precision). This makes sure that the first error in a

linear code sequence will have preference when multiple NAN codes are propagated to the end

result.

Floating point exceptions can be detected by enabling the exception types you want to detect

and checking for NAN values at the end of the floating point instruction sequence, at the end of

any try/catch block, and before any instruction that cannot propagate NANs.

While ForwardCom has no status flags, the NAN payload is replacing the status flags for float-

ing point exceptions specified by the IEEE-754 standard. Any arithmetic operation can signal at

most one exception per vector element, according to the standard.

If you want to find the first floating point error during debugging then you may insert additional

NAN checks before any backward jump or call and before any overflow of the address bits.

Traditional fault trapping is not possible in the preferred implementation of ForwardCom. Signal-

ing NANs and signaling operations are not supported in the preferred implementation. However,

bits 26-30 of the mask register or numerical control register may be used for enabling floating

point fault trapping and trapping of signaling NANs if hardware support for traditional fault trap-

ping is needed.

6.5 Propagation of NANs

If the result of a floating point calculation cannot be represented as a real number, then it will be

coded as ± infinity or NAN (Not a number). Overflow and division by zero gives infinity. Opera-

tions that generate NAN include the following:

0/0, ∞/∞, 0*∞, ∞-∞, rem(1,0), rem(∞,1), sqrt(-1), log(-1), pow(-1, 0.1), asin(2).

These values are propagated through a series of calculations because any floating point calcula-

tion with a NAN input will produce a NAN output. This makes it possible to detect the error in the

final result after a series of calculations. This method of detecting floating point errors is particu-

larly useful for vector instructions because the result is independent of the vector length.

A NAN can contain a bit pattern of diagnostic information called the payload, and this bit pattern

is propagated to the end result. A problem arises when two different NANs are combined, for ex-
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ample NAN1 + NAN2. The IEEE-754 floating point standard has no definite rule for the result of

the combination of two NANs, but it recommends that one of the two NAN operands is propa-

gated to the result. Most microprocessors just propagate the first operand in this case. This is

unfortunate because the result is not predictable when the compiler may code a+b as b+a. For-

wardCom solves this problem by propagating the NAN value with the highest payload. There-

fore, a+b and b+a will always give the same result.

Another problem is that NAN values are not propagated through the max and min instructions

according to the 2008 version of the IEEE-754 standard. This problem is solved in the 2019 revi-

sion of the IEEE standard. ForwardCom is using the 2019 standard so that max and min instruc-

tions always produce a NAN output when at least one of the inputs is NAN.

Certain instructions have floating point inputs but no floating point output. This includes float2int,

compare, and compare-and-jump instructions. Some systems are able to trap NANs in these

cases, but ForwardCom is not fond of traps, as explained above on page 106. The float2int in-

struction can detect NANs by generating error codes in the output vector. Compare instructions

can explicitly detect NAN inputs.

Infinity will also propagate to the end result in many cases. Infinity will be converted to NAN in

cases like ∞/∞, 0*∞, and ∞-∞. Infinity will be converted to zero in situations like 1/∞. Infinity

will not be propagated in situations like min(1,∞).

It is possible to generate NANs instead of infinity by enabling exception handling, as explained

above. This will improve propagation of error information.

Signaling NANs are not trapped in ForwardCom, and there is no difference in the behavior of sig-

naling NANs and quiet NANs. Signaling NANs are propagated without conversion to quiet NANs.

Signaling NANs may be used for NAN boxing of non-numeric data or for application-specific er-

ror tracking.

Other methods for generating error messages in function libraries are discussed on page 128.

6.6 Detecting integer overflow

There is no common standard method for detecting overflow in integer calculations. The detec-

tion of overflow in signed integer operations is a real nightmare in some programming languages

like C++ (see stackoverflow.com/questions/3944505/detecting-signed-overflow-in-c-c).

Possible solutions with a status register or fault trapping are not recommended in ForwardCom

for the same reasons as explained above for floating point errors. Instead, the following methods

may be used for detecting signed and unsigned integer overflow:

• Use conditional jump instructions.

Signed: add/jump_overfl, sub/jump_overfl.

Unsigned: add/jump_carry, sub/jump_borrow.

Division: compare with zero and jump if equal before dividing.

This method cannot detect multiplication overflow.

• Use instructions with overflow check in a vector register. The even-numbered vector el-

ements are used for calculations, while the odd-numbered vector elements are used for

propagating error flags. See page 73 for details.

• Use floating point instructions with integer data. Enable the mask bits for detection of over-

flow and inexact.
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6.7 Performance monitoring and error tracking

ForwardCom supports a set of performance counter registers. These registers count the number

of instructions of different kinds that are executed, for example double-size instructions, vector

instructions, or branch instructions. The read_perf instruction can read and reset these registers.

This instruction is described on page 98. Specific hardware implementations may have different

performance counter registers. These will be described in the manual for the specific hardware

implementation or soft core.

Tracking of floating point errors is described on page 106. Tracking of integer overflow is de-

scribed on page 108.

A special set of performance counters may be used for tracking non-recoverable errors such as

unknown instructions, wrong parameters for instructions, and memory access violations. These

errors will normally generate a trap or stop execution, but the error traps can be disabled using

the capabilities registers described on page 96. This makes it possible to execute a piece of

code tentatively and afterwards check if any errors have occurred. The number of errors of each

type is counted, and the position and type of the first error is recorded.

Specific hardware implementations may have additional features for debugging and error track-

ing. These will be described in the manual for the specific hardware implementation or soft core.

6.8 Multithreading

The ForwardCom design makes it possible to implement very large vector registers to process

large data sets. However, there are practical limits to how much you can speed up the perfor-

mance by using larger vectors. First, the actual data structures and algorithms often limit the

vector length that can be used. And second, large vectors mean longer physical distances on

the semiconductor chip and longer transport delays.

Additional parallelism can be obtained by running multiple threads in each their CPU core. The

design should allow multiple CPU chips or multiple CPU cores on the same physical chip.

Communication and synchronization between threads can be a performance problem. The sys-

tem should have efficient means for these purposes, perhaps including speculative synchroniza-

tion.

It is probably not worthwhile to allow multiple threads to share the same CPU core and level-1

cache simultaneously (this is what Intel calls hyper-threading) because this could allow a low

priority thread to steal resources from a high priority thread, and it is difficult for the operating

system to determine which threads might be competing for the same execution resources if they

are run in the same CPU core. Simultaneous multithreading may also involve security problems

by making the design vulnerable to side-channel attacks.

6.9 Security features

Security is included in the fundamental design of both hardware and software. This includes the

following features.

• A flexible and efficient memory protection mechanism.

• Separation of call stack and data stack so that return addresses cannot be compromised

by buffer overflow.
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• Each thread has its own protected memory space, except where compatibility with legacy

software requires a shared memory space for all threads in an application.

• Device drivers and system functions have limited memory access. Buffer overrun errors

can be effectively prevented by controlling which memory area a device driver has ac-

cess to, since all program input goes through device drivers. A calling program can limit

the memory access of a device driver to only a specific input buffer.

• Device drivers and system functions have carefully controlled access rights to input/output

ports and other system resources. These access rights are defined in the executable file

header of the device driver and controlled by the system core.

• A fault in a device driver should not generate a “blue screen of death”, but generate an er-

ror message and close the application that called it and free its resources.

• Application programs have only access to specific resources as specified in the executable

file header and controlled by the system.

• Array bounds checking is simple and efficient, using an addressing mode with built-in bounds

checking or a simple branch.

• There are various optional methods for checking integer overflow.

• There is no “undefined” behavior. There is always a limited set of permissible responses to

an error condition.

How to improve the security of applications and systems

Several methods for improving security are listed below. These methods may be useful in For-

wardCom applications and operating systems where security is important.

Protect against buffer overflow

Input buffers must be protected against overflow. This can be done efficiently by limiting the

memory access of the device driver that handles the input. Furthermore, it is possible to allocate

an isolated block of memory for a data buffer. See page 121.

Protect arrays

Array bounds should be checked.

Protect against integer overflow

Use one of the methods for detecting integer overflow mentioned on page 108.

Protect thread memory

Each thread in an application should have its own protected memory space. See page 121.

Protect code pointers

Function pointers and other pointers to code are vulnerable to control flow hijack attacks. These

include:

Return addresses. Return addresses on the stack are particularly vulnerable to buffer overflow

attacks. ForwardCom has separate call stack and data stack so that return addresses are

isolated from other data.
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Jump tables. Switch/case multiway branches are often implemented as tables of jump addresses.

These should use the jump table instruction with the table placed in a read-only section.

See page 92.

Virtual function tables. Programming languages with object polymorphism, such as C++, use

tables of pointers to virtual functions. These should use the call table instruction with the

table placed in the a read-only section. See page 92.

Procedure linkage tables. Procedure linkage tables, import tables and symbol interposition are

not used in ForwardCom. See page 136.

Callback function pointers. If a function receives a pointer to a callback function as parameter,

then keep this pointer in a register rather than saving it to memory.

State machines. If a state machine or similar algorithm is implemented with function pointers

then place these function pointers in a read-only array, use a state variable as index into

this array and check the index for overflow. The compiler should have support for defining

an array of relative function pointers in a read-only section and access them with the call

table instruction.

Other function pointers. Most uses of function pointers can be covered by the methods de-

scribed above. Other uses of function pointers should be avoided in high security applica-

tions, or the pointers should be placed in protected memory areas or with unpredictable

addresses.

Control access rights of application programs

The executable file header of an application program should include information about which

kinds of operations the application needs permission to. This may include permission to various

network activities, access to particular sensitive files, permission to write executable files and

scripts, permission to install drivers, permission to spawn other processes, permission to inter-

process communication, etc. The user should have a simple way of checking if these access

rights are acceptable. We may implement a system for controlling the access rights of scripts as

well. Web page scripts should run in a sandbox.

Control access rights of device drivers

Many operating systems are giving very extensive rights to device drivers. Rather than having

a bureaucratic centralized system for approval of device drivers, we should have a more care-

ful control of the access rights of each device driver. The system call instruction in ForwardCom

gives a device driver access to only a limited area of application memory (see page 100). The

executable file header of a device driver should have information about which ports and sys-

tem registers the device driver has access to. The user should have a simple way of checking

if these access rights are acceptable.

Standardized installation procedure

The operating system should provide a standardized way of installing and uninstalling applica-

tions. The system should refuse to run any program, script or driver that has not been installed

through this procedure. This will make it possible for the user to review the access requirements

of all installed programs and to remove any malware or other unwanted software through the

normal uninstallation procedure.

Malware protection should be an integral part of the operating system, not a third-party add on

with possible compatibility problems and performance problems.
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Chapter 7

Programmable application-specific

instructions

Rather than implementing a lot of special instructions for specific applications, we may provide

a means for generating user-defined instructions which can be coded in a hardware description

language, e. g. VHDL or Verilog.

The microprocessor can have an optional FPGA or similar programmable hardware. This struc-

ture can be used for making application-specific instructions or functions, e. g. for coding, en-

cryption, data compression, signal processing, text processing, etc.

If the processor has multiple CPU cores then each core may have its own FPGA. The hardware

definition code is stored in its own cache for each core. The operating system should prevent,

as far as possible, that the same core is used for different tasks that require different hardware

codes. There may be features for allowing an application to monopolize an FPGA or part of it.

If it cannot be avoided that multiple applications use the same FPGA in the same CPU core, then

the code, as well as the contents of any memory cells in the FPGA, must be saved on each task

switch. This saving may be implemented as lazy, i. e. the contents is only swapped when the

second task needs the FPGA structure that contains code for the first task.

There must be instructions for accessing the user-defined functions, including means for input

and output, and for adapting to the latency of the user-defined functions.
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Chapter 8

Microarchitecture and pipeline design

The ForwardCom instruction set is intended to facilitate a consistent and efficient design of the

pipeline of a superscalar microprocessor. Instructions can have no more than one destination

operand, up to three source operands, a mask register, and a fallback register. A source operand

can be a register, a memory operand, or an immediate constant. An instruction cannot have

more than one memory operand. The total number of input registers to an instruction, including

source operands, mask, fallback, memory base pointer, index, and vector length specifier cannot

exceed five.

Some instruction formats have multiple immediate operand fields. Any extra immediate operand

field can be used for constant operands, option bits, memory offset, or array limit.

A high performance pipeline may be designed as superscalar with the following stages. Simple

designs may have fewer stages. The number of pipeline stages should be as few as possible in

order to reduce the latency of non-predicted jumps.

• Fetch. Fetching blocks of code from the instruction cache, one cache line at a time, or as

determined by the branch prediction machinery.

• Instruction length decode. Determine the length of each instruction. Distribute the first P in-

structions into each their pipeline, where P is the number of parallel pipelines implemented.

Excess instructions may be queued for the next clock cycle. The length of an instruction is

determined by two bits of the first code word in order to simplify this process.

• Instruction decode. Identify and classify all operands, opcode, and option bits. Determine

input and output dependencies. A consistent template system simplifies this step.

• Register read.

• Calculate address and length of memory operand. Check access rights.

• Instruction queue.

• Put instructions into reservation station.

• Read memory operand. Schedule for execution units. Do calculations that depend on im-

mediate operand only.

• Execution units.

• Retire or branch.

A disadvantage of register renaming and out-of-order execution is that it makes the pipeline long.

This increases the branch misprediction delay. A simpler design may have one or more in-order

pipelines for integer instructions in general purpose registers and one pipeline for vector regis-

ters. Such a design will have fewer pipeline stages, for example:

113



• Fetch. Fetching blocks of code from the instruction cache.

• Instruction decode. Identify and classify all operands, opcode and option bits. Determine

input and output dependencies.

• Register read. Read any registers needed for address calculation. Other register operands

are read as well if the values are available at this stage.

• Calculate address and length of memory operand. Check access rights.

• Read memory operand. Do calculations that depend on immediate operand only.

• Execution units.

It is not necessary to split read-operate instructions into micro-operations if the reading of mem-

ory operands is done in a separate pipeline stage and instructions are allowed to wait until the

memory operand has been read.

Each stage in the pipeline should ideally require only one clock cycle unless they are waiting

for an operand. Most instructions will use only one clock cycle in the execution unit. Multiplica-

tion and floating point addition need a pipelined execution unit with several stages. Division and

square root may use a separate state machine.

Jump, branch, call, and return instructions also fit into this pipeline design.

A reservation station has to consider all the input and output dependencies of each instruction.

Each instruction can have up to four or five input dependencies and one output dependency.

There may be multiple execution units so that it is possible to run multiple instructions in the

same clock cycle if their operands are independent.

An efficient out-of-order processing requires renaming of the general purpose registers and vec-

tor registers, but not necessarily the special registers.

Some current CPUs have a “stack engine” in order to predict the value of the stack pointer for a

push, pop, or call instruction when preceding stack operations are delayed due to operands that

are not available yet. Such a system is not needed if we have a separate call stack (see page

105). The depth of function calls in most programs is so small that even a moderately small on-

chip call stack would rarely need to spill to main memory.

Branch prediction is important for the performance of a CPUs with long pipelines. We may imple-

ment four different branch prediction algorithms: one for ordinary branches, one for loops, one

for indirect jumps, and one for function returns. The long form of branch instructions have an op-

tion bit for indicating loop behavior. The short form of branch instructions does not have space

for such a bit. The initial guess may be to assume loop behavior if the branch goes backwards

and ordinary branch behavior if the branch goes forwards. This assumption may be corrected

later, if necessary, by the branch prediction machinery. The code following a branch may be ex-

ecuted speculatively until it is determined whether the prediction was right. We may implement

features for running both sides of a branch speculatively at the same time. Other ways of reduc-

ing branch misprediction delays are discussed on page 116 below.

A full out-of-order design with register renaming requires a lot of chip space for a reservation sta-

tion typically holding hundreds or pending instructions and hundreds or rename-able temporary

registers, including vector registers. A simpler design may prioritize the chip space differently.

Instead of a large reservation station, we may have more execution pipelines. Each pipeline is

processing its instructions in order, but instructions may execute out of order as long as there are

vacant pipelines.
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8.1 Vector design

The chip layout of a vector processor is typically divided into “data lanes”. An efficient design

may divide the vector processing into multiple lanes of 64 (or 128) bits each. Each lane would

have its own register file containing a 64-bit slice of each vector register. There would be very

little necessary communication between the lanes as long as the output data stay in the same

lane as the input data.

The ForwardCom design allows large vector processors with very long vector registers. The pri-

ority of a particular design may be either to have one vector pipeline with very large vectors, or

multiple pipelines with a smaller maximum vector lenght.

A consequence of this lane layout is that transfer of data between the lanes is likely to be slower.

We may have one or more data buses connecting the lanes, but long distance connections is

often a limited resource. This means that instructions that transfer data horizontally across a vec-

tor, such as permute instructions, may have longer latencies than other vector instructions.

The scheduler may need to know the instruction latency, and this can be a problem if the latency

depends on the distance of data transfer on very long vectors. This problem is addressed by

indicating the vector length or the distance of data transfer for such instructions in a separate

operand, which always uses the RT register field. This information may be redundant because

the vector length is stored in the vector register operands, but the scheduler may need this infor-

mation as early as possible. The other register operands are typically not ready until the clock

cycle where they go to the execution unit, while the vector length is typically known earlier. The

microprocessor can read the RT register at the address calculation stage in the pipeline, where

it also reads any pointer, index register and vector length for memory operands. This allows the

scheduler to predict the latency a few clock cycles earlier. The instruction set provides the ex-

tra information about vector length or data transfer length in the RT register for instructions that

involve horizontal data transfer, including memory broadcast, permute, insert, extract, and shift

instructions, but not broadcasting of immediate constants.

Each vector lane may have its own data cache. This may be easier to implement than one big

data cache with a data bus as wide as the maximum vector length. This solution will be efficient

as long as large data arrays are aligned to addresses divisible by the maximum vector length,

but it will be less efficient if data arrays are misaligned. The data traffic to cache and memory is

often the limiting bottleneck in modern computer systems. A system with a separate data cache

for each vector lane will make it feasible to have a larger total cache size. This may be a useful

alternative to having multiple CPU cores. Data transfer between the lanes will be slower than

if we have one cache servicing all lanes, but faster than data transfer between different CPU

cores. Whether this is an efficient solution depends on the amount of data permutation needed

in a specific application.

8.2 Complex instructions

Some current systems are using a microcode ROM to implement very complex instructions, such

as mathematical functions. This has turned out to be inefficient. The use of microcode should be

avoided in ForwardCom processors.

A limited amount of complexity can still be implemented with the flexible design of format tem-

plates in ForwardCom. Instructions that do multiple things can be useful because they allow the

code to do more work per instruction. Complex instructions should only be implemented if they fit

into the streamlined template system, pipeline, and timing constraints.

A number of complex instructions have been implemented because they offer a definite advan-

tage at relatively low hardware costs. The most complex instructions may be implemented with

state machines rather than microcode. The following instructions have complex functionality:
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• Instructions with memory operand can calculate a memory address, read the value of the

memory operand, and do some calculation on this operand. Multiformat instructions can

have a memory operand with a choice of different addressing modes. This feature has sig-

nificant hardware costs because it requires a few extra pipeline stages, but it has a high

advantage because it allows a single instruction to do what traditionally requires several

instructions in a pure RISC design.

• Combined arithmetic and branch instructions. All branches depend on the result of some

arithmetic or logic operation. Rather than saving the result of the arithmetic instruction in

a flag and then make a branch depending on the flag, it is more efficient to combine these

two operations into one instruction. The CPU needs the circuitry for both arithmetic and

branching anyway, and there are no big costs to combining these two circuits.

• Loop instructions. It is possible to implement a loop with a single instruction. This instruc-

tion can increment a loop counter, compare it with a limit, and branch back if the limit has

not been reached. This fits into the general framework of combined arithmetic and branch

instructions. Timing problems can be overcome by doing most of the compare operation

in parallel with the increment. Another efficient way of making a loop is to decrement a

counter down to zero. The special vector loop (see page 12) is also implemented with a

single instruction.

• Switch-case statements can be coded efficiently with the jump_relative instruction. This

instruction can read a relative pointer from a table of jump addresses, convert it to an ab-

solute address, and jump to this address. Function dispatching can be coded in the same

way with the call_relative instruction. These instructions are straightforward to implement in

hardware because they fit into the general pipeline design.

• Compare instructions with extra boolean operands. Boolean variables are generated by

compare instructions and bit test instructions. Boolean variables are often used as input to

boolean operations such as AND, OR, XOR. The compare and bit test instructions can use

mask registers and fallback registers as extra boolean operands to be combined with the

result of the compare. This makes it possible to combine the results of multiple compare

operations without the extra instructions or branches for AND, OR, etc. This feature is quite

cheap to implement in hardware.

• mul_add and add_add. These instructions have significant hardware costs for floating point

operands. The integer versions are less costly.

• Division and square root. These have high costs in the hardware budget.

• Push and pop instructions. These instructions are complicated to implement in hardware

because they require extra functionality in the decoder to generate multiple micro-operations.

They do not require extra functionality in the execution unit. These instructions are so use-

ful that it is recommended to implement them despite the extra complexity.

• System calls, traps, and interrupts. These are complicated to implement, but necessary in

many cases. They may not be needed in small embedded systems.

• cmp_swap and other instructions for atomic memory operations. This is complicated to

implement, but necessary for efficient mutexes in multithreaded systems.

8.3 Proposals for reducing branch misprediction delay

Modern superscalar processors often have quite long pipelines. This gives a long branch mis-

prediction delay. The branch misprediction delay is normally equal to the number of pipeline

stages from a branch instruction is fetched until it is executed.
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It may be possible to reduce this delay by executing branch instructions as early as possible in

the pipeline. Any preceding instructions that a branch instruction depends on may also be ex-

ecuted early. It is proposed to execute all control transfer instructions (branch, jump, call, and

return) in the front end of the pipeline, before any register renaming and scheduler. Any preced-

ing instruction that a branch depends on, could likewise be executed in the front end. This idea

is somewhat similar to the principle described in the article:

Sheikh, Rami, James Tuck, and Eric Rotenberg. “Control-Flow Decoupling.” In Proceedings of

the 2012 45th Annual IEEE/ACM International Symposium on Microarchitecture, 329–340. IEEE

Computer Society, 2012. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
952.6936&rep=rep1&type=pdf

The vision is this: There are two sets of ALU’s, one in the front end used for control flow and sim-

ple integer instructions, and one in the back end used for all other calculations. The front end

does not use register renaming, but relies on the permanent register file.

In most cases, the control flow depends only on simple integer operations such as increment-

ing a loop counter. The front end ALU’s should be able to handle simple integer operations on

general purpose registers. The front end may handle all simple integer instructions on general

purpose registers if the operands are available. If the capacity of the front end ALU’s is insuffi-

cient then it may prioritize instructions on those registers that have recently been used as loop

counters or branch conditions, but it may be cheaper to implement a few extra ALU’s to increase

the front end capacity than to implement such a mechanism for prioritization.

Instructions that are executed in the front end use the permanent register file for both input and

output. The remaining instructions are sent to the out-of-order back end that may use register

renaming. All general purpose register operands are replaced by their value if the value is avail-

able before the instruction is sent to the back end. Instructions that execute in the front end may

write their result not only to the permanent register file but also to any pending instruction that

needs it.

The result of this mechanism is that a loop that is controlled only by simple instructions on gen-

eral purpose registers will be unrolled in the front end. The instructions in the loop body may be

passed on to the back end with the loop counter replaced by its value. The back end may have

register renaming so that it can execute the body of the second iteration before it has finished

the body of the first iteration, etc.

All other control flow, such as branches, jumps, calls, returns, etc., will be unrolled in the front

end as well so that control flow is effectively resolved before execution as far as it does not de-

pend on delayed data.

The front end may support a minimum of out-of-order execution in the sense that an instruction

that is waiting for an operand should not delay any independent subsequent instructions. But

the front end does not need a complicated structure with a long queue, register renaming, and

scheduler.

The front end should have access to the permanent register file, while the back end may use

temporary registers with register renaming. The renamed registers will be written to the perma-

nent register file when they retire. We have to keep track of whether the permanent registers are

up to date. When the decoder sees an instruction that writes to a register, it will mark this reg-

ister as invalid in the permanent register file and add a tag to tell which instruction it belongs to.

When this instruction is executed (whether in the front end or the back end), the register entry is

marked as valid if the tag is matching the instruction that delivered the result.

The front end may fetch and decode speculatively, but not execute speculatively. It may even

fetch both sides of a branch that it expects to have poor prediction. Fetching both sides of a

branch becomes cheaper here than with a traditional superscalar design because it only needs

to duplicate two pipeline stages (fetch and decode) in order to minimize branch misprediction de-

lays.
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The fetch and decode stages should have higher throughput than the rest of the pipeline so that

it can catch up and fill the pipeline after a branch delay. The fetch stage should be able to fetch a

large block of code in one clock cycle. The decoder should be able to decode the first one or two

instructions in a fetched code block in the first clock cycle, and determine the starting points of

the remaining instructions. This will allow it to decode maybe four or more instructions in the sec-

ond clock cycle after fetching a block of code. The aim of this is to keep the branch misprediction

delay as low as possible.

Multi-way branches with a jump table are particularly critical here because they have a memory

operand that may be delayed due to a cache miss. Implementing memory access in the front

end may be too complicated. Therefore, such instructions probably have to go to the back end.

The out-of-order mechanism may give high priority to these instructions and execute them as

soon as the register operands are available. Jump tables are normally placed in the read-only

memory block (see page 119). The speed of access to jump tables may be increased by having

a separate cache for read-only memory.

An extra advantage of this design is that the registers used in memory operands for pointer, in-

dex, and vector length are likely to be available early so that memory operands can be fetched

before they are needed.

The demand for advanced branch prediction is somewhat relaxed if we can drastically reduce

the branch misprediction delay with the measures described here. The branch prediction ma-

chinery in modern processors is very complicated and requires a lot of chip space for branch tar-

get buffers and pattern/history tables. We can cut down on this and use a simpler branch predic-

tion scheme if branches are resolved in the front end. A few extra ALU’s in the front end will use

much less chip space than an advanced branch prediction mechanism.

The early processing of jumps and branches is also possible with a simpler design without regis-

ter renaming and out-of-order processing. We may have a fast-track in-order pipeline for branches

and simple integer instructions without memory operands. Branches often depend only on loop

counters and other simple calculations in general purpose registers. These instructions can be

executed in the fast-track pipeline in most cases, while the more complicated loop body instruc-

tions go to a longer full-featured pipeline. Direct call and return instructions can be executed very

early in the pipeline if we have an on-chip call stack because the call stack pointer is indepen-

dent of the other instructions and registers.
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Chapter 9

Memory model

ForwardCom has a flat address space using unsigned 64-bit addresses and 64-bit pointers. Fu-

ture extension to 128-bit addresses is possible, but this will probably not be relevant in a foresee-

able future.

Absolute addresses are rarely used. Most data objects, functions and jump targets are addressed

with signed offsets of 32 bits or less relative to some reference point contained in a 64-bit pointer.

This pointer can be the instruction pointer (IP), the data section pointer (DATAP), the thread data

pointer (THREADP), the stack pointer (SP), or a general purpose register.

An application can have access to the following sections of data:

• Program code (CODE). This memory block is executable, but usually without read and

write access. The CODE section can be shared between multiple processes running the

same program.

• Read-only program data (CONST). This contains constants and tables used by the pro-

gram without write access. It may be shared between multiple processes.

• Static read/write program data sections, which can be initialized (DATA) and uninitialized

(BSS). This is used for global data and for static data inside functions. Multiple instances

are needed if multiple processes are running the same code.

• Stack data (STACK). This is used for non-static data inside functions. Each process or

thread has its own stack, with addresses relative to the stack pointer. The stack grows

downward from high to low addresses when data are added to the stack.

• Thread data (THREADD). Allocated when a thread is created and used for thread-local

static data and thread environment block. This has one instance for each thread.

• Program heap (HEAP). Used for dynamic memory allocation by an application program.

References within the CODE section use 8-bit, 16-bit, 24-bit, and 32-bit signed offsets relative to

the instruction pointer, scaled by the code word size which is 4 bytes.

A CONST section may be placed either near the CODE section and addressed relative to the

instruction pointer (IP), or together with the other data sections and addressed relative to the the

data section pointer (DATAP).

The DATA and BSS sections are addressed relative to the data section pointer (DATAP) which

is a special register that points to some reference point in these sections. The default reference

point is where DATA ends and BSS begins. Multiple running instances of the same program will

have different values of the data section pointer. The CODE and CONST sections contain no

absolute references to DATA or BSS, only references relative to the data section pointer. This

makes it possible for multiple processes to share the same CODE and CONST sections, but

have each their private DATA and BSS sections without the need for virtual address translation.
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The DATA and BSS sections can be placed anywhere in the address space independently of

where CONST and CODE are placed.

STACK data are addressed relative to the stack pointer (SP). Heap data are addressed through

pointers provided by a heap allocation function.

Thread data are addressed relative to the thread data pointer (THREADP), which is separate for

each thread in the process. The thread data section may be allocated on the stack when a new

thread is created.

The STACK, DATA, BSS, and HEAP data sections are preferably kept together in one contigu-

ous block in order to optimize caching and memory management.

This model allows the program to access up to 8 GB of CODE, 2 GB of CONST, 2 GB of DATA,

2 GB of BSS, 2 GB of THREADD, an almost unlimited size of STACK with 2 GB frames, and an

almost unlimited amount of HEAP data.

A pointer to the CONST section may be provided in the thread environment block in order to ac-

cess CONST data in case the CONST section is placed with a distance of more than 2 GB from

IP or DATAP or if the CONST section is relocated independently of CODE and DATA.

9.1 Padding space

Any read/writeable data section that is not followed by another readable section may have an un-

used space at the end, at least the size of the maximum vector length. The purpose of this extra

space is to make it possible for the pop instruction to read more than necessary when restoring

a vector of unknown length, and to make it possible to search for the end of a zero-terminated

string without having to read only a single byte at a time. This does not apply to IP-addressed

read-only data sections that contain no strings, because a variable-size unused space between

the constant section and the code section would make it necessary to recalculate relative ad-

dresses when a program is loaded on a system with a different maximum vector length, which

would reduce the advantage of position-independent code.

An alternative solution is to allow vector reads that begin in a readable section to extend past

the end of the readable section without raising an exception. The vector part that is outside the

permitted section must get the value zero. This method has the advantage that the space is in-

dependent of the maximum vector length. It remains to be investigated which of these two solu-

tions is most efficient.

9.2 Stack direction

Most microprocessor systems have the data stack growing backwards. This also applies to the

ForwardCom system, but mainly for a different reason. When a vector register is saved on the

stack by the push instruction, it is stored as the length followed by the amount of data indicated

by the length. When the vector register is restored using the pop instruction, it is necessary to

read the length followed by the data. The stack pointer must point to the low end where the length

is stored, otherwise it would be impossible to find where the length is stored.

It is possible to make additional stacks growing forwards or backwards, but any stack containing

variable-length vectors must grow backwards.
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9.3 Thread memory protection

Each thread has its own stack. The thread data (THREADD) may be placed on this stack. The

ForwardCom system allows inter-thread memory protection. The stack data of the main thread

of a program is accessible to all its child threads, but all other threads in the program can have

private data which is not accessible to any other threads, not even to the main thread. Any com-

munication and synchronization between threads must use static memory or memory belonging

to the main thread.

It is recommended to use this inter-thread memory protection in all cases except where legacy

software requires one memory space shared by all threads.

Isolated memory blocks

It is possible to make a system function that allocates an isolated memory block surrounded by

inaccessible memory on both sides. Such a memory block, which will be accessible only to a

specific thread, can be used for example for a data buffer in cases where security requirements

are high. Each thread can have only a limited number of such protected memory blocks because

of the limited size of the memory map.

9.4 Memory management

It is a design goal to minimize memory fragmentation and to minimize the need for virtual ad-

dress translation. Traditional designs have very complicated memory management systems with

translation-lookaside-buffers (TLB), huge page tables, and address translation in up to five lev-

els. The fixed page size means that memory is wasted when allocating a memory page bigger

than needed.

The reason why most current systems have large page tables with fixed-size memory pages is

that this is the only efficient way to look up an address in a heavily fragmented memory space.

The ForwardCom design can minimize or eliminate memory fragmentation. This is achieved

in several ways explained below. If there are only a few memory blocks visible to a particular

thread, then it is possible to have variable-size memory blocks. It requires only a limited num-

ber of hardware comparators to look up an address in a table of only a few memory blocks with

variable size. The ambition is to replace the TLB and the large page tables indexing a large num-

ber of fixed-size memory blocks by a memory map with a few memory blocks of variable size.

A memory map with such a limited number of entries can be implemented on the CPU chip in a

very efficient way and it can easily be changed on task switches. Each process and each thread

must have its own memory map.

In simple cases, the main thread of an application will only need three blocks of memory: CONST

(read only), CODE (execute only), and the combined STACK+DATA+BSS+HEAP (read-write). A

child thread needs one more entry if it has a private stack. Similar blocks are defined for system

code.

The memory map supports virtual address translation in the form of a constant offset that defines

the distance between the virtual address and the physical address for each map entry. The hard-

ware should not waste time and power on virtual address translation when it is not used.

A limited number of extra entries are needed in the memory map to deal with cases where mem-

ory fragmentation is unavoidable. The following techniques are provided to simplify memory

management and avoid memory fragmentation:

• There is only one type of function libraries which can be used for both static and dynamic

linking. These are linked with a mechanism that keeps the CONST, CODE and DATA sec-
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tions of library functions contiguous with the similar sections of the main program. It is de-

scribed on page 136 how this avoids memory fragmentation and improves caching.

• The required stack size is calculated by the compiler and the linker so that stack overflow

can be avoided in most cases. This technique is described on page 138.

• The operating system can keep statistical records of the heap use of each program in order

to predict the required heap size. The same technique can be used for predicting stack use

in cases where the required stack size cannot be predicted exactly (e. g. recursive function

calls).

The memory space may become fragmented despite the use of these techniques. Problems that

can result in memory fragmentation are listed below.

• Recursive functions can use unlimited stack space. We may require that the programmer

specifies a maximum recursion level.

• Allocation of variable-size arrays on the stack using the alloca function in C. We may re-

quire that the programmer specifies a maximum size.

• Runtime linking. The program can reserve space for loading and linking function libraries

at run time (see page 136). The memory may become fragmented if the memory space

reserved for this purpose turns out to be insufficient.

• Script languages and byte code languages. It is difficult to predict the required size of stack

and heap when running interpreted or emulated code. It is recommended to use a just-in-

time compiler instead. Self-modifying scripts cannot easily be compiled. The same problem

can occur with large user-defined macros.

• Unpredictable number of threads without protection. The required stack size for a thread

may be computed in advance, but in some cases it may be difficult to predict the number of

threads that a program will generate. Multiple threads can share the same code sections,

but they need separate stacks. The stack of a thread can be placed anywhere in memory

without problems if inter-thread memory protection is used. But if memory is shared be-

tween threads and the number of threads is unpredictable then the shared memory space

may become fragmented.

• Unpredictable heap size. Programs that process large amounts of data, e. g. multimedia

processing, may need a large heap. A program heap can use discontiguous memory, but

this will require extra entries in the memory map. The operating system may allocate extra

heap memory in exponentially increasing amounts in order to minimize the number of new

allocated blocks.

• Lazy loading and code overlay. A large program may have certain code units that are rarely

used and loaded only when needed. Lazy loading can be useful to save memory, but it

may require virtual memory translation and it may cause memory fragmentation. This prob-

lem may be solved by implementing such code as function libraries with runtime loading

and reserving sufficient memory for this purpose at load time. However, lazy loading is

rarely used today where RAM memory is cheap.

• Hot patching, i. e. updating of code while it is running.

• Shared memory for inter-process communication. This requires extra entries in the mem-

ory map as explained below.

• Many programs running. The memory can become fragmented when many programs of

different sizes are loaded and unloaded randomly or swapped to memory.
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• Memory mapping of files and devices. This practice should be avoided if possible. Mem-

ory mapping may still be the most efficient method in case of very large files with random

access, such as large databases.

A recommended remedy against overflow of stack and heap is to place the STACK, DATA, BSS

and HEAP data together (in this order) in an address range with large unused virtual address

spaces below and above, so that the stack can grow downwards and the heap can grow up-

wards into the vacant spaces. This method can avoid fragmentation of the virtual address space,

but not the physical address space. Fragmentation of the physical address space can be reme-

died by moving data from a memory block of insufficient size to another block that is larger. This

method has the cost of a time delay when the data block is moved.

If runtime linking runs into memory problems and lack of memory map entries then it is allowed

to mix CONST and CODE sections together in a common section with both read and execute ac-

cess. If a library function contains constant data that originate from an untrusted source, while

the code is trusted, then it is preferred to put the untrusted data into the DATA section rather than

the CONST section in order to prevent execution of malicious code placed in the CONST sec-

tion.

An application that needs many independent memory blocks may make a separate thread or

sub-process to service each memory block. Each thread has its own memory map with an entry

for its private memory block.

Shared memory can be used when there is a need to transfer large amounts of data between

two processes. One process shares a part of its memory with another process. The receiving

process needs an extra entry in its memory map to indicate read and/or write access rights to the

shared memory block. The process that owns the shared memory block does not need any extra

entry in its memory map. There is a limit to how many shared memory blocks an application can

receive access to if we want to keep the memory map small. If one program needs to communi-

cate with a large number of other programs then it is most efficient to let the program that needs

many connections own the shared memory and give each of its clients access to each one part

of it. Another possibility is to run a separate thread for each connection.

Executable code can be shared between different processes running the same application, but

not between different applications. A function that is used by multiple different applications will

usually be placed in a function library that these applications are using. The mechanism of inter-

process calls must be used if one application needs to call a function in another application. This

is described on page 128.

Software that relies heavily on memory mapping should be avoided. As the trend in microproces-

sor technology goes towards an increasing number of CPU cores, it should be possible to give

critical applications and critical threads each their core with its own memory space so that con-

text switching and memory fragmentation can be avoided or minimized.

Memory sizes have grown exponentially for several decades thanks to Moore’s law. The extra

memory is used mostly for data, while code sizes have grown less. The size of compiled library

functions grows only linearly with the complexity. This means that we can now afford to reserve

sufficiently large memory blocks for runtime linking to prevent any memory fragmentation.

Conclusion

We can probably keep memory fragmentation low by using the principles discussed here so that

a relatively small memory map for each thread will be sufficient to cover normal cases. This will

be much more efficient than the TLB, large page tables, and multilevel address translation of

current designs. We can avoid the cost of TLB misses and page faults, and it will make task

switches faster. The actual size of the memory map will depend on the hardware implementa-

tion. Difficult cases where an on-chip memory map is insufficient must be handled by traditional
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page tables with fixed-size pages or perhaps a B-tree or similar data structure with variable-size

pages. The code and central parts of the data can still be fitted into the on-chip memory map for

fast access.

This system puts the priority on performance-critical applications. The programmer will be able

to get top performance by observing some discipline to avoid memory fragmentation, for exam-

ple by recycling allocated memory. However, the system should also be able to run less well-

behaved applications. Applications that cause heavy memory fragmentation are probably built

with less regard for performance. The system should have methods to allow such applications

to work, but we can regard it as acceptable to make a system that prioritizes the performance of

well-behaved applications at the cost of inferior performance for applications that cause heavy

memory fragmentation.
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Chapter 10

System programming

The system instructions have not been fully defined yet. There is more work to do making an ef-

ficient system design. However, the first experimental implementations of ForwardCom do not

include an operating system so the details of system design do not have to be fixed yet. It is pre-

ferred to spend more time on optimizing the system design rather than to define a complete stan-

dard at this stage of development.

There should be at least three different levels of privilege:

• The system core has the highest privilege level. Memory management and thread schedul-

ing takes place here. This is the only part that can modify memory maps and control ac-

cess rights at the lower levels.

• Device drivers and system plugin modules have carefully controlled access rights. A struc-

ture similar to the memory map (see page 121) gives a device driver access to the partic-

ular range of input/output ports and system registers that it needs. A user application can

give a device driver read and write access to a specific range of the data memory it owns.

This is done through the system call instruction. A device driver has no access to the code

memory of the application that calls it. This means that callback function pointers cannot be

used with system calls.

• An application program has access to only the memory that is allocated to it or shared with

it. Memory belonging to a thread is usually not shared with other threads in the same pro-

cess. Application programs have access to a few system registers and no input/output

ports.

Transitions between these levels are managed by the system call and system return instructions

and by traps and interrupts.

There are various system registers for control purposes. In addition, there may be two sets of

registers used for temporary storage, one set for the device driver level and one for the system

core level. The temporary registers for the device driver level are cleared for security reasons

every time a device driver is called. These registers are used mainly for temporary saving of the

general purpose registers.

10.1 Memory map

There are three kinds of memory access: read, write, and execute access. These kinds of ac-

cess are separate, but can be combined. For example, execute access does not imply read ac-

cess. Write access and execute access should not be combined because self-modifying code is

discouraged and because writable code cannot be shared between multiple processes.

The memory map is usually stored inside the CPU chip. Each entry has three fields: A virtual

address (up to 64 bits), access rights (3 bits), and an addend for address translation (up to 64

bits). There is no memory paging. Instead, the memory blocks have variable sizes.
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The entries in the memory map must be kept sorted at all times so that each memory block ends

where the next block begins. The addresses must be divisible by 8 or some higher power of 2.

Each thread has its own memory map. A typical memory map for an application thread may look

like this.

Table 10.1: Example of memory map

Start address Access Addend Comment

0x10000 Read 0 CONST section

0x10100 Execute 0 CODE section

0x10800 None 0 Belongs to other processes

0x20000 Read, Write 0 Main STACK, DATA, BSS, and HEAP

0x24000 None 0 Belongs to other processes

0x30000 Read, Write 0 Thread STACK, thread environment

block, and tread static data

0x32000 None 0 The rest belongs to other processes

There may be a few further entries for memory blocks shared between processes and for other

purposes. A virtual memory block may have multiple entries in case the memory becomes frag-

mented. The addends are used for keeping the virtual addresses of the block contiguous while

the physical addresses are noncontiguous. The start addresses are virtual memory addresses.

The size of the memory map is variable. The maximum size depends on the hardware imple-

mentation. An aligned scalar data access cannot cross a memory map boundary. A vector ac-

cess cannot cross more than one memory map boundary.

There may be multiple memory maps on the chip, one for each privilege level. This makes tran-

sitions between the levels fast. The chip space used for memory maps may be reconfigurable so

that the memory maps of multiple processes can remain on the chip in case the memory maps

are small. This makes task switching faster.

The memory maps are controlled at the system core level. The instructions read_memory_map

and write_memory_map may use the vector loop mechanism for fast manipulation of memory

maps.

The methods described on page 121 for avoiding memory fragmentation are important for keep-

ing the memory maps small.

Task switches can be fast because we have replaced the large page tables and translation-lookaside-

buffer (TLB) of traditional systems with a small on-chip memory map. This makes the system

suitable for real-time operating systems.

10.2 Call stack

It is preferred to have a separate call stack as discussed on page 105.

The two-stack system has the call stack stored inside the CPU rather than in RAM memory. A

method is required for saving this stack to memory in case it overflows. This method may use

vector-size memory access. It should be possible to manipulate the call stack for task switches

and for stack unwinding.

10.3 System calls and system functions

Calls to system functions are made with a system call instruction (sys_call). The system func-

tions are identified by ID numbers rather than addresses. Each ID number consists of a function

ID in the lower half and a module ID in the upper half. The module ID identifies a system module
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or device driver. The system core has ID = 0 and basic system functions have ID = 1. Each part

of the ID can be either 16 bits or 32 bits so that the combined ID is 32, 48, or 64 bits.

System add-on modules and device drivers do not necessarily have fixed ID numbers because

this would require some central authority to assign these ID numbers. Instead, the program will

have to translate the module name to an ID number before the first call to a module. This trans-

lation is done by a system function with a fixed ID number. The functions within a module can

have fixed or variable ID numbers.

The ID number of a system function can be put into the program in three ways:

1. The most important system functions have fixed ID numbers which can be inserted at com-

pile time.

2. The ID number can be found at load time in the same way as load-time linking works. The

loader will find the ID number and insert it in the code before running the program.

3. The ID number is found at run time before the first call to the desired function.

The calling convention for system functions is the same as for other functions, using registers for

parameters and for return value. The registers used for parameters are determined by the gen-

eral calling convention. The calling conventions are described in chapter 11.4. The parameter

registers should not be confused with the operands for the system call instruction.

The system call instruction can have four operands. The first operand (RD) is a pointer to a mem-

ory block that may be used for transferring data between the calling program and the system

function. The second operand (RS) is a register containing the size of this memory block. The

third operand is the module ID specified as a constant. The fourth operand is the function ID

specified as a constant. The last two two parameters may be combined into a 64-bit register.

The calling thread must have access rights to the memory block that it shares with the system

function. This can be read access or write access or both. These access rights are transferred to

the system function. The system function has no access rights to any other part of the applica-

tion’s memory.

A system call that contains zero-terminated strings must provide access to at least 256 bytes be-

yond the end of the string so that the system function does not have to read only a single charac-

ter at a time when searching for the end of the string.

It is not possible to use callback function pointers with a system call because executable memory

cannot be shared with a system function. If necessary, the system function can call an exported

function provided by the application, using the method for inter-process calls described below.

Device driver functions may use separate stacks. The system call goes first to the system core

which assigns a stack to the device driver function and makes a memory map for it before dis-

patching the call to the desired function. Preferably, no stack is used during this dispatching. The

two registers identifying a shared memory block are copied to special registers which are acces-

sible to the called system function. The system function runs in the same thread as the applica-

tion that called it, but not with the same stack.

The old values of instruction pointer, stack pointer, and DATAP are saved in system registers, to

be restored when returning to the application code.

System functions, device drivers and interrupt handlers are allowed to use all general purpose

registers and vector registers if they are saved and restored according to the normal calling con-

ventions. Interrupt handlers must save and restore all registers they use.

A method is provided to get information about the register use of system functions so that it is

possible to call them using the register usage conventions of either method 1 or method 2, de-

scribed on page 134. The stack use of system functions is irrelevant for the caller because they

do not use the stack of the calling application program.
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Some important system functions must be standardized and must be available in all operating

systems. This will make it possible, for example, to make a third-party function library that works

in all operating systems, even if this library needs to call system functions. It will also make it

easier to adapt a program for different operating systems. The list of system functions that might

be standardized includes functions for thread creation, thread synchronization, setting thread

priority, memory allocation, time measurement, system information, etc.

There should be a selection of system libraries providing the most common user interface forms,

such as graphical user interface, console mode, and server mode. These user interface system

libraries should be provided for each operating system that the architecture can run on, so that

the same executable program can run in different operating systems simply by linking with the

appropriate user interface library when the program is installed. Such user interface libraries

may be based on existing platform-independent GUI libraries such as, e. g., wxWidgets or QT.

All user interface libraries must support the error_message function mentioned below.

10.4 Inter-process calls

Inter-process calls are mediated by a system function. This works in the following way. An appli-

cation program can export a function with an entry in its executable file header. Another applica-

tion can get access to this exported function by calling a system function that checks for permis-

sion and switches the memory map, the DATAP and THREADP registers and the stack pointer

before calling the exported function, and switches back before returning to the caller. The call

will appear as a separate thread to the called program. The general purpose registers and vector

registers can be used for parameters and return value in the same was as for normal functions.

This mechanism does not generate any shared memory between caller and callee. Therefore,

the exported function must use only simple types that fit into registers for its parameters and re-

turn type. A block of memory can be shared between the two processes as described on page

123.

10.5 Error message handling

There is a need for a standardized way of reporting errors that occur in a program. Many current

systems fail to satisfy this need, or they use methods that are not portable or thread-safe. In par-

ticular, the following situations would benefit from such a standard.

1. A function library detects an error, for example an invalid parameter, and needs to report

the error to the calling program. The calling program will decide whether to recover from

the error or terminate.

2. A trap is generated because of a data error. The program fails to catch it as an exception,

or the programming language has no support for structured exception handling. The oper-

ating system must make an informative error message.

3. A program can run in different environments that require different forms of error reporting.

4. A function library, a class library, or any other piece of code needs to report an error with-

out knowing which user interface paradigm is used (e. g. console mode or graphical user

interface or server mode). It needs a standardized way of reporting the error to the operat-

ing system or to the user interface framework, which must present an error message to the

user in the way that is appropriate for the user interface (e. g. pop up a message box, print

to stderr, print to a log file, or send a message to an administrator).

It is proposed to define a standard library function named error_message for this purpose. All

user interface frameworks must define this function. It is possible to choose between different

128



versions of this function when the program is installed by linking with the appropriate user inter-

face library. The main program may override this function by defining its own function with the

same name.

The error_message function must have the following parameters: a numerical error code, a string

pointer giving an error message, and another string pointer giving the name of the function where

the error occurred. These strings are coded as zero-terminated UTF-8 strings. The error mes-

sage is in the English language by default. It is not reasonable to require support for many dif-

ferent languages (see this link for a discussion of problems with internationalization). Instead, a

manual in the desired language can contain a list of error codes.

The error message string may include numerical values and diagnostic information, such as the

value of a parameter that is out of range.

The error_message function may or may not return. If it returns then the function that called it

must return in a graceful way. The error_message function may alternatively terminate the appli-

cation or it may raise an exception or trap which is handled by the operating system in case the

exception is not caught by the program.
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Chapter 11

Standardization of ABI and software

ecosystem

The goal of the ForwardCom project is a vertical redesign that defines new standards not only for

the instruction set, but also for the software that uses it. This will have the following advantages:

• Different compilers will be compatible. The same function libraries can be used with differ-

ent compilers.

• Different programming languages will be compatible. It will be possible to compile differ-

ent parts of a program in different programming languages. It will be possible to compile a

function library in a programming language different from the program that uses it.

• Debuggers, profilers, and other development tools will be compatible.

• Different operating systems will be compatible. It will be possible to use the same function

libraries in different operating systems, except if they use system-specific functions.

The System programming chapter (p. 125) described standardization of system calls, system

functions, and error messaging. The present chapter discusses standardization of the following

aspects of the software ecosystem:

• Compiler support.

• Binary data representation.

• Function calling conventions.

• Register usage conventions.

• Name mangling for function overloading.

• Binary format for object files and executable files.

• Format and link methods for function libraries.

• Exception handling and stack unwinding.

• Debug information.

• Assembly language syntax.

11.1 Compiler support

Compilers can have three different levels of support for variable-length vector registers.
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Level 1

The compiler will not use variable-length vectors. The compiler can call a vector function in a

function library with a scalar parameter if the function is not available in a scalar version.

Level 2

The compiler can call vector functions, but not generate such functions. The compiler can vector-

ize a loop automatically and call a vector library function from such a loop.

Level 3

Full support. The compiler supports data types for variable-length vectors. These data types can

be used for variables, function parameters, and function returns. Variable-length vectors can not

be included in structures, classes, or unions because such composite types must have known

sizes. Variable-length vectors cannot be stored in static and global variables. General operations

on variable-length vectors can be specified explicitly, including options for applying boolean vec-

tor masks and fallback values.

Other compiler features

The compiler may support relative pointers and pointer arithmetic on function pointers in order

to write compact call tables with relative addresses (see page 164). The difference between two

function pointers should be scaled by the code word size, which is 4. Without this feature, the

function pointers have to be type cast to integer pointers and back again.

The compiler may have support for detecting integer and floating point overflow and other nu-

merical errors using one of the methods discussed on page 108.

The compiler may support array bounds checking using the indexed addressing mode with bounds

or simple conditional jumps to an error function.

11.2 Binary data representation

Data are stored in little-endian form in RAM memory. See page 104 for the rationale.

Integer variables are represented with 8, 16, 32, 64, and optionally 128 bits, signed and unsigned.

Signed integers use 2’s complement representation. Integer overflow wraps around, except in

saturated arithmetic instructions.

Floating point numbers are coded with half precision (16 bits), single precision (32 bits), and dou-

ble precision (64 bits). Support for quadruple precision (128 bits) is optional. Floating point num-

bers are coded in the binary format according to the IEEE 754-2019 standard, or later. Subnor-

mal numbers are supported for half precision. Support for subnormal numbers in other preci-

sions is optional.

Floating point errors are preferably indicated with NAN payloads as explained on page 106,

rather than with traps. Trapping of signaling NANs is not required. Error information in NAN pay-

loads is propagated as discussed on page 107. The highest payload is propagated when two

different NANs are combined.

Boolean variables are stored as integers of at least 8 bits with the values 0 and 1 for FALSE

and TRUE. Only bit 0 of the boolean variable is used, while the other bits are ignored. This rule

makes it possible to use boolean variables as masks and to implement boolean functions such

as AND, OR, XOR, and NOT in an efficient way with simple bitwise instructions, rather than the

method used in many current systems that have a branch for each variable to check if the whole
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integer is nonzero. A branch instruction is needed in the compilation of expressions like (A && B)

and (A || B) only if the evaluation of B has side effects.

All variables not bigger than 8 bytes stored in memory must be kept at their natural alignment.

Arrays not smaller than 8 bytes must be aligned to addresses divisible by 8. It may be recom-

mended to align large arrays by the maximum vector length or by the cache line size.

Multidimensional arrays are stored in row-major order, except where the programming language

makes this impossible.

Text strings may be stored in language-dependent forms, but a standardized form is needed for

system functions and for functions that are intended to be compatible with all programming lan-

guages. The proposed standard uses UTF-8 encoding. The length of the string may be deter-

mined by a terminating zero or a length specifier, or both. The rationale is this. The CPU pro-

cessing time is insignificant for text strings of a length suitable for human reading. The priority

is therefore on compactness. Compactness matters if the string is stored in a file or transmitted

over a network. UTF-8 is more compact than UTF-16 in most cases, though less compact for

some Asian languages. UTF-8 is the most common encoding used on the Internet.

11.3 Further conventions for object-oriented languages

Object oriented languages require further standards for the binary representation of special fea-

tures such as virtual function tables, runtime type identification, member pointers, etc.

These details must be standardized within each programming language for the sake of compati-

bility between different compilers, and if possible also between different programming languages

that have compatible features.

Member pointers should be implemented in a way that prioritizes good performance in the gen-

eral case where only a simple offset (to data) or a pointer (to a function) is required, while addi-

tional information for contrived cases of multiple inheritance is added only when needed. Data

member pointers contain the offset to the data member relative to the “this” pointer, while the

value -1 represents a NULL member pointer.

11.4 Function calling convention

Function calls will use registers for parameters as much as possible. Integers of up to 64 bits,

pointers, references, and boolean scalars are transferred in general purpose registers. Vec-

tor parameters can have variable length. Floating point scalars, vectors of any type with a fixed

length of up to 16 bytes, and vectors of variable length are transferred in vector registers.

The first 16 parameters to a function that fit into a general purpose register are transferred in reg-

ister r0 – r15. The first 16 parameters that fit into a vector register are transferred in v0 – v15.

The length of a variable-length vector parameter is contained in the same vector register that

contains the data.

Composite types are transferred in vector registers if they can be considered ”simple tuples” no

bigger than 16 bytes. A simple tuple is a structure or class or encapsulated array for which all

non-static elements have the same type, which is not a pointer or a reference. A union is treated

as a structure according to its first element.

Parameters that do not fit into a single register are transferred by a pointer to a memory object

allocated by the caller. This applies to: structures and classes with elements of different types,

or bigger than 16 bytes. It also applies to objects that require special handling such as a non-

standard copy constructor or destructor, and objects that require extra implicit storage such as
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tables of virtual member functions. It is the responsibility of the caller to call any copy constructor

and destructor.

If there are not enough registers for all parameters then the additional parameters are provided

in a list, which can be stored anywhere in memory. A pointer to this parameter list is transferred

in a general purpose register. Such a list is also used if there is a variable argument list. There

can be no more than one parameter list, as the same list is used for all purposes.

The rules for a parameter list are as follows. A parameter list is used if there are more than 16

parameters that fit into a general purpose register, if there are more than 16 parameters that fit

into a vector register, or if there is a variable argument list. If there are less than 16 general pur-

pose parameters then these parameters are put in general purpose registers, and the next va-

cant general purpose register is used as pointer to the list. If there are 16 or more general pur-

pose parameters, and a parameter list is needed for any reason, then the first 15 general pur-

pose parameters are put in r0-r14, the list pointer is in r15, and the remaining general purpose

parameters are put in the list. If there are more than 16 vector parameters then the first 16 vector

parameters are put in v0-v15 and the remaining vector parameters are put in the list. All param-

eters in the list are placed in the order they appear in the function definition, regardless of type.

Variable arguments are placed last in the list because they always appear last in a function defi-

nition.

The list consists of entries of 8 bytes each. A general purpose parameter uses one entry. A vec-

tor parameter with a constant size of 8 bytes or less uses one entry. A vector parameter with a

constant size of more than 8 bytes or a variable size uses two entries in the list. The first entry

is the length (in bytes) and the second entry is a pointer to an array containing the vector. A pa-

rameter that would not fit into a register, if one was vacant, is transferred by a pointer in the list

according to the same rules as if the pointer was in a register.

The parameter list belongs to the called function in the sense that it is allowed to modify param-

eters in the list if they are not declared as constant parameters. The same applies to arrays and

objects with a pointer in the list. The caller can rely on parameters in the list being unchanged

only if they are declared constant. The caller must put the list in a place where it cannot be modi-

fied by other threads.

Function return values follow the following rules: A single return value is returned in r0 or v0, us-

ing the same rules as for function parameters.

Multiple return values of the same type are treated as a tuple if possible and returned in v0 if the

total size is no more than 16 bytes.

A function with two return values will use two registers for return, using two of the registers r0,

r1, v0, v1 as appropriate, if each of the two values will fit into a single register according to the

above rules. For example, a function can return a result in v0 and an error code in r0. Or a func-

tion can return two vectors of variable length.

In all cases where the return value or set of return values does not fit into at most two registers

according to the above rules, the return value is placed in a space allocated by the caller through

a pointer transferred by the caller in r0 and returned in r0. Any constructor is called by the callee.

A “this” pointer for a class member function is transferred in r0, except if r0 is used for a return

object. In this case the “this” pointer is transferred in r1.

Rationale

It is much more efficient to transfer parameters in registers than on the stack. The present pro-

posal allows up to 32 parameters, including variable length vectors, to be transferred in registers,

leaving 15 general purpose registers and 16 vector registers for the function to use for other pur-
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poses while handling the parameters. This will cover almost all practical cases, so that parame-

ters only rarely need to be stored in memory.

Nevertheless, we must have precise rules for covering an unlimited number of parameters if

the programming language has no limit to the number of function parameters. We are putting

any extra parameters in a list rather than on the stack as most other systems do. The main rea-

son for this is to make the software independent of whether there is a separate call stack or the

same stack is used for return addresses and local variables. The addresses of parameters on

the stack would depend on whether there is a return address on the same stack. The list method

has further advantages. There will be no disagreement over the order of parameters on the stack

and whether the stack should be cleaned up by the caller or the callee. The list can be reused by

the caller for multiple calls if the parameters are constant, and the called function can reuse a

variable argument list by forwarding it to another function. The function is guaranteed to return

properly without messing up the stack even if caller and callee disagree on the number of param-

eters. Tail calls are possible in all cases regardless of the number and types of parameters.

11.5 Register usage convention

Most systems have rules that certain registers have callee-save status. This means that a func-

tion must save these registers and restore them before it returns, if they are used. The caller can

then rely on these registers being unchanged after the function call.

Current systems have a problem with assigning callee-save status to vector registers. Future

CPU versions may make the vector registers longer, and the instructions for saving the longer

registers have not been defined yet. Some systems now have callee-save status on part of a

vector register because of poor foresight. It is impossible in current systems to save a vector

register in a way that will be compatible with future extensions.

This problem is solved by the ForwardCom design with variable vector length. It is possible to

save and restore a vector register of any length, even if this length was not supported at the time

the code was compiled. It is also possible to know how much of a long vector register is actually

used, because the length of a vector is saved in the register itself, so that we only need to save

the part of the register that is actually used. The push and pop instructions are designed for this

purpose (see page 61). Unused vector registers will use only little space for saving.

It still takes a lot of cache space to save the vector registers if they are long. Therefore, we want

to minimize the need for saving registers. It is proposed to have two different methods to choose

between. These methods are explained here.

Method 1

This is the default method which can be used in all cases, but not the most efficient method.

The rule is simply that registers r16 – r31 and v16 – v31 have callee-save status.

A function can use registers r0 – r15 and v0 – v15 freely. Sixteen registers of each type will be

sufficient for most functions. If the function needs additional registers, it must save them.

All system registers and special registers have callee-save status, except in functions that are

intended for manipulating these registers.

Method 2

It will be more efficient if we actually know which registers are used by each function. If function

A calls function B, and A knows which registers are used by B, then A can simply choose some

registers that are not used by B for any data that it needs to save across the call to B. Even a
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long chain of nested function calls can avoid the need to save any registers as long as there are

enough registers.

If function A and B are compiled together in the same process then the compiler can easily man-

age this information. But if A and B are compiled separately, then we need to store the neces-

sary information about which registers are used. This is possible with the object file format de-

scribed on page 136. The information about register use must be saved in the compiled object

file or library file, not in some other file that could possibly come out of sync.

Function B is preferably compiled first into an object file. This object file must contain information

about which registers are modified by function B. The necessary information is simply a 64-bit

number with one bit for each register that is modified (bit 0-31 for r0-r31, and bit 32-63 for v0-

v31). Any registers used for parameters and return value are also marked if they are modified by

the function.

When function A is compiled next, the compiler can look in the object file for B to see which reg-

isters it modifies. The compiler can take advantage of this information and choose some reg-

isters not modified by B for data that need to be saved across the call to B. Registers that are

modified by B can be used in A for temporary variables that do not need to be saved across the

call to B. Likewise, it will be advantageous to use the same register for multiple temporary vari-

ables if their live ranges do not overlap, in order to modify as few registers as possible. The ob-

ject file for A will contain a list of registers modified by A, including all registers modified by B and

by any other functions that A may call. The object file for A contains a reference to function B.

This reference must contain information about which registers A expects B to modify. If B is later

recompiled, and the new version of B modifies more registers, then the linker will detect the dis-

crepancy and prompt for a recompilation of A.

If, for some reason, A is compiled before B or no information is available about B when A is com-

piled, then the compiler will have to make assumptions about the register use of B. The default

assumption is as specified in method 1. Function A may later be recompiled if B violates these

assumptions, or simply to improve efficiency.

If two functions A and B are mutually calling each other then the easiest solution is to rely on

method 1. The functions should still include the information about register use in their object

files.

The compiler should preferentially allocate the lower registers first in order to minimize the prob-

lem that different library functions use different registers. It may skip r6 and v6 for the caller to

use for masks.

The main program function is allowed to use method 2 and to modify all registers if it includes

the necessary information in its object file.

Object files that are contained in a function library must include the information about register

use.

System functions and device drivers cannot be accessed in the same way as normal library func-

tions (see page 126). System functions must obey the rules for method 1, but the system should

provide a method for getting information about the register use of each system function. This can

be useful for just-in-time compilers.

11.6 Name mangling for function overloading

Programming languages that support function overloading use internal names with prefixes and

suffixes on the function names in order to distinguish between functions with the same name

but different parameters or different classes or namespaces. Many different name mangling

schemes are in use, and some are undocumented. It is necessary to standardize the name man-
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gling scheme in order to make it possible to mix different compilers or different programming lan-

guages.

The most common name mangling schemes are Microsoft and Gnu. The Microsoft scheme uses

characters that cannot occur in function names (?@$). This prevents name clashes, but makes

it impossible to call the mangled name directly or to translate e. g. C++ to C. The Gnu scheme

generates mangled names that look unwieldy, but contain no special characters that prevent

calling the mangled name directly. Therefore, the proposal is to use the Gnu mangling scheme

(version 4 or later) with necessary additions for variable-length vectors, etc.

Functions with mangled names may optionally supplement the mangled name with the simple

(non-mangled) name as a weak public alias in the object file. This makes it easier to call the

function from other programming languages without name mangling. The weak linking of the

alias prevents the linker from making error messages for duplicate names.

The compiler must prefix an underscore to all symbol names for languages that do not use name

mangling, such as C, in order to avoid name clashes with reserved names in the assembler.

11.7 Binary format for object files and executable files

The ELF file format is used for ForwardCom because it is the most flexible and well-structured

format in common use.

The details of the ELF format for ForwardCom are specified in a file named elf_forwardcom.h.

The official specification of the ForwardCom ELF file format resides in this file and nowhere else.

This specification includes details for section types, symbol types, relocation types, etc. Addi-

tional information about event handlers (see page 170), register use (see page 134) and stack

use (see page 138) is included in the file format.

Relinkable executable files are similar to non-relinkable files but contain more relocation records.

The relocation records are discarded when an executable file is loaded.

File names must have extensions that indicate their type. The following extensions are preferred:

Assembly code: .as, object file: .ob, library file: .li, executable file: .ex.

11.8 Function libraries and link methods

Dynamic link libraries (DLLs) and shared objects (SOs) are not used in the ForwardCom system.

Instead, ForwardCom is using only one type of function libraries that can be used in several dif-

ferent ways:

1. Static linking. The linker finds the required functions in the library and copies them into the

executable file. Only the parts of the library that are actually needed by the specific main

program are included. This is the normal way that static libraries are used in current sys-

tems (.lib files in Windows, .a files in Unix-like systems such as Linux, BSD, and Mac OS).

2. Relinking. The library can be linked or relinked into the executable during the installation

process. There may be a selection of different libraries for different platforms. Third party

libraries may also be added in this way. The library may be updated at any time, if needed,

by the relinking method without updating the main program.

3. Run-time linking. The required function is extracted from the library and loaded into mem-

ory, preferably at a memory space reserved for this purpose by the main program. The new

function is accessed through a pointer. Any reference from the newly loaded function to

other functions, whether already loaded or not, can be resolved in the same way as for

static linking.
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4. Plugin extensions. Extensions to an existing program can be added by the relinking method.

Such extensions can be called through the event handler mechanism or by weak linking.

See page 148.

These methods will improve the performance and remedy many of the problems that we en-

counter with the traditional DLLs and SOs. It also helps solve the frequent problems with missing

or incompatible library versions.

A typical program in Windows and Unix systems will require several DLLs or SOs when it is loaded.

These dynamic libraries will all be loaded into each their memory block, using an integral number

of memory pages each, and possibly scattered over the memory space. This leads to a waste of

memory space and poor caching. A further performance disadvantage with shared objects is that

they use procedure linkage tables (PLT) and global offset tables (GOT) for all accesses to public

functions and variables in order to support the rarely used feature of symbol interposition. This

requires a lookup in the PLT or GOT for every access to a function or variable in the library, in-

cluding internal references to globally visible symbols. Windows DLLs use import tables that are

similar to PLT.

The ForwardCom system replaces the traditional dynamic linking with the methods listed above,

which will make the code just as efficient as with static linking because the library sections are

contiguous with the main program sections, and all access is immediate with no intermediate

tables.

A traditional DLL or SO can share its code section (but not its data section) between multiple run-

ning programs that use the same library. A ForwardCom library can share its code section be-

tween multiple running instances of the same program, but not between different programs. The

amount of memory that is wasted by possibly loading multiple instances of the same library code

is more than compensated for by the fact that we are loading only the part of the library that is

actually needed and that the library does not require its own memory pages. It is not uncommon

in Windows and Unix systems to load a dynamic library of one megabyte and use only one kilo-

byte of it.

These linking methods are efficient in the ForwardCom system because of the way relative ad-

dresses are used. The main program typically contains a CONST section immediately followed

by a CODE section. The CONST section is addressed relative to the instruction pointer so that

these two sections can be placed anywhere in memory as long as they have the same posi-

tion relative to each other. Now, we can place the CONST section of the library function before

the CONST section of the main program, and the CODE section of the library function after the

CODE section of the main program. We don’t have to change any cross-references in the main

program. Only cross references between the main program and the library function and between

the CODE and CONST sections of the library function have to be calculated by the linking or re-

linking process and inserted in the code.

A library function does not necessarily have any DATA and BSS sections. In fact, a thread-safe

function has little use of static data. However, if the library function has any DATA and BSS sec-

tions, then these sections can be placed anywhere within the ± 2GB range of the DATAP pointer.

The references in the library function to its static data have to be calculated relative to the point

that DATAP points to; but no references to data in the main program have to be modified when

a library is added as long as DATAP still points to some point in the DATA or BSS sections of the

main program.

The combined main program and library files can now be loaded into any vacant spaces in mem-

ory. It will need only three entries in the memory map: (1) the combined CONST sections of li-

brary and main program, (2) the combined CODE sections of main program and library func-

tions, and (3) the combined STACK, DATA, BSS, and HEAP of the main program and the library

functions.

Run-time linking works slightly differently. The reference from the main program to the library
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function goes through a function pointer that is provided when the library is loaded. Any refer-

ences the other way – from the library function to functions or global data in the main program –

can be resolved in the same way as for static linking or through pointer parameters to the func-

tion. The main program should preferably reserve space for the CONST, CODE and DATA/BSS

sections of any libraries that it will load at run time. The sizes of these reserved spaces are pro-

vided in the header of the executable file. The loader has considerable freedom to place these

sections anywhere it can in the event that the reserved spaces are insufficient. The only require-

ments are that the CONST section of the library function is within a range of ± 2GB of the CODE

section of the library, and the DATA and BSS sections of the library are within ± 2GB of DATAP.

The library function may be compiled with a compiler option that tells it not to use DATAP. The

function will load the absolute address of its DATA section into a general purpose register and

access its data with this register as pointer.

11.9 Predicting the stack size

In most cases, it is possible to calculate exactly how much data stack space an application needs.

The compiler knows how much stack space it has allocated in each function. We only have to

make the compiler save this information. This can be accomplished in the following way. If a

function A calls a function B then we want the compiler to save information about the difference

between the value of the stack pointer when A is called and the stack pointer when A calls B.

These values can then be summed up for the whole chain of nested function calls. If function

A can call both function B and function C then each branch of the call tree is analyzed and the

value for the branch that uses most stack space is used. If a function is compiled separately into

its own object file, then the information must be stored in the object file.

A function can use any amount of memory space below the address pointed to by the data stack

pointer (a so-called red zone) if this is included in the stack size reported in the object file, pro-

vided that the system has a separate system stack.

The amount of stack space that a function uses will depend on the maximum vector length if full

vectors are saved on the stack. All values for required stack space are linear functions of the

vector length: Stack_frame_size = Constant + Factor · Max_vector_length. Thus, there are two
values to save for each function and branch: Constant and Factor. We need separate calcula-

tions for each thread and possibly also information about the number of threads. We need to

save separate values for the call stack and the data stack. The size of the call stack does not

depend on the maximum vector length.

The linker will add up all this information and store it in the header of the executable file. The

maximum vector length is known when the program is loaded, so that the loader can finish the

calculations and allocate a stack of the calculated size before the program is loaded. This will

prevent stack overflow and fragmentation of the stack memory. Some programs will use as many

threads as there are CPU cores for optimal performance. It is not essential, though, to know how

many threads will be created because each stack can be placed anywhere in memory if thread

memory protection is used (see page 121).

Avoiding virtual address translation

In theory, it is possible to avoid the need for virtual address translation if the following four condi-

tions are met:

• The required stack size can be predicted and sufficient stack space is allocated when a

program is loaded and when additional threads are created.

• Static variables are addressed relative to the data section pointer. Multiple running instances

of the same program have different values in the data section pointer.
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• The heap manager can handle fragmented physical memory in case of heap overflow.

• There is sufficient memory so that no application needs to be swapped to a hard disk.

A possible alternative to calculating the stack space is to measure the actual stack use the first

time a program is run, and then rely on statistics to predict the stack use in subsequent runs.

The same method can be used for heap space. This method is simpler, but less reliable. The

calculation of stack requirements based on the compiler is sure to cover all branches of a pro-

gram, while a statistical method will only include branches that have actually been used.

We may implement a hardware register that measures the stack use. This stack-measurement

register is updated every time the stack grows. We can reset the stack-measurement register

when a program starts and read it when the program finishes. This method can be useful if the

program contains recursive function calls. We do not need a hardware register to measure heap

size. This information can be retrieved from the heap manager.

These proposals can eliminate or reduce memory fragmentation in many cases so that we only

need a small memory map which can be stored on the CPU chip. Each process and each thread

will have its own memory map. However, we cannot completely eliminate memory fragmenta-

tion and the need for virtual memory translation because of the complications discussed on page

121.

11.10 Exception handling, stack unwinding, and debug information

Executable files must contain information about the stack frame of each function for the sake

of exception handling and stack unwinding for programming languages that support structured

exception handling. It should also be used for programming languages that do not support struc-

tured exception handling in order to facilitate stack tracing by a debugger.

This system should be standardized. It is recommended to use a table-based method that does

not require a stack frame register.

Debuggers need information about line numbers, variable names, etc. This information should

be included in object files when requested. The debug information may be copied into the exe-

cutable file or saved in a separate file which is stored together with the executable file. It is yet to

be decided which system to use.

11.11 Assembly language syntax

The definition of a new instruction set should include the definition of a standardized assembly

language syntax. The syntax should be suitable for human processing, not only for machine

processing. We must avoid a situation similar to the x86 environment where many different syn-

taxes are in use, with different instruction names and different orders of the operands.

ForwardCom is using an assembly language syntax that looks similar to C and Java in order to

make it more intelligible to high-level language programmers and to avoid any confusion over

what is source and destination of an instruction. The details are described on page 152.
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Chapter 12

Support for multiple instruction sets

Amicroprocessor may support multiple instruction sets. It will be useful for compatibility with

legacy software that a microprocessor with support for ForwardCom also supports one or more

older instruction sets. Such a microprocessor will have different modes, one for each instruction

set. Instructions of different instruction sets cannot be mixed freely. Virtualization support might

be useful so that we can have one virtual machine for each instruction set.

The transitions between ForwardCom and other instruction sets can be implemented with in-

structions dedicated to this purpose or with software interrupts or system calls.

If mode transitions are allowed only in system code then it is not necessary to save any registers

across the mode switch. But if mode transitions are possible also in application code then the

following principles should be applied:

• The instruction that makes the mode switch must be aligned to an address divisible by 4.

• The hardware or operating system must make sure that all general purpose registers are

preserved across a mode switch between ForwardCom and another instruction set if simi-

lar registers exist in the other instruction set.

• The software must set up stack pointers and other special registers immediately before or

after the mode switch.

• The software must take care of differences in function calling conventions between the two

modes.

• The hardware or operating system must make sure that the contents of at least the first

eight vector registers is preserved across the mode switch. The remaining vector registers

must be cleared if they are not preserved.

• If the target instruction set has a lower maximum vector length than the actual length of a

vector register before conversion, then the length is truncated to the maximum length for

the target instruction set.

• The vector length information is lost in the transition from ForwardCom to another instruc-

tion set if the other instruction set has no similar way of representing vector length.

• The length of each vector register is set to a value that is sufficient to contain the nonzero

part of the register, or longer, when converting from another instruction set to ForwardCom,

Details that are specific to a particular other instruction set are discussed in the following sec-

tions.
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Transitions between ForwardCom and x86-64

Transitions between ForwardCom and the x86-64 instruction set (with the AVX512 extension)

involve the following registers:
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Table 12.1: ForwardCom and x86-64 registers

x86-64 Forward-

Com

Comments

rax r0

rcx r1

rdx r2

rbx r3

rsp r4 Stack pointer. Must be set before or after

conversion to x86-64.

rbp r5

rsi r6

rdi r7

r8 - r15 r8 - r15

r16-r30 Not converted

r31 Stack pointer. Must be set after conversion to

ForwardCom.

flags Flags register. Not converted.

k0 - k7 Mask registers. Not converted.

zmm0 -

zmm7

v0 - v7 Vector registers. Converted.

zmm8 -

zmm31

v8 - v31 Vector registers. Converted or cleared.

It is possible to make multi-mode functions that can be called from either ForwardCom or x86-64

mode in the following way. The first four bytes of the multi-mode function consist of a short x86-

64 jump instruction, which is two bytes long, followed by two bytes of zero. The jump leads to an

x86-64 implementation of the code. The four bytes will be interpreted as a NOP (no operation)

if the processor is in ForwardCom mode. After this follows a ForwardCom implementation of the

function.

Transitions between ForwardCom and ARM

Transitions between ForwardCom and the ARM (AArch64) instruction set involve the following

registers:

Table 12.2: ForwardCom and ARM registers

ARM Forward-

Com

Comments

r0 - r30 r0 - r30

r31 r31 Stack pointer in both instruction sets

v0 - v7 v0 - v7 Vector registers. Converted

v8 - v31 v8 - v31 Vector registers. Converted or cleared

p0 - p15 Predicate registers. Not converted

The Scalable Vector Extensions (SVE) is a future extension to the ARM architecture that allows

the length of vector registers to vary from 128 to 2048 bits in increments of 128 bits. The vec-

tor length in SVE is apparently controlled through predicate masks. The vector length informa-

tion cannot be converted to ForwardCom because there is no unambiguous connection between

each vector register and the predicate register that contains the length information.
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Transitions between ForwardCom and RISC-V

Transitions between ForwardCom and the RISC-V instruction set involve the following registers:

Table 12.3: ForwardCom and RISC-V registers

RISC-V Forward-

Com

Comments

x0 Always zero.

x1 - x31 r1 - r31 General purpose registeers. x1 = link register,

x14 = stack pointer, x15 = thread pointer.

f0 - f7 v0 - v7 Floating point and vector registers. Converted.

f8 - f31 v8 - v31 Floating point and vector registers. Converted

or cleared.

The SIMD / Vector Extensions to RISC-V are not fully developed yet (January 2017). It is there-

fore too early to tell whether the vector length information can be converted in a useful way dur-

ing transitions between ForwardCom and RISC-V.
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Chapter 13

Binary tools

All the basic development tools for ForwardCom except compilers are combined into a single

executable file named forw or forw.exe.

The tools can be run using the following command lines:

assemble forw -ass assemblyfile objectfile

disassemble forw -dis objectfile assemblyfile

link forw -link exefile objectfiles libraryfiles

relink forw -relink inputfile outputfile objectfiles libraryfiles

make library forw -lib libraryfile objectfiles

emulate forw -emu exefile

debug forw -emu exefile -list=debugout.txt

dump forw -dump objectfile

help forw -help

General options:

The following options can be used with most or all of the commands listed above:

@file read additional command line options or file names from file.

-ilist=file alternative instruction list file.

-wdNNN disable Warning NNN.

-weNNN treat Warning NNN as Error. -wex: treat all warnings as errors.

-edNNN disable Error number NNN.

-ewNNN treat Error number NNN as Warning.

A list of instructions is stored separately in a comma-separated file named instruction_list.csv.

This file must be present when running the assembler, disassembler, or debugger. The format

for the instruction list is defined in table 4.1.

The tools are running in console mode and returning a status value which is nonzero in case of

error. This is useful when running the tools from a makefile, shell script, or Windows .bat file.

13.1 Assembler

Introduction

The assembler is using a syntax similar to C and Java in order to make the code intelligible to

high-level language programmers. The details are described in the programming manual in chap-

ter 14, page 152.
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Command line

The command line for the assembler has the following format:

forw -ass [options] assemblyfile objectfile

The following options are supported:

-list=name Make output list file. This is useful for checking the generated code.

-ilist=name Specify alternative instruction list name.

-b Make binary listing in -list file.

-O0 Optimization level 0: The assembler finds the smallest possible instruction that

fits the specified operands.

-O1 Optimization level 1 (default): An instruction may be replaced by an-

other instruction that does the same thing more efficiently. For example,

float v1 *= 4 can be replaced by float v1 = mul_2pow(v1, 2).
A conditional jump statement is merged with a preceding arithmetic instruc-

tion when possible. An if statement immediately followed by an unconditional
jump is converted to a single conditional jump.

-O3 Optimization level 3. Enable optimizations that ignore subnormal numbers. For

example, float v1 *= 0.25 can be replaced by float v1 = mul_2pow(v1,
-2).

-debug=1 Include debug information in object file. Currently, debug information includes

only label names.

-maxerrors=n Specify maximum number of error messages from the assembler.

-datasize=n Specify maximum combined size of writeable static data sections. Static data

can be accessed with 16 bit relative addresses if datasize ≤ 32000. This

makes the code more compact. See page 181.

-codesize=n Specify maximum combined size of code and read-only sections.

Inter-module jumps and call tables can use 16 bit relative addresses when

codesize ≤ 131000, and 24 bit relative addresses when codesize ≤ 33000000.

Read-only static data can be accessed with 16 bit relative addresses if code-

size ≤ 32000. See page 181.

The preferred extension for file names in ForwardCom are .as for assembly files and .ob for ob-

ject files.

13.2 Disassembler

The disassembler can convert object files and executable files back to assembly language. The

command line for the disassembler has the following format:

forw -dis inputfile outputfile [options]

The following options are supported:

-ilist=name specify alternative instruction list name.

The disassembler produces output lines that may look like this example:

float v1 = add(v2, 2.5) // 002C _ 227_E 08.0 5 01.02.02.02 _ 4100 00

The comment is interpreted as follows:
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002C hexadecimal address relative to the beginning of the current section

227_E il, mode, and mode2 in the E2 format template. The last digit can indicate various

kinds of subdivision of the code format

08.0 operation code OP1 and OP2

5 operand type. 5 means float

01.02.02.02 register fields RD, RS, RT, RU

_ the mask field is unused in this case

4100 the 16-bit data field IM4 contains the value 2.5 in half precision. If the value had

been 2.6 we would need full precision and another code format

00 the IM5 field is unused in this case

The addresses shown are byte-addresses for data sections, but word-addresses (i.e. divided by

4) for executable code sections.

The disassembler is used internally to generate a list output for the assembler. The assembly

listing and the disassembly are very similar. The names of local labels are lost in the disassem-

bly unless the -debug option is used when assembling and linking. The disassembler will assign

label names of the form @_001 where original label names are missing or lost.

13.3 Linker

The linker joins object files and library files into an executable file.

The command line for the linker has the following format:

forw -link outputfile [options] objectfiles libraryfiles
forw -relink inputfile outputfile [options] objectfiles libraryfiles

The preferred extensions for file names in ForwardCom are .ob for object files, li. for library files,

and .ex for executable files.

Linking an executable file

The link command will create an executable file and overwrite any existing file with the same

name.

The following options are supported:

-a (Default) Add the following object files or library files to the executable.

-r The following object files or library files will be added as relinkable modules

so that they can be replaced later. The executable file will be relinkable.

-m Add the module(s) with the following name(s) from the previously specified

library, even when these modules are not needed for resolving external

references.

-d Delete the following relinkable modules or libraries from the executable file

(when relinking).

-u Allow the executable file to have unresolved external symbols. These sym-

bols can be added later when relinking the incomplete executable file. The

executable file will be relinkable.

-x Extract relinkable module from executable file. -xall = all relinkable modules.

-map=filename Make a link map showing addresses and sizes of sections.

-debug Add debugging information to the executable file. Currently, the only debug-

ging information is label names and section names.

-hex2 Make a file containing the executable code section in hexadecimal format,

with 2 32-bit words per line.
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This example will create an executable file from the modules file1.ob and file2.ob, and any mem-

bers of the library library3.li that may be needed:

forw -link -debug myprogram.ex file1.ob file2.ob library3.li

Making a relinkable executable file

A relinkable executable file is a file where some or all of the object modules and libraries can be

replaced later and new modules can be added. A relinkable executable file contains more infor-

mation about symbol names and cross-references than a non-relinkable. This extra information

is used only when relinking, it is not loaded into memory when the program is executed.

Any of the modules that are included in a relinkable executable file can be relinkable or non-

relinkable. The relinkable modules can be removed or replaced later. The non-relinkable mod-

ules are permanent.

This example produces a relinkable executable file where all of the modules are relinkable:

forw -link myprogram.ex -r file1.ob file2.ob library3.li

This example produces a relinkable executable file where file1.ob is permanent and the remain-

ing modules are relinkable:

forw -link myprogram.ex -a file1.ob -r file2.ob library3.li

This example produces a relinkable executable file where all the modules are permanent, but

new modules can be added later:

forw -link myprogram.ex -a file1.ob file2.ob library3.li -r

This example produces a relinkable executable file where file1.ob and file2.ob are permanent,

library3.li is relinkable, and module4.ob from library3.li is added explicitly. Note that module4.ob

will be lost by subsequent relinking if there is no reference to it because it is stored as a relink-

able library module:

forw -link myprogram.ex -a file1.ob file2.ob -r library3.li -m module4.
ob

You can list the relinkable modules contained in an executable file with the dump command:

forw -dump -m myprogram.ex

Relinking an executable file

The relink command will modify an existing relinkable executable file and produce a new relink-

able executable file with a different name. The options are the same as above.

This example will relink an executable file, replacing file2.ob by file2b.ob and replacing library3.li

by a newer version of this library with the same name:

forw -relink myprogram.ex myprogram2.ex -d file2.ob -r file2b.ob
library3.li
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Adding a plugin to a relinkable executable file

You can use the relinking feature to add a plugin to a relinkable executable file.

There are two ways in which the program can access the plugin. The first method is to define a

weak external function in the main program and make a public function with the same name in

the plugin module. Calling this function will have no effect if the plugin module is not present.

The other way is to define an event handler in the plugin module. This event handler will be called

if the event occurs, for example when a menu item is clicked.

This example will add a plugin module plugin4.li to a relinkable executable file. The member

start.ob in plugin4.li is added explicitly. The remaining members of plugin4.li are added only if

there is a reference to them.

forw -relink myprogram.ex myprogram2.ex -r plugin4.li -m start.ob

Extracting a module from a relinkable executable file

You can extract modules from a relinkable executable file. This feature is used mainly for test-

ing and debugging purposes. The extracted file is not guaranteed to be identical to the original

object file.

forw -relink myprogram.ex myprogram2.ex -x file1.ob

The output file will be written to the current directory and have a name with prefix ”x_”. ”-xall” will

extract all relinkable modules. The output executable file (myprogram2.ex in the above example)

is specified but not used.

Relinking and library functions

A library function is included in an executable file only if there is a reference to it. The library

functions that are included in a relinkable executable file can be reused when relinking. If a later

addition or modification to the executable file needs a library function that was not included in the

original executable then the library has to be added again during relinking.

A relinkable library function in an executable file will be replaced during relinking if a new module

or library contains a function with the same name. A library function that was included as non-

relinkable in a relinkable executable file cannot be replaced later.

Relinking and communal sections

Communal sections are described on page 154. Communal sections have certain similarities

with library functions.

A communal section will not be included in the executable file if there is no reference to it. You

will get a linking error if a later addition or modification to the executable file attempts to refer-

ence a symbol in a discarded communal section. There are three ways to fix this problem:

• Make the section not communal

• Make a reference to the symbol in order to make sure it is always included in the executable

file

• Include a copy of the communal section in a module added when relinking
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A communal section in a relinkable module will retain its properties. A communal section in a

non-relinkable module will become non-communal, and any weak symbols in this section will be-

come public and non-weak. If multiple communal sections with the same name are contained in

both relinkable and non-relinkable modules then the linker will include only one. A bigger section

is chosen before a smaller one. A section in an object file is chosen before a section in a library

file. Finally, the one that comes first on the command line is preferred.

Making a hexadecimal file

A hexadecimal file may be needed for coding a loader into ROM memory. The hexadecimal file

is generated in the same way as an executable file, using the -hex option. The output file will

contain the executable code section in hexadecimal format. The number of 32-bits per line is

specified as a suffix, e.g. -hex2 gives 2 words per line. Each line contains a hexadecimal num-

ber in big endian format.

13.4 Library manager

A function library is a collection of object files each defining one or more functions that can be

called from other modules. The library manager can make a function library and add or remove

modules in it.

The command line for the library manager has the following format:

forw -lib libraryfile [options] objectfiles

The following options are supported:

-a (Default) Add the following object files to the library. Any existing object file with the

same name will be replaced.

-d Delete the following object files from the library.

-l List object file members.

-l2 List object file members and their exported symbols.

-l3 List object file members and their exported and imported symbols.

-x Extract the following object files from the library.

-xall Extract all object files from the library.

If a library with the specified name already exists, then it will be modified by adding, deleting, or

replacing object files. The library will be created if it does not already exists.

The preferred extension for file names in ForwardCom are .ob for object files and .li for library

files.

The names of the object files are stored in the library without the file path so that they can be ex-

tracted on another computer with a different directory structure. The library cannot contain multi-

ple object files with the same name.

The ForwardCom system has only one type of library files. The same library can be used for

static and runtime linking and for relinking of an executable file.

A standard C library is provided with the name libc.li. A library of mathematical functions is pro-

vided with the name math.li. A lightweight version of libc.li is provided with the name libc-light.li

for the small softcore with limited capabilities and no system calls.
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13.5 Emulator and debugger

The emulator can execute a ForwardCom executable file on another platform. It is useful for

testing and debugging.

The command line for the emulator has the following format:

forw -emu executable_file [options]

The following options are supported:

-list=name Make list file with debug output.

-maxlines=n Maximum number of instructions in debug output list.

-ilist=name Specify alternative instruction list name.

The debug list output will show all executed instructions and their results. It is recommended to

use the -debug option when assembling and linking in order to preserve label names in the de-

bug output.

Interactive single-step debugging is currently not supported in the emulator.

The current version of the emulator supports all general instructions but only few system instruc-

tions. Integers of 8, 16, 32, and 64 bits are supported. Floating point numbers with half, single,

and double precision are supported. Quadruple precision is not supported. Only few instructions

with 128 bit integers are supported. Most optional features are supported by the emulator, in-

cluding exception handling, rounding control, and subnormal numbers.

13.6 Dump utililty

The dump utility can show metadata from object files and executable files.

The command line for the dump utility has the following format:

forw -dump-options object_file

The following options are supported:

f file header.

h section headers.

l link map.

s symbol table.

n string table.

r relocation records.

m relinkable modules.

13.7 Compiling the forw tools

These tools can be compiled for Windows, Linux, MacOS, and other platforms.

To compile for Windows using Visual Studio, use the project files forw.sln and forw.vcxproj.

To compile for Linux or other platforms using a Gnu or Clang compiler, use Gnu make with the

command make -f forw.make

See the file forwardcom_sourcecode_documentation for details.
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13.8 Code examples

A collection of code examples are provided in the examples folder. You can try an example by

assembling, linking, and emulating it as follows:

forw -ass hello.as

forw -link hello.ex hello.ob libc.li

forw -emu hello.ex
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Chapter 14

Programming manual

This manual is based primarily on assembly language. Instructions for other programming lan-

guages should be described in the manuals for the respective compilers.

14.1 Assembly language syntax

Introduction

The ForwardCom assembly language is standardized to avoid the confusion that we have seen

with other instruction sets. The basic syntax of an instruction looks like a function call:

datatype destination_operand = instruction(source_operands)

This syntax leaves no doubt about which operands are source and destination. You can also use

common operators, such as + - * / etc. instead of instructions that correspond to these operators.

Branches and loops can use conditional jump instructions or the high-level language keywords:

if, else, for, do, while, break, continue.

Before defining the syntax details we will look at a few examples.

The following example shows a function that calculates the factorial of an integer:

Example 14.1.

code section execute // define executable code section

// factorial function calculates n!
// input: r0, output: r0
_factorial function public
if (uint64 r0 <= 20) { // check for overflow, 64 bit unsigned

uint64 r1 = 1 // start with 1
while (uint64 r0 > 1) { // loop through r0 values

uint64 r1 *= r0 // multiply all values
uint64 r0-- // count down to 1

}
uint64 r0 = r1 // put result in r0
return // normal return from function

}
int64 r0 = -1 // overflow. return max unsigned value
return // error return
_factorial end // end of function
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code end // end of code section

The next example illustrates the use of the efficient vector loop described on page 12. It calcu-

lates the polynomial y = 0.5x2 − 4x + 1 for all elements of an array x and stores the results in an
array y.

Example 14.2.

data section read write datap // define data section
% arraysize = 100 // define constant
float x[arraysize], y[arraysize] // define arrays
data end // end of data section

code section execute // define code section

// This function calculates a polynomial on all elements of an
// array x and stores the results in an array y
_polyn function public
int64 r1 = address([x+arraysize*4]) // end of array x
int64 r2 = address([y+arraysize*4]) // end of array y
int64 r0 = arraysize*4 // array size in bytes = 400

for (float v0 in [r1-r0]) { // vector loop
float v0 = [r1-r0, length=r0] // read x vector
float v1 = v0 * 0.5 // 0.5 * x
float v1 -= 4 // 0.5 * x - 4
float v0 = v0 * v1 + 1 // (0.5 * x - 4) * x + 1
float [r2-r0, length=r0] = v0 // save y vector

}
return // return from function
_polyn end // end of function

code end // end of code section

While this looks very much like high-level language code, you have to explicitly specify which

register to use for each variable, and you cannot put more code on one line than fits into a sin-

gle instruction. In example 14.2, the line float v0 = v0 * v1 + 1 is allowed because it fits the

mul_add2 instruction, but we cannot write float v1 = v0 * 0.5 - 4 because this instruction

cannot have two immediate constants. The line int64 r1 = address([x+arraysize*4]) also
fits a single instruction because arraysize*4 can be calculated at assembly time (it involves
only constants) and the result can be added to the relative address of x by the linker. The only
thing the address instruction has to do at runtime is to add a constant to the datap pointer.

More code examples are given in chapter 14.3

File format

An assembly file can be in ASCII or UTF-8 format. An UTF-8 byte order mark is allowed at the

beginning of the file, but not required.

Whitespace can be spaces or tabs. The use of tabs is discouraged because different editors

may have different tabstops.
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Linefeeds can be UNIX style (\n), Mac style (\r), or Windows style (\r\n). There is no limit to the

line length.

Comments are C style: /* */ or //

Nested comments are allowed. This makes it possible to comment out a piece of code that al-

ready contains comments.

Sections

A section containing code or data is defined as follows:

name section options
...
name end

The following options can be defined for a section. Multiple options are separated by space or

comma.
read Readable data section.

write Writeable data section.

execute Executable code section. This does not imply read access. Write access is

usually not allowed for executable sections.

ip Addressed relative to the instruction pointer. This is the default for exe-

cutable and read-only sections.

datap Addressed relative to the data pointer. This is the default for writeable data

sections.

threadp Addressed relative to the thread data pointer. The section will have one

instance for each thread.

communal Communal section. Allows identical sections in different modules, where

only one of the communal sections with the same name is included by the

linker. Unreferenced communal sections may be removed. Public symbols

in communal sections must be weak.

uninitialized Data section containing only zeroes. The data of this section does not take

up space in object files and executable files.

exception_hand Exception handler and stack unwinding information.

event_hand Event handler information, including static constructors and destructors.

debug_info Debug information.

comment_info Comments, including copyright and required library names.

align=n Align the beginning of the section to an address divisible by n, which must

be a power of 2. The default alignment for executable sections is 4. The

default alignment for a data section is the size of the biggest data type in the

section. A higher alignment can be specified with the align directive.

Sections with the same name are placed consecutively in the executable file. They must have

the same attributes, except for alignment.

Sections with different names but the same attributes (except for alignment) are placed in alpha-

betical order in the executable file.

All code must be placed in executable sections. Data can be placed in read-only sections or

writeable sections. Read-only sections are used for constants and tables. Function pointers and

jump tables are preferably placed in read-only sections for security reasons.

Variables can be placed in writeable data sections, on the stack, or in registers.
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Registers

There are 32 general purpose registers r0 - r31, and 32 vector registers of variable length v0 -

v31.

r31 is the stack pointer, also called sp. r0 - r27 can be used as general pointers. r28 - r30 can

only be used as pointers if there is no offset or a scaled offset that fits into 8 bits. r0 - r30 can be

used as array indexes.

r0 - r6 and v0 - v6 can be used as masks. r0 - r30 and v0 - v30 can be used as fallback values.

The use of registers in function calls must obey the function calling conventions described in

chapter 11.4 and the regster usage conventions in chapter 11.5.

Names of symbols

The names of data symbols, code labels, functions, etc. are case sensitive. A name can consist

of letters a-z, A-Z, numbers 0-9, the special characters _ $ @, and unicode letters. A name can-

not begin with a number. There is no limit to the length of a name.

All names are prefixed with an underscore or mangled in some other way when compiling high-

level language code. This is to prevent high-level language names from clashing with assembly

keywords, register names, etc.

The names of keywords and instructions are not case sensitive. The following are reserved key-

words:

align
break broadcast
capab0-capab31 case comment_info communal constant continue
datap debug_info do double
else end event_hand exception_hand execute extern
fallback false float float16 float32 float64 float128 for function
if in int int8 int16 int32 int64 int128 ip
length limit
mask
option options
perf0-perf31 pop public push
r0-r31 read
scalar section sp spec0-spec31 string switch sys0-sys31
threadp true
uint8 uint16 uint32 uint64 uint128 uninitialized
v0-v31
weak while write

Constant expressions

Integer constants can be expressed in the following ways:
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decimal numbers contains only digits 0-9

Numbers beginning with 0 are interpreted as decimal, not octal.

binary numbers 0b followed by digits 0-1

octal numbers 0O followed by digits 0-7

hexadecimal numbers 0x followed by digits 0-9, a-f

character constants 1-8 ASCII characters enclosed in single quotes ’ ’. The first char-

acter will be contained in the lowest byte of a 64 bit integer. For

example ’AB’ = 0x4241

imported constant extern name: constant

difference between ad-

dresses

symbol1 - symbol2. The two symbols must have the same base

pointer, either ip, datap, threadp, or none.

Integer constants can be combined with all common operators:

+ - * / % & | ^ ~ && || ! << >> < <= > >= == != ?:

The operators have the same order of precedence as in C.

Additional operators not found in C are:

>>> shift right unsigned,

^^ logical exclusive or.

The results are calculated as signed 64-bit integers, except for >>> which is unsigned.

Imported constants and differences between addresses cannot be allowed in general calcula-

tions. The only operations allowed for these are addition of a local constant, and division by a

power of 2. These calculations are done by the linker except for a difference between two local

symbols in the same section.

Floating point constants must contain a dot or an E and at least one digit, for example 1.23E-4

Floating point expressions are calculated with double precision. The following operators can be

used:

+ - * / < <= > >= == != ?:

String constants are sequences of ASCII or UTF-8 characters enclosed in ” ”.

The following escape sequences are recognized: \\ \n \r \t \”

String constants can be concatenated with the + operator like in Java.

Numeric constants can be included in the instruction codes. This will reduce the pressure on the

data cache.

Data types

The following data types are used in data definitions and instructions:
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int8 8 bit signed integer

uint8 8 bit unsigned integer

int16 16 bit signed integer

uint16 16 bit unsigned integer

int 32 bit signed integer

int32 32 bit signed integer

uint32 32 bit unsigned integer

int64 64 bit signed integer

uint64 64 bit unsigned integer

int128 128 bit signed integer (optional)

uint128 128 bit unsigned integer (optional)

float16 half precision floating point

float single precision floating point

float32 single precision floating point

double double precision floating point

float64 double precision floating point

float128 quadruple precision floating point (optional)

A ’+’ after an integer type indicates that the assembler can use a bigger type if this makes the

instruction smaller or more efficient, for example int16+.

Data definitions

Static data can be defined inside a data section. Several different forms are allowed:

Assembly style data definition:

label : datatype value, value, ...

C style data definition:

datatype name = value, name = value, ...

C style array definition, uninitialized:

datatype name[number]

C style array definition, initialized:

datatype name[number] = {value, value, ...}

Assembly style string definition:

label : int8 ”string”, ”string”, ...

C style string definition:

int8 name = ”string”

A terminating zero after a string must be added explicitly if needed.

Examples:

mydata section read write datap
alpha: float 0.1, 0.2, 0.3
int16 beta = 4, gamma = 5
int8 delta[25]
align (8)
int8 epsilon[] = {6, 7, 8, 9}
zeta: int8 "Dear reader", 0
int8 eta = "Nice to meet you\0"
mydata end

Function definitions and labels

A function can be defined inside an executable section. It is defined like this:

157



name function attributes

...

name end

Attributes can be ’public’, ’weak’, and ’reguse=value,value’. The function will be local if no at-

tributes are specified and the name does not appear in a public declaration.

Example:

mycode section execute
// this function calculates the square of a double
_square function public, reguse = 0, 1
double v0 *= v0
return
_square end
mycode end

The calling conventions for functions are defined in chapter 11.4.

Instructions

It is convenient to have only one instruction per line. Multiple instructions on the same line must

be separated by semicolon.

Instructions can be defined only inside an executable section. The general form looks like this:

label : datatype destination = instruction(source_operands), options

For example:

A: int32 r1 = add(r2, 18), mask = r3, fallback = r4

The operands for an instruction can be general purpose registers r0–r31, vector registers v0–v31,

memory operands with different addressing modes, and immediate constants. Many combina-

tions of operands are possible. The limitations are listed on page 30.

The destination is a register in most cases. A few instructions allow a memory operand as desti-

nation.

The source operands can be registers, memory operands, or immediate constants. No instruc-

tion can have more than one memory operand.

The source operands should be written in the following order: registers, memory operand, imme-

diate operand. The assembler will reorder the operands automatically in certain cases. For ex-

ample, int r2 = 1 + r1 will be coded as int r2 = r1 + 1. Reordering of operands is not always pos-

sible. For example, there is no way to code r2 = 8 >> r1 as a single instruction. Vector operands

are not reordered automatically because this will give an invalid result in case the vectors have

different lengths.

The following options are possible:

options = integer constant

mask = register

fallback = register

fallback = 0

Options specify various option bits for specific instructions. Only certain instructions can have

options.

Instructions can be written in a simpler form with an operator instead of the instruction name if

the instruction does the same as the operator. The general form is:
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label : datatype destination = operand1 operator operand2

For example:

int r1 = r2 + 18

Masks are used for conditional execution. The mask registers may also contain bits specifying

various numerical options. See page 26 for details. Almost all multi-format instructions can have

a mask. Single-format instructions with A or E templates can also have a mask. Jump instruc-

tions cannot have a mask.

The mask register can be r0-r6 or v0-v6. The fallback register can be r0-r30 or v0-v30. The mask

and fallback registers must be the same type of register as the destination (general purpose or

vector register). The fallback specifies the result when bit 0 of the mask is zero.

The default fallback register is the same as the first source register. A different fallback register is

possible only if there is a vacant register field in the code template. The fallback register cannot

be different from the first source register in the following cases:

• the instruction has three source operands

• the instruction needs 64 bits for an immediate constant

• the instruction has a memory operand with index

• the instruction has vector registers and a memory operand

The mask and fallback can be indicated as mask = register, and fallback = register, or in a simple

way with the ?: operator:

datatype destination = mask ? operand1 operator operand2 : fallback

For example:

int r1 = r3 ? r2 + 18 : r4

Amemory operand must be enclosed in square brackets. Memory references are always relative

to a base pointer. A memory operand can contain:

A base pointer This is a general purpose register or a special pointer (ip, datap, threadp, sp).

The base pointer contains a memory address. The base pointer is implicit for data labels in

an ip, datap, or threadp section.

A scaled index This is a general purpose register multiplied by a scale factor. The scaled index

is added to the base pointer. This is useful for accessing an array element where the base

pointer contains the address of the beginning of the array. The scale factor is the same as

the operand size in most cases. Instructions with a general purpose register destination

can also have a scale factor of 1. Instructions with a vector register destination can also

have a scale factor of -1.

An offset This is an integer constant that will be added to the address.

limit=constant This specifies a maximum value for the index. An error trap will be generated if

the unsigned index exceeds this value.

Memory operands in vector instructions must have one of the following options:

scalar Only one element is read.
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length=register The length of the vector, in bytes, is specified by a general purpose register.

The number of vector elements is equal to the value of this register divided by the number

of bytes used by each element.

broadcast=register Only one element is read. This element is broadcast to a vector with a total

length specified by a general purpose register. The number of identical elements is equal

to the value of this register divided by the number of bytes used by one element.

Examples:

int32 r1 = r2 + [alpha] // the base pointer is implicit
int32 r1 = r2 + [r3 + 0x10]
int32 r1 = r2 + [r3 + 4*r4, limit = 100]
int32 v1 = v2 + [r3 - r4, length = r4]
float v1 = v2 + [beta, scalar]
float v1 = v2 + [beta, broadcast=r3]

Remember that the base pointer, index, and offset of a memory operand must all be inside the

square bracket. Otherwise they will be interpreted as separate operands.

The details for each instruction are described in chapter 5.

Unconditional jumps, calls, and returns

Direct unconditional jumps, calls, and returns are coded as follows:

jump target

call target

return

Example:

my_func function public
nop
return

my_func end

...

call my_func

Indirect jumps and calls

Indirect jumps and calls can use an absolute 64-bit address in a register or memory operand:

jump register

call register

jump ([base_register+offset])

call ([base_register+offset])

Example:

my_func function public
nop
return

my_func end
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...

int64 r1 = address([my_func])
call r1

The absolute address must be divisible by 4 because code words are 32 bits (4 bytes).

It is often more efficient to use relative addresses rather than absolute addresses for indirect

jumps and calls with memory operands. A relative address contains an offset relative to an ar-

bitrary reference point. The relative address needs fewer bits because it contains the difference

between the target address and the reference point. All code addresses are divisible by 4 so we

can save two more bits by dividing the relative address by 4.

Indirect jumps and calls using a relative pointer can have the following forms:

datatype jump_relative (ref_register, [base_register+offset])

datatype call_relative (ref_register, [base_register+offset])

datatype jump_relative (ref_register, [base_register+index_register*scale])

datatype call_relative (ref_register, [base_register+index_register*scale])

The datatype specifies the size of the relative pointer stored in memory. This must be a signed

integer type. The reference point must be contained in a 64-bit register.

Example:

extern function1: function , function2: function

rodata section read ip // read-only data section
// relative address of function1 , scaled by 4
funcpoint1: int16 (function1 -reference_point) / 4
// relative address of function2 , scaled by 4
funcpoint2: int16 (function2 -reference_point) / 4
rodata end

code section execute ip
reference_point:

// load address of reference_point:
int64 r1 = address([reference_point])
int16 call_relative (r1, [funcpoint1]) // call function1
int16 call_relative (r1, [funcpoint2]) // call function2

code end

See page 165 for further explanation of relative pointers.

Conditional jumps and loops

Conditional jumps always involve an arithmetic or logic operation and a jump conditional upon

the result:

datatype destination = instruction(source_operands), jump_condition target

Examples:

int32+ r1 = add(r1, r2), jump_pos L1
uint64 compare(r2, 5), jump_above L1
float test_bit(v1, 31), jump_nzero L1
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L1:

Vector registers can be used only when the data type does not fit into a general purpose register.

Floating point addition and subtraction cannot be used with conditional jumps.

The most common conditional jumps can be coded more conveniently using the high-level lan-

guage keywords: if, else, for, do, while, break, continue.

An ’if’ statement can have the form:

if (datatype register operator operand) {...} else {...}

Line breaks are allowed before and after ’{’ and ’}’. The curly brackets cannot be omitted.

Comparing a register value with another register or a constant is done with one of the operators:

< <= > >= == !=

Unsigned tests can be indicated with an unsigned integer type, for example uint32. Bit tests can

be coded with the & operator as described on page 89.

Examples:

if (int r1 >= r2) {
nop // r1 >= r2

} else { // r1 < r2
if (int !(r3 & (1 << 20))) {

nop // bit 20 in r3 is not set
}

}

Complex conditions cannot be used because the statement must fit into a single instruction.

The ’while’, ’do-while’, and ’for’ loops are written in the same way as if statements:

while (datatype condition) {...}

do {...} while (datatype condition)

for (datatype initialization; condition; increment) {...}

Examples:

for (int r1 = 1; r1 <= 100; r1++) {
int64 r2 = 4 // executed 100 times
while (uint64 r2 > 0) {

int64 r2-- // executed 400 times
}

}
do {

int32 r2 = r1 - 1 // executed once
} while (int32 r2 > r1) // never true

The initialization and increment instructions in the ’for’ loop can be anything that fits into a single

instruction with the specified data type.

ForwardCom has a very efficient way of doing vector loops as explained on page 12. Vector

loops can be written in the following way:

for (datatype vector_register in [end_pointer - index_register]) {...}

Example:

int64 r1 = address([my_array1]) // address of array 1
int64 r2 = address([my_array2]) // address of array 2
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int64 r3 = my_arraysize * 4 // size of arrays in bytes
int64 r1 += r3 // point to end of my_array1
int64 r2 += r3 // point to end of my_array2
for (float v0 in [r1 - r3]) { // loop through arrays

float v0 = [r1 - r3, length = r3] // read vector
float v0 *= 2 // multiply all values by 2
float [r2 - r3, length = r3] = v0 // store results in my_array2

}

The ’for’ loop in this example works as follows: This loop instruction will subtract the maximum

vector length from r3 for each iteration and continue as long as r3 (interpreted as a signed 64 bit
integer) is positive. It will use the maximum vector length as long as r3 is bigger than the maxi-
mum vector length. The maximum vector length may depend on the data type. The loop will use

the maximum vector length for the data type specified in the ’for’ statement (float in this case).

The syntax for the vector loop may be confusing. The line for (float v0 in [r1 - r3])
generates a loop instruction that affects only r3. The registers v0 and r1 are not involved in the
loop instruction itself, and we could have written any other registers in their place. As a courtesy

to whoever reads the code, it is recommended here to insert a vector register and an end-of-

array pointer that play important roles in the loop body.

The expression [r1 - r3] is a hint that this is a vector loop that fits the special addressing

mode with negative index. It is possible to use more vector registers and more end-of-array point-

ers than the ones specified in the ’for’ statement.

It is recommended to use optimization level 1 or higher when assembling branches and loops.

Boolean operations

Boolean variables are using only bit 0 for indicating false or true, according to the standard de-

fined on page 131. The remaining bits may be used for other purposes.

Boolean variables can be generated with the compare instruction or the bit test instructions. For

example:

// C code:
// if (r2 > r3) r4 += 5
// Assembly code:

int r1 = r2 > r3 // true if r2 > r3
int r4 = r1 ? r4 + 5 : r4 // conditional add

The boolean variable r1 is 1 if the condition is true, and 0 if false.

Boolean variables may be combined with the operators & | ^. Boolean variables are negated

by XOR’ing with 1:

int r1 = r2 > r3 // true if r2 > r3
int r4 = r5 != 0 // true if r5 != 0
int r6 = r1 & r4 // r1 && r4
int r7 = r6 ^ 1 // r7 = !r6

The compare and bit test instructions can have extra boolean operands. An extra boolean operand

to a compare instruction can be specified conveniently with the logical operators && || ^^

This makes it possible to improve the above example:

int r1 = r2 > r3 // true if r2 > r3
int r6 = r5 != 0 && r1 // true if r5 != 0 && r2 > r3
int r7 = r6 ^ 1 // r7 = !r6
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It is even possible to add yet another boolean operand to a compare or bit test instruction by us-

ing a mask register. This requires manual coding of the option bits:

int r1 = r2 > r3 // true if r2 > r3
int r4 = r5 < 0 // true if r5 < 0
int r6 = compare(r7, r8), mask=r1, fallback=r4, options=0b010001
// r6 is true if r2 > r3 && r5 < 0 && r7 != r8

int r9 = test_bits_or(r1,5), mask=r2, fallback=r3, options=0b10010
// r9 is true if (((r1 & 5) != 0) || r3) && !r2

See page 65 for details of the compare instruction, and page 83 for the test_bit instructions.

Boolean variables may be used for conditional jump instructions by testing bit 0 of the register:

if (int r1 & 1) {
// do this if boolean r1 is true

}

It is possible to combine two boolean variables in a conditional jump instruction with & | ^

operations. Note that this will test all the bits of the result, not just bit 0:

int r1 = r1 | r2, jump_nzero Label

The condition is defined only by bit zero when a boolean variable is used as a mask. The re-

maining bits of the mask may be used for specifying various options, such as floating point ex-

ception handling. These mask bits are defined on page 27. It may be necessary to insert these

option bits before using a boolean variable as mask for floating point operations:

float v1 = 1.2
float v2 = 3.4
int32 v3 = v1 < v2 // boolean variable
int32 v4 = make_mask(v3, 0) // copy option bits from NUMCONTR
int32 v3 |= v4 // combine boolean and option bits
float v5 = v3 ? v1 * v2 : v1 // conditional multiplication

Absolute and relative pointers

Absolute addresses of code and data will usually need 64 bits because the program may be

loaded at any memory address. 32 bits will suffice if the program is never run on a machine with

more than 2 GB of address space.

Relative addresses can be coded with fewer bits because they specify an address relative to

some reference point within the code or data sections of the running program. The necessary

number of bits can be further reduced by dividing the relative address by a power of 2. If the ad-

dress of the target as well as the reference point are know to be divisible by, for example, 4 then

we can save two bits by dividing the relative address by 4. In this case, we only need 16 bits for

the relative pointer if the distance between target and reference point is less than 128 kB and the

relative address is divided by 4.

A further advantage of relative addresses is that they are always position-independent, while ab-

solute addresses must be calculated after the program has been loaded at an arbitrary address

in RAM.

Absolute addresses are calculated with the address instruction. For example:

Example 14.3.
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data section datap // define data section
float alpha // define variable
data end

code section execute // define code section
int64 r1 = address([alpha]) // absolute address of alpha
float v1 = [r1, scalar] // load alpha through pointer
code end

A variable can be initialized with an absolute address only if the loader supports relocation. The

following example shows how to use an absolute address, though this is not recommended:

Example 14.4.

data section datap // define data section
float alpha // define variable
int64 pointer_to_alpha = alpha // contains address of alpha
data end

code section execute // define code section
int64 r1 = [pointer_to_alpha] // pointer to alpha
float v1 = [r1, scalar] // load alpha through pointer
code end

Here, the address of alpha is inserted into pointer_to_alpha. Note that this makes the code position-

dependent. The address of alpha must be calculated by the loader rather than by the linker. Not

all platforms support position-dependent code. Therefore, it is preferred to use relative pointers.

A relative pointer contains an address relative to an arbitrary reference point. The reference

point must be placed in a section with the same base pointer (IP, DATAP, or THREADP) as the

target of the pointer. A relative address can be converted to an absolute address by the instruc-

tion sign_extend_add. Example:

Example 14.5.

data section datap // define data section
float alpha // define variable
int16 relative_pointer = (alpha - reference_point) // relative address
float reference_point // arbitrary reference point
data end

code section execute // define code section
int64 r1 = address ([reference_point]) // address of reference point
// convert relative address to absolute address:
int16 r2 = sign_extend_add(r1, [relative_pointer])
float v1 = [r2, scalar] // load alpha through pointer
code end

In example 14.5, the sign_extend_add instruction will sign-extend the relative pointer to 64 bits

and add the address of the reference point to get the address of the variable alpha. Note that the

type int16 on the sign_extend_add instruction indicates the size of relative_pointer, while the size

of the reference address r1 and the result r2 are both 64 bits.

The limit of the addresses that can be covered by a 16 bits relative address is ±215 or ± 32 kB.

This range can be increased by scaling the relative address. If the target and the reference point
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are both aligned to addresses divisible by 4, then we can divide the relative address by 4 with-

out losing information. The scale factor must be a power of 2. The same code with a relative ad-

dress scaled by 4 looks like this:

Example 14.6.

data section datap // define data section
float alpha // define variable
// relative address divided by 4:
int16 relative_pointer = (alpha - reference_point) / 4
float reference_point // arbitrary reference point
data end

code section execute // define code section
int64 r1 = address ([reference_point]) // address of reference point
// Convert the relative address to absolute address.
// options = 2 is a shift count that shifts the relative address
// two bits to the left, so that is is multiplied by 4:
int16 r2 = sign_extend_add(r1, [relative_pointer]), options = 2
float v1 = [r2, scalar] // load alpha through pointer
code end

This works in the following way. The linker has support for calculating relative addresses and

for scaling addresses by a power of 2. The linker calculates (alpha − reference_point)/4 and
inserts the value at relative_pointer. The sign_extend_add instruction loads the relative pointer,

sign-extends to 64 bits, shifts it left by 2, which corresponds to multiplying by 22 = 4, and adds
the absolute address in r1. The maximum shift count supported by this instruction is usually 3,

corresponding to a scale factor of 8. Support for higher shift counts is optional.

Variables in static memory are always aligned to a natural address, i.e. an address divisible by

the size of a data element of the specified type. Thus, int8 is not aligned, int16 is aligned by 2,

int32 is aligned by 4, int64 is aligned by 8, float is aligned by 4, and double is aligned by 8. The

reference point must have at least the same alignment when relative pointers are scaled. The

predefined symbols at page 169 may be used as reference points.

Relative pointers are also used for function pointers and jump tables. Relative code pointers are

always scaled by 4. The function pointer can be calculated with the sign_extend_add instruction

as in example 14.6, but it is easier to use the relative jump or call instruction:

Example 14.7.

const section read ip // define constant data section
// relative function pointer divided by 4:
int32 function1_pointer = (function1 - reference_point) / 4
const end

code section execute // define code section
reference_point:
int64 r1 = address ([reference_point]) // address of reference point
int32 call_relative (r1, [function1_pointer])
...
function1 function public

nop
return

function1 end
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code end

The jump_relative and call_relative instructions work by sign extending the relative address, mul-

tiplying by 4, adding the reference point (first parameter), and then jumping or calling to the cal-

culated address. Remember that the operand type on the call_relative instruction must match

the size of the relative function pointer, which is int32 in example 14.7.

A switch-case multiway branch can be implemented in a similar same way, using a table of rela-

tive addresses. This table may be placed in read-only memory for security reasons.

Example 14.8.

/* C code:
int j, x;
switch (j) {
case 1:

x = 10; break;
case 2:

x = 12; break;
case 5:

x = 20; break;
default:

x = 99; break;
}
*/
// ForwardCom code:

rodata section read ip
// table of relative addresses , using DEFAULT as reference point
align (4)
jumptable: int16 0 // case 0
int16 (CASE1 - DEFAULT) / 4 // case 1
int16 (CASE2 - DEFAULT) / 4 // case 2
int16 0 // case 3
int16 0 // case 4
int16 (CASE5 - DEFAULT) / 4 // case 5
rodata end

code section execute ip
// r0 = j
// r1 = x
// Test if i is outside of the range,
// use unsigned test to avoid testing for r0 < 0
if (uint32 r0 > 5) {

jump DEFAULT
}
int64 r2 = address([jumptable])
int64 r3 = address([DEFAULT])
// relative jump with r3 = DEFAULT as reference point,
// r2 as table base and r0 as index
int16 jump_relative (r3, [r2 + r0 * 2])

CASE1:
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int32 r1 = 10
jump FINISH

CASE2:
int32 r1 = 12
jump FINISH

CASE5:
int32 r1 = 20
jump FINISH

DEFAULT:
int32 r1 = 99

FINISH:

code end

The operand type for the multiway jump_relative instruction must match the size of the entries

in the table of relative jump addresses, which is int16 in example 14.8. The scale factor must

also match this size, which is 2 in this case. The size of the table entries must be big enough to

contain the distance between the jump target and the reference point, divided by 4, as a signed

integer. The address of jumptable is loaded into a register because the jump_relative instruction

does not have space for both the address of the jump table and the index.

A multiway call_relative instruction is coded in the same way, using a table of relative function

pointers. This can be useful for virtual functions in an object-oriented programming language

with polymorphism. An example is provided on page 175

Imports and exports

A function, data symbol, or constant defined in one assembly module can be accessed from an-

other module if it is exported from the first module and imported to the second module. The nec-

essary cross references are calculated and inserted by the linker.

Symbols are imported as follows:

extern symbolname : attributes, symbolname : attributes, ...

The following attributes can be specified:

function the symbol is an executable function

ip the symbol is a data object addressed relative to the ip pointer

datap the symbol is a data object addressed relative to the datap pointer

threadp the symbol is a data object addressed relative to the threadp pointer

constant the symbol is a constant with no address

read the symbol is in a readable data section

write the symbol is in a writeable data section

execute the symbol is executable code

data type the data type for the data symbol

weak weak linking: the symbol will be resolved only if it exists

reguse register use, indicating which registers are modified by a function

An external symbol must have one, and only one, of the following attributes: function, ip, datap,

threadp, constant. The other attributes are optional. Multiple attributes are separated by space

or comma.

The reguse option indicates which registers are modified by a function. It it followed by two num-

bers indicating the use of general purpose registers and vector registers, respectively. Bit num-

ber n indicates that register number n is used. For example: reguse=0x1F,1 indicates that gen-
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eral purpose registers r0-r4 and vector register v0 are modified by the function.

A weak external symbol will only be linked if it exists. The linker will not search function libraries

to find the weak symbol, but the symbol will be resolved if it exists in a module that is linked in for

other reasons. A weak external constant or data symbol that is not resolved will be zero. A weak

function that has not been resolved will return zero.

Symbols are exported as follows:

public symbolname : attributes, symbolname : attributes, ...

The possible attributes are the same as for external symbols. It may not be necessary to specify

all the attributes because the attributes of locally defined symbols are already known.

It is convenient to place extern and public declarations in the beginning of the assembly file. For-

ward references are allowed.

Weak public symbols work as follows. If more than one module contains a weak public symbol

with the same name then the linker will not issue an error message but link the first symbol. It

there is one occurrence of a non-weak symbol with this name then the non-weak symbol will be

chosen. If there are more than one non-weak public symbol with the same name then the linker

will issue an error message.

Special address symbols

The following symbol names are defined by the linker:

Table 14.1: SpecialSymbols

Name Base Meaning

__ip_base ip The linker will place this symbol where read-

only data ends and code begins. It is possible

to explicitly place this symbol elsewhere in an

ip-addressable section.

__datap_base datap The linker will place this symbol where static ini-

tialized writeable data ends and uninitialized data

begins. It is possible to explicitly place this sym-

bol elsewhere in a datap-addressable section.

__threadp_base threadp The linker will place this symbol at the begin-

ning of thread-local data. It is possible to explic-

itly place this symbol elsewhere in a threadp-

addressable section.

__program_entry ip This symbol must be specified. It marks the first

instructions to execute. This must be a startup

code that makes any necessary initialization and

then calls _main. The library forwc.li includes a

suitable startup code that will be included au-

tomatically if __program_entry is not defined

elsewhere.

__event_table ip Table of event handler records.

__event_table_num constant Number of event handler records.
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Other directives

Align

The ’align’ directive can align data or code:

align (number)

The number must be a power of 2. The next data or code will be aligned to an address divisible

by the specified number. The beginning of the section will automatically be aligned to at least the

same size.

Options

The ’options’ directive can change certain parameters with effect from the place of the directive.

The syntax is:

options name = value, name = value, ...

The value must be an integer constant or an expression that can be evaluated immediately to an

integer constant.

options codesize = 0x100000

options datasize = 0x4000

These options change the codesize or datasize so that subsequent instructions will use address

sizes that fit the specified codesize or datasize as explained on page 181. Setting codesize =

0 or datasize = 0 will reset these parameters to the value specified on the assembler command

line, or a default value if no value is specified on the command line.

Combining vectors of different lengths

The length of the destination register is the same as the length of the first vector register source

operand when vectors of different lengths are combined. For example:

float v1 = v2 - v3 // v1 has length of v2
float v1 = -v3 + v2 // Same, but v1 has length of v3
float v1 = v2 - [r3,length=r4] // Has length of v2, even if memory

// operand has a different length

Event handlers

You can specify event handlers for all the events defined in the file elf_forwardcom.h. An event

handler consists of a function to be called when the event occurs, and a record defining the event.

The event record must contain the following fields:

Table 14.2: Event record structure

Name Size Meaning

functionPtr 32 bit Pointer to the event function relative to __ip_base, scaled

by 4.

priority 32 bit If there are more than one handler for the same event then

the ones with the highest value of priority will be called

first. Normal priority = 0x1000.

key 32 bit Subdivision of event. This can define a hotkey, menu item,

or icon id for user command events.
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event 32 bit Event ID. Possible values are defined in the file

elf_forwardcom.h.

The linker will make a table of all the event handler records, sorted by event, key, and priority.

The event function uses register r0 as status. The function should return a value of 1 in r0 in the

normal case. The function can return 0 in r0 to bypass further event handlers with lower priority.

r1 can be used for further parameters. r2 can point to a zero-terminated string.

A common use of event handlers it to call initialization functions that must be called before _main

(constructors) and cleanup functions that must be called after _main (destructors). The following

example shows an event handler for the event EVT_CONSTRUCT (= 1), initializing some data.

Example 14.9.

// section for event handler records only
events section read ip event_hand
int32 (init_func - __ip_base) / 4, 0x1000, 0, 1
events end

// data section
data section read write datap
somedata: int64 0
data end

// code section
code section execute ip
init_func function
int64 r1 = 5
int64 [somedata] = r1 // initialize somedata to 5
int64 r0 = 1 // return status = 1
return
init_func end

You can activate an event by calling the function _call_event in the library libc.li. This function will

search the table of event records for an event with the specified event and key number and call

all corresponding event handler functions.

The table of events cannot be changed while the application is running. A module or library that

is added by dynamic linking while the application is running cannot add new event handler records.

14.2 Metaprogramming

Metaprogramming means variables and instructions that do not form part of the final executable

code but are useful for controlling the assembly process.

Traditional assemblers use macros for this purpose. The syntax for this is often confusing, espe-

cially when macros are nested.

Instead, the ForwardCom assembler will implement metaprogramming involving the following

features:
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• variables that are used only during the assembly process

• include files

• assembly-time branches and loops

• assembly-time functions

• generate a text string and emit this string as assembly code

Metaprogramming commands are indicated by a percent sign at the beginning of the line. At

present, only variables are implemented. The other metaprogramming features will be added

later.

Metaprogramming variables

Metaprogramming variables are defined and assigned on a separate line in the following way:

% name = value

Meta-variables are weakly typed. They can have one of the following types:

integer evaluated as signed 64-bit integer

floating point evaluated as double precision

string ASCII or UTF-8 text string

register the variable can be an alias for any register

memory operand the variable can be an alias for any memory operand

type name the variable can be an alias for a type

It makes no difference whether this meta-code is inside a section or not.

Meta-variables can be redefined or reassigned at any time. Meta-code is sequential so that the

same variable can have different values at different places in the code.

An integer meta-variable can be exported as a constant with a public declaration if it has only

one value. This is the only case where a forward reference to a meta-symbol is allowed.

While general assembly code allows forward references to data and code labels, meta-code can-

not in general have forward references.

Example:

% A = 5 // meta-variable integer A = 5
% R = r1 // alias for register r1
int32 R = A // r1 = 5
% A++ // change value of A to 6
int32 R = A // r1 = 6

14.3 Code examples

This section contains examples of assembly code to illustrate the features of the ForwardCom

instruction set. The syntax for assembly language is described in chapter 13.1. The function call-

ing conventions are described in chapter 11.4.
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Horizontal vector add

ForwardCom has no instruction for adding all elements of a vector because this would be a com-

plex instruction with variable latency depending on the vector length.

The sum of all elements in a vector can be calculated by repeatedly adding the lower half and

the upper half of the vector. This method is illustrated by the following example, finding the hori-

zontal sum of a vector of single precision floats.

Example 14.10.

v0 = my_vector // we want the horizontal sum of this
int64 r0 = get_len(v0) // length of vector in bytes
int64 r0 = roundp2(r0, 1) // round up to nearest power of 2
float v0 = set_len(v0, r0) // adjust vector length
while (uint64 r0 > 4) { // loop to calculate horizontal sum

uint64 r0 >>= 1 // the vector length is halved
float v1 = shift_reduce(v0,r0) // get upper half of vector
// the result vector has the length of the first operand:
float v0 = v1 + v0 // Add upper half and lower half

}
// The sum is now a scalar in v0

Horizontal vector minimum

The same method can be used for other horizontal operations. It may cause problems that the

set_len instruction inserts elements of zero if the vector length is not a power of 2. Special care

is needed if the operation does not allow extra elements of zero, for example if the operation in-

volves multiplication or finding the minimum element. A possible solution is to mask off the un-

used elements in the first iteration. The following example finds the smallest element in a vector

of floating point numbers:

Example 14.11.

v0 = my_vector // find the smallest element in this
r0 = get_len(v0) // length of vector in bytes
int64 r1 = roundp2(r0, 1) // round up to nearest power of 2
uint64 r1 >>= 1 // half length
v1 = shift_reduce(v0, r1) // upper part of vector
int64 r2 = r0 - r1 // length of v1
float v0 = set_len(v0, r1) // reduce length of v0
// make mask for length of v1 because the two operands may
// have different length
int64 v2 = mask_length(v0, r2, 0), options=4
// Get minimum. Elements of v0 fall through where v1 is empty
float v0 = min(v0, v1, mask=v2, fallback=v0) // minimum
// loop to calculate the rest. vector length is now a power of 2
while (uint64 r1 > 4) {

// Half vector length
uint64 r1 >>= 1
// Get upper half of vector
float v1 = shift_reduce(v0, r1)
// Get minimum of upper half and lower half
float v0 = min(v1, v0) // has the length of the first operand

173



}
// The minimum is now a scalar in v0

Boolean operations

Boolean combinations of conditions can be implemented with branches as shown in this exam-

ple.

Example 14.12.

/* C code:
float condfunc (float a, float b) {

if (a >= 0 && (a < 20 || a == b)) {
a = sqrt(a);

}
return a;

}
*/

// ForwardCom code:

code section execute ip
extern _sqrtf : function

// v0 = a, v1 = b
_condfunc1 function public
if (float v0 >= 0) {

if (float v0 < 20) {jump L1}
if (float v0 == v1) {

L1:
call _sqrtf

}
}
return // return value is in v0
_condfunc1 end

code end

Branches can be quite slow, especially if they are poorly predictable. It is often faster to generate

boolean variables for each condition and use bit operations to combine them. This corresponds

to replacing && with & and || with |. The code below shows the same example where three con-

ditional jumps are reduced to one conditional jump and two bit operations. Note that this trans-

formation is not valid if the evaluation of unused conditions has side effects.

Example 14.13.

_condfunc2 function public
float v2 = v0 >= 0 // boolean variable for a >= 0
float v3 = v0 < 20 // boolean variable for a < 20
float v4 = v0 == v1 // boolean variable for a == b
int32+ v3 |= v4 // a < 20 || a == b
int32+ v2 &= v3 // a >= 0 && (a < 20 || a == b)
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if (float v2 & 1) { // test bit 0 of boolean v2
call _sqrtf

}
return
_condfunc2 end

We can reduce the number of instructions and make the code still faster by using a special fea-

ture of the compare instruction that uses the mask and fallback registers as extra boolean operands:

Example 14.14.

_condfunc3 function public
float v2 = v0 >= 0 // boolean variable for a >= 0
float v3 = v0 == v1 // boolean variable for a == b
// use mask and fallback register as extra boolean operands
float v4 = compare(v0, 20), options=0x22, mask=v2, fallback=v3
if (float v4 & 1) { // test bit 0 of boolean v4

call _sqrtf
}
return
_condfunc3 end

The high level operators && || ^^ allow a more intuitive coding:

Example 14.15.

_condfunc4 function public
float v3 = v0 < 20 // boolean variable for a < 20
float v3 = (v0 == v1) || v3 // a == b || a < 20
float v3 = v0 >= 0 && v3 // a >= 0 && (a == b || a < 20)
if (float v3 & 1) { // test bit 0 of boolean v3

call _sqrtf
}
return
_condfunc4 end

Virtual functions

Virtual functions are used in C++ for polymorphous classes. This example shows how to imple-

ment a virtual class in ForwardCom. We can save space by using 32-bit relative pointers rather

than 64-bit absolute pointers as other systems do.

Example 14.16.

/* C++ code:

class VirtClass {
public:

// constructor:
VirtClass() {x = 0;}
// virtual functions:
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virtual void func1() {x++;}
virtual int func2() {return x;}

protected:
int x;

};

int test() {
VirtClass obj; // create object
obj.func1(); // call virtual function 1
return obj.func2(); // call virtual function 2

}
*/

// ForwardCom code:
rodata section read ip align = 4
// table of virtual function pointers for VirtClass
// with REFPOINT as reference point
VirtClasstable:
int32 (VirtClass_func1 - REFPOINT) / 4
int32 (VirtClass_func2 - REFPOINT) / 4
rodata end

code section execute ip
// choose any reference point for the relative pointers,
// for example the beginning of the code section:
REFPOINT: nop

VirtClass_constructor function public
// The pointer 'this' is in r0
// At [r0] is a relative pointer to VirtClasstable ,
// next the class data members, in this case: x
int32 r1 = VirtClasstable - REFPOINT
int32 [r0] = r1
int32 [r0+4] = 0
return
VirtClass_constructor end

VirtClass_func1 function
// The pointer 'this' is in r0
// x is in [r0+4]
int32 r1 = [r0+4]
int32 r1++
int32 [r0+4] = r1
return
VirtClass_func1 end

VirtClass_func2 function
int32 r0 = [r0+4]
return
VirtClass_func2 end

_test function public
push (r16) // save register
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// get the address of the reference point
int64 r16 = address([REFPOINT])
// the object 'obj' uses 8 bytes, allocate space on the
// stack for it
int64 sp -= 8
// call the constructor. The 'this' pointer must be in r0
int64 r0 = sp
call VirtClass_constructor
// r0 still points to the object because a constructor
// always returns a reference to the object.
// Get the address of the virtual table
int32 r1 = sign_extend_add(r16, [r0])
// call VirtClass_func1 as the first table entry
int32 call_relative (r16, [r1])
// get a pointer to the object again
int64 r0 = sp
// Get the address of the virtual table
int32 r1 = sign_extend_add(r16, [r0])
// call VirtClass_func2 as the second table entry
int32 call_relative (r16, [r1+4])
// release space allocated for 'obj'
int64 sp += 8
pop (r16) // restore register
// the return value from callVirtClass_func2 is in r0
return
_test end

code end

High precision arithmetic

Function libraries for high precision arithmetic typically use a long sequence of add-with-carry

instructions for adding integers with a very large number of bits. A more efficient method for big

number calculation is to use vector addition and a carry-look-ahead method. The following al-

gorithm calculates A + B, where A and B are big integers represented as two vectors of n·64 bits
each, where n < 64.

Example 14.17.

uint64 v0 = A // first vector, n*64 bits
uint64 v1 = B // second vector, n*64 bits
uint64 v2 = carry_in // single bit in vector register
uint64 v0 += v1 // sum without intermediate carries
uint64 v3 = v0 < v1 // carry generate = (SUM < B)
uint64 v4 = v0 == -1 // carry propagate = (SUM == -1)
uint64 r0 = get_len(v0) // length of vector in bytes
uint64 v3 = bool2bits(v3) // compressed to bitfield
uint64 v4 = bool2bits(v4) // compressed to bitfield
// calculate propagated additional carry:
// CA = CP ^ (CP + (CG<<1) + CIN)
uint64 v3 <<= 1 // shift left carry generate
uint64 v2 = v2 + v3 + v4
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uint64 v2 ^= v4
uint64 v1 = bits2bool(r0,v2) // expand additional carry to vector
uint64 v0 += v1 // add correction to sum
uint64 r0 >>= 3 // n = number of elements in vectors
uint64 v3 = gp2vec(r0) // copy to vector register
uint64 v2 >>= v3 // carry out
// v0 = sum, v2 = carry out

If the numbers A and B are longer than the maximum vector length then the algorithm is repeated.

If the vector length is more than 64 * 8 bytes then the calculation of the additional carry involves

more than 64 bits, which again requires a big number algorithm.

Matrix multiplication

Matrix operations can be difficult because they involve a lot of permutations. The following exam-

ple shows the multiplication of two 4 × 4 matrixes of floating point numbers, assuming that the
vector registers are long enough to contain an entire matrix.

Example 14.18.

float v1 = first_matrix // first matrix, 4x4 floats
float v2 = second_matrix // second matrix, 4x4 floats
int64 r1 = 64 // size of entire matrix in bytes
int64 r2 = 1 // shift count, elements
int64 r3 = 4 // shift count, elements
float v0 = replace(v1,0) // make a matrix of zeroes
for (int64 r0 = 0; r0 < 4; r0++) { // repeat 4 times

float v3 = repeat_within_blocks(v1,r1,16) // repeat column
float v4 = repeat_block(v2,r1,16) // repeat row
float v0 = v0 + v3 * v4 // multiply rows and columns
float v1 = shift_down(v1, r2) // next column
float v2 = shift_down(v2, r3) // next row

}
// Result is in v0.

You may roll out the loop and calculate partial sums separately to reduce the loop-carried depen-

dency chain of v0

14.4 Detecting support for particular instructions

The capabilities registers can give information about the capabilities of the processor the code is

running on, including support for certain instructions and features, and maximum vector length.

See page 96 for details.

While ForwardCom is in a phase of experimental development, there may not be specific bits

in the capabilities registers for every instruction that may be supported. An alternative way of

testing whether a particular instruction is supported is to disable error trapping and try to execute

the instruction. This can be done without system access. For example:

Example 14.19.
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// Disable error traps for unknown instructions and wrong operands
int r0 = 3
int64 capab2 = write_capabilities(r0, 0)
// Reset counter registers
int r0 = read_perfs(perf16, 0)
// Try to execute instruction
int r0 = userdef56(r0, r0)
// Read counters
int r1 = read_perfs(perf16, 1) // counter for unknown instruction
int r2 = read_perfs(perf16, 2) // counter for wrong operands
// Enable error traps again
int r0 = 0;
int64 capab2 = write_capabilities(r0, 0)
// Test if any of the two counters is nonzero, and
// jump to some code if the instruction is not supported
int r1 = r1 | r2, jump_nzero INSTRUCTION_NOT_SUPPORTED

14.5 Optimization of code

The ForwardCom system is designed with high performance as a top priority. The following guide-

lines may help programmers and compiler makers obtain optimal performance.

Use general purpose registers for control code

Any variables that control program execution, such as branch conditions and loop counters,

should preferably be stored in general purpose registers rather than memory or vector registers.

This may enable the microprocessor to resolve branches early and prefetch the code after the

branch earlier.

Efficient loops

The overhead of a loop can be reduced to a single instruction in most cases. A loop that counts

up is most efficient when the loop counter is a 32-bit signed integer incremented by 1 and the

loop condition is expressed as counter < limit or counter <= limit. A loop that counts down is most

efficient when the condition is expressed as counter > 0 or counter >= 0. Examples:

for (int32 r1 = 0; r1 < r2; r1++) { }
for (int32 r1 = 1; r1 <= 100; r1++) { }
for (int32 r1 = 100; r1 > 0; r1--) { }

The assembler will not insert an initial check before the loop if the start and end values are both

constants.

Array loops are particularly efficient if the vector loop feature is used. See the example page

153. Loops containing function calls can be vectorized if the functions allow vector parameters.

Avoid long dependency chains

ForwardCom may be implemented on a superscalar processor that can execute multiple instruc-

tions simultaneously. This works most efficiently if the code does not contain long dependency

chains.
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Minimize instruction size

The assembler will automatically pick the smallest possible version of an instruction. Instructions

can have different versions with 8-bit, 16-bit, 32-bit, and 64-bit integer constants. A large integer

constant with few significant bits can be represented as a smaller constant with a left shift. For

example, the constant 0x5000000000 can be represented as 5 << 36. The assembler will do

this automatically when possible.

Small floating point constants with no decimals can be represented as 8-bit signed integers.

Simple rational numbers where the denominator is a power of 2 can be represented as half pre-

cision without loss of precision. The assembler does this automatically, too. For example, the

constant 2.25 can be coded in half precision without loss of precision, while the constant 2.24

can not.

Memory addresses can use an offset of 8, 16, or 32 bits relative to a base pointer. A 32-bit offset

is needed for data in static memory when the data size is large or not specified (see page 181).

A smaller offset is possible when data are addressed relative to a stack pointer, structure pointer,

class pointer, or a pointer to a strategically placed reference point. An smaller offset will often

allow the assembler to use a smaller instruction format.

It is recommended to check the output listing from the assembler to see how much space each

instruction takes. Sometimes, you can reduce the instruction size by simple changes in the code.

Many instructions will be smaller if the first source register is the same as the destination regis-

ter.

Optimize cache use

Memory and cache throughput is often a bottleneck. You can improve caching in several ways:

• Optimize code caching by minimizing instruction sizes and inlining functions.

• Optimize data caching by embedding immediate constants in instructions.

• Use register variables instead of saving variables in memory.

• Avoid spilling registers to memory by using the information about register use in object

files, as described on page 134.

• Use relative pointers rather than absolute pointers for pointer tables and function pointers

in static memory (see page 165).

Calculate pointers early

Registers used for pointers, array index, or for specifying the vector length of a memory operand

are used at an early stage in the pipeline. The CPU may have to wait for these registers if they

are not available at the time they are needed. Therefore, it is recommended to calculate pointer,

array index, and vector length before the other instruction operands.

Optimize jumps

The assembler will merge a jump with a preceding arithmetic instruction if possible, unless opti-

mization is turned off. For example, an integer addition followed by a conditional jump that com-

pares the result with zero may be merged into a single instruction. This is only possible when a

number of conditions are fulfilled:

• the two instructions have the same data type

180



• the destination of the arithmetic instruction is the same register as the source of the branch

instruction

• the arithmetic instruction uses the same register for source and destination

• there are no other instructions between the two, and no jump label at the branch instruc-

tion.

The output listing will show if the two instructions have been merged.

Optimization of chained jumps, etc., is generally the responsibility of the compiler. The assem-

bler will do only a few simple jump optimizations.

Avoid conditional jumps

Conditional and indirect jumps are quite slow. Conditional jumps can sometimes be replaced by

conditional execution of instructions with the use of mask registers. This can be advantageous

even if it requires a few more instructions. It is good to calculate the mask register before the

operands are calculated because some ForwardCom implementations will not wait for delayed

operands if the mask is already known to be zero so that the operands are not needed.

Specify data size and code size

It is recommended to specify a maximum size for code and static data on the assembler com-

mand line (see page 145) or in a directive (see page 170). This allows the assembler to optimize

relative addresses for both code and data to the minimum number of bits necessary. You may

use a link map to see how much memory is needed for code and static data, and add some extra

for future additions to the code. A link map can be generated during the link process with the link

option -map=filename, or after linking with the command forw -dump-L filename.ex

Direct jump and call instructions use 24 or 32 bits for relative addresses. Conditional jumps use

8, 16, 24, or 32 bits. The table below shows the largest distance you can jump with these num-

bers of bits, using signed relative offsets scaled by 4:

Bits Jump distance

8 508 bytes

16 128 kbytes

24 32 Mbytes

32 8 Gbytes

For example, if you specify codesize=100000, then you will be able to make conditional jumps to

external labels using 16 bits for relative addresses. The distance to local labels within the same

assembly file and the same section are calculated by the assembler and optimized to the appro-

priate number of bits regardless of the specified codesize.

Instructions with a memory operand in static memory are using an offset relative to a base pointer,

typically DATAP. The offset can be 8, 16, or 32 bits. 8-bit offsets are scaled by the operand size.

16-bit and 32-bit offsets are not scaled. The maximum distance from the base pointer you can

address with different sizes of offset are listed in the following table:

Bits Data type Addressing range

8 int8 127 bytes

8 int16 254 bytes

8 int32 508 bytes

8 int64 1 kbyte

16 any 32 kbytes

32 any 2 Gbytes
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Specifying a maximum datasize on the assembler command line or in a directive will help the

assembler select the smallest possible instruction for addressing static data in a writeable data

section.

Note that data in a read-only section are usually addressed with IP as base pointer. The number

of bits needed for addressing IP-based read-only data is determined by codesize, not datasize.

Conditional jumps can use small single-word instructions if there is no constant immediate operand

bigger than 8 bytes and if the distance to the destination is no more than 127 code words (= 508

bytes). This will often suffice for conditional jumps within the same function or module. See page

28 for a list of jump instruction formats with different number of bits for the offset.

Instructions with a memory operand in static data are two or three code words long. The three-

word version is needed if the datasize is bigger than 32 kbytes and the instruction has an array

index or option bits or three input operands. Example:

Example 14.20.

data section read write datap
alpha: int32 123
data end

code section execute
int32 r0 = r1 < [alpha]
code end

The compare instruction in this example will need three words if datasize is bigger than 32 kbytes.

A smaller 2-word version of this instruction can be used if datasize is specified to a value less

than 32 kbytes.

The assembler will automatically choose the smallest version of an instruction that fits the speci-

fied datasize and codesize. The linker will give an “Address overflow” error message if a relative

address does not fit the available number of bits.

It is not possible to have memory operands with an 8-bit offset for data with IP, DATAP, or THREADP

as implicit base pointer, but it is possible to make the instruction smaller if a general purpose reg-

ister is used as base pointer. Instructions with a memory operand can use a single-word version

of the instruction if the following conditions are satisfied:

• the base pointer is a general purpose register or stack pointer

• the scaled offset fits into an 8-bit signed integer

• the instruction has no more than two source operands

• the first source operand is the same register as the destination

• there is no mask

• there are no option bits

• if vector registers are used: must be scalar

We can make the code more compact by placing a reference point near the data we want to ac-

cess, and load the address of this reference point into a register. This example shows how:

Example 14.21.
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data section read write datap
int32 A, B, C
align 8
refPoint: // reference point, aligned by 8
int32 D
double E
data end

code section execute
// load address of refPoint:
int64 r1 = address ([refPoint])
// address of A relative to refPoint:
int32 r2 = r2 + [r1 + A - refPoint]
// address of E relative to refPoint:
double v3 = v3 * [r1 + E - refPoint], scalar

code end

The offset relative to the reference point is scaled by 4 and 8 for A and E, respectively, in this

example. The scaled offset is calculated automatically by the assembler. The reference point

must be aligned by 8 in this example in order to make the offset to E divisible by 8.

This method will make the code more compact if the base pointer is used in more than two in-

structions. Data on the stack can be accessed with single-word instructions if they are near the

address that the stack pointer points to. Data in a structure or class can be accessed in the same

way relative to a structure pointer or ’this’ pointer.

You can use an assembler listing to check the size and format of each instruction. A table of in-

struction formats is given on page 19.
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Chapter 15

Test suite

A suite of test is provided for testing all instructions and formats.

The test programs are written in ForwardCom assembly for the purpose of self test of emulator

and softcores.

The source code for the test programs are available at:

github.com/ForwardCom/test-suite

The following test programs are available so far:

• tests_arithmetics.as: Test all integer arithmetic instructions

• tests_bool_bit.as: Test all boolean and bit manipulation instructions

• tests_branch.as: Test all jump, call, and branch instructions

• test_formats.as: Test all integer instruction formats

Test programs for vector instructions and floating point instructions are not available yet.

The test programs must be assembled and linked with the library libc.li for testing on the emula-

tor or full-featured softcores. Use libc-light.li instead of libc.li for the softcore with limited capabili-

ties and no system calls.
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Chapter 16

Softcore

A hardware implementation of ForwardCom as an FPGA softcore is available at

github.com/ForwardCom/softcoreA

Features of softcore model A version 1.01

• Runs on Nexys A7-100T FPGA board

• Maximum clock frequency 50 - 70 MHz, depending on configuration

• 32-bit or 64-bit registers

• Can execute one instruction per clock cycle

• Data memory 32 kB. Code memory 64 kB. Call stack 1023 entries.

• Implements all application-level integer instructions

• Implements all instruction formats and all addressing modes defined by the ForwardCom

standard version 1.12.

• No vector registers yet. No floating point instructions

• No system calls, no memory protection. Useful for embedded designs

• Memory reads and writes must be aligned

• RS232 serial interface for standard input and output

• On-chip loader (uses 1 kB code memory)

• On-chip debug interface

• On-chip event counter

• Code examples and test suite provided

Please see the manual for the softcore for details and documentation.
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Chapter 17

Conclusion

The ForwardCom instruction set architecture is a consistent, modular, flexible, orthogonal, scal-

able, and expansible instruction set offering a good compromise between the RISC principle that

gives fast decoding and efficient pipelining, and the CISC principle that gives a more compact

code and more work done per instruction. Support for efficient out-of-order execution and vector

processing is a basic part of the design rather than a suboptimal patch added later as we have

seen in other systems.

There are relatively few instructions, but each instruction can be coded in many different variants

with integer operands of different sizes and floating point operands of different precisions. The

operands can be scalars or vectors of any length. Operands can be registers, immediate con-

stants in various compact forms, or memory operands with different addressing modes. Instruc-

tions can have predicates or masks with specified fallback values. Vectors have variable lengths

with unlimited room for future expansions.

All in all, the same basic instruction can have many different variants with the same operation

code where other instruction sets have many different instructions to cover the same diversity.

Everything fits into a consistent template format that simplifies the hardware implementation. The

design also has plenty of space for single-format instructions with fewer variants.

The instruction format is designed so that the microprocessor pipeline can be simple and effi-

cient. All instructions fit into the same format templates and the same pipeline structure to fa-

cilitate an efficient hardware design. It is possible to make complex instructions with complex

functionality, but only if this fits into the pipeline system and the timing constraints. Microcode is

preferably not used.

The decoder front-end can load multiple instructions per clock cycle because it is easy to detect

the length of each instruction, and the decoder needs only distinguish between a few different in-

struction sizes. Actually, it is possible to make a working program with only single-word (32 bits)

instructions, but it is highly recommended to also support double-word and triple-word instruc-

tions.

It is possible to add support for longer instructions in future extensions, but the priority has been

to avoid any bottleneck in the decoding of instruction length (which is a serious bottleneck in the

x86 architecture).

The code format is designed to be compact in order to save code cache space. This compact-

ness is obtained in several ways. The same instruction can be coded in different sizes with two-

and three-operand forms, different sizes of immediate constants, shifted immediate constants,

and relative addresses with different sizes of offsets and scale factors, while avoiding absolute

addresses that would require 64 bits for the address alone. It is always possible to choose the

smallest version of an instruction that fits the particular need. The load on the data cache can be

reduced by storing immediate constants in the code rather than in memory operands.

Most instructions can have a mask register which is used for predication in scalar instructions
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and for masking in vector instructions. The same mask register is also used for specifying vari-

ous options such as rounding mode, exception handling, etc., that would otherwise require extra

bits in the instruction code.

The introduction of vector registers with variable length is an important improvement over the

most common current architectures. The ForwardCom vector system has the following advan-

tages:

• The system is scalable. Different microprocessors can have different maximum vector

lengths with no upper limit. It can be used for small embedded systems as well as for large

supercomputers with very long vectors.

• The same code can run on different microprocessors with different maximum vector lengths

and automatically utilize the full vector capabilities of each microprocessor.

• The code does not have to be recompiled when a new microprocessor version with longer

vectors becomes available. Software developers do not have to maintain multiple versions

of their software for different vector lengths.

• The software can save and restore a vector register in a way that is guaranteed to work

with future processors with longer vectors. The inability to do so is a big problem in current

architectures.

• Only the part of a vector register that is actually used needs to be saved and restored.

Each vector register includes information about how many bytes of it are used. Therefore,

no unnecessary resources are wasted on saving a full-length vector if it is unused or only

partially used.

• A special addressing mode supports a very efficient loop structure that will automatically

use the maximum vector length on all but the last iteration of an array loop. The last itera-

tion will automatically use a shorter vector to handle the remaining array elements in case

the array size is not divisible by the maximum vector length. There is no need to handle

the remaining elements separately outside the main loop and no need to make separate

versions of the loop for different special cases.

• Functions can have variable-length vector registers as parameters. This makes it easy for

the compiler to vectorize loops that contain function calls.

• Instructions with vector register operands need no extra information about the vector length

because this information is included in the vector registers. This makes these instructions

more compact. Instructions with vector memory operands do need this extra information,

though.

• The design takes into account the hardware requirements of microprocessors with very

long vectors where transport delays across a vector may depend on the vector length.

• A new efficient system with relinkable function libraries eliminates the need for dynamic link

libraries and shared objects.

• Strong security features are built into the design.

• Software standards guarantee compatibility between different compilers, programming lan-

guages, user interface frameworks, and operating systems.

The memory model is flexible with relative addresses. Everything is position-independent. Mem-

ory management is simpler than in most current systems. There is little or no need for virtual

address translation. A simple on-chip memory map with variable-size memory sections is used

as as efficient replacement for the traditional translation lookaside buffer (TLB) and large page
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tables in most cases. This is made possible by several methods for avoiding memory fragmen-

tation. Task switches will be fast because of the small memory map and because of the efficient

mechanism for saving vector registers.

The principle that a fundamental redesign enables us to learn from history and integrate late

additions into the basic design also applies to the whole ecosystem of ABI standard, function

libraries, compilers, linkers, and operating system. By defining not only an instruction set, but

also ABI standard, binary file format, interface library standard, etc. we get the further advan-

tage that different compilers and different programming languages will be compatible with each

other. It will be possible to write different parts of a program in different programming languages

and to use the same function libraries with all compilers. Even different operating systems will

be compatible to some degree. A feature for relinking an executable file makes it possible to run

the same binary program file in different operating systems or on different platforms where the

appropriate user interface framework is selected when the program is installed.

We have also learned from past mistakes that it is difficult to predict future needs. While the For-

wardCom instruction set is intended to be flexible with room for future extensions, we may ask

whether the future will bring needs for new features that are difficult to integrate into our design

and standards. The best way to prevent such unforeseen problems is to allow input and sug-

gestions from the entire community of hardware and software developers. It is important that the

design and standards are developed through an open process that allows everybody to com-

ment and make suggestions. We have often seen the problems of leaving this to a commercial

industry. The industry often makes short-term decisions for marketing reasons. Patents, license

restrictions, and trade secrets harm competition and prevent niche operators from entering the

market. The microprocessor industry often keeps new features and instruction set extensions se-

cret for competitive reasons until it is too late to change them in case the IT community comes

up with better proposals.

The ForwardCom project is being developed in an open process with contributions and ideas

from many people based on the philosophy that the problems mentioned here can best be avoided

through openness and collaboration.
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Chapter 18

Revision history

Version 1.12, 2023-01-01.

• Names of immediate fields in instruction templates changed to avoid ambiguity. IM2 in D

format renamed to IM3. IM2 and IM3 in E formats renamed to IM4 and IM5. IM2 and IM3 in

A and B formats renamed to IM6 and IM7. IM4 in E3 format renamed to IM7.

• Instructions category_reduce and bool_reduce modified.

• Instruction div_rev_u added.

• Minor changes to instructions div, div_rev, div_u, rem, rem_u, truth_tab3.

• Various options for max and min instructions added. max_u and min_u replaced by options

in max and min instructions.

• Options and details for instructions push and pop modified.

• Support for the float16 type modified and extended. Add, sub, mul, and compare instruc-

tions have dedicated op1 values for float16. mul_add, div, max, and min instructions use

an option bit for indicating float16. sqrt, fp_category, and fp_category_reduce use operand

type 1 for indicating float16.

Version 1.11, 2021-08-07.

• Templates E2 and E3 are reorganized so that the immediate fields and OP2 are adjacent.

IM5 (formerly called IM3) can now be extended into OP2 to form an 8-bit immediate operand.

• New instruction formats 2.0.5, 2.2.5, 3.0.5, and 3.2.5 with both memory and immediate

operands. Special cases for bit manipulation instructions with both memory and immedi-

ate operands are no longer needed.

• New branch instruction formats 2.5.2 and 3.1.2 for conditional jumps with a memory operand.

Format 2.5.0 modified to allow three registers. Other jump instruction formats modified to

facilitate these changes.

• Instruction formats with memory operands are modified so that the base pointer always

uses the RS field while index and vector length always use the RT field. Other instructions

with a length parameter are modified to use RT for the length parameter.

• Optional support for push and pop instructions with a sequence of registers in one instruc-

tion.

• Performance monitoring counters and error tracking features added.

• New instructions: select_bits, funnel_shift, breakpoint.
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• Removed instructions: and_not, and_bit, rotate_up, rotate_down, truth_tab2, replace_bits.

• Renamed instructions: test_bits_and, test_bits_or, test_bits_and/jump_true

• Modified instructions: sign_extend_add, mul_add, mul_add2, truth_tab3, input, output.

• New branch instructions: increment_compare/jump_below, test_bits_or/jump_true, com-

pare_abs/jump_below/above, fp_category/jump_true.

• Removed branch instructions: shift_right/left/jump_zero, rotate/jump_carry, compare/jump_fi-

nite

• Modified branch instructions: and, or, xor/jump_zero, test_bit/jump_true.

• Operand size for some instructions with C template changed from int64 to int32.

• Op1 code changed in several instructions.

Version 1.10, 2020-05-21.

• Tiny instructions are dropped. Earlier versions defined a compact instruction format that

allowed two tiny instructions to be packed into a single 32-bit code word. However, it was

found that most tiny instructions go unpaired so that they use 32 bits anyway. The limited

advantage of tiny instructions did not justify the extra complexity. The code space that was

occupied by tiny instruction pairs are reused for other purposes.

• Single-word jump instructions are moved from format 1.4 and 1.5 to format 1.6 and 1.7, for-

merly used for tiny instructions. Format 1.3B and 1.3C is split into 1.3B and 1.4C. Format

1.5 is now vacant for application-specific vector instructions.

• New push, pop, and clear instructions to replace the former tiny instruction pairs with the

same functionality. These instructions may generate multiple micro-operations.

Version 1.09, 2020-04-14.

• Methods for detecting floating point and integer numerical errors modified and specified.

• Mask register bits changed to support floating point exception tracking.

• Some instructions with format 1.0, 1.2 and 1.3 modified or moved to different formats.

Version 1.08, 2018-03-30.

• Binary tools now include assembler, disassembler, linker, library manager, emulator, and

debugger

• Function libraries and code examples are provided

• ID numbers for system functions, events, and interrupts defined in the file system_func-

tions.h

• Format for library files defined in the file elf_forwardcom.h

• Format for event handlers and other features defined in the file elf_forwardcom.h

• File header modified to remove the limitation of 64000 sections

• Improved NAN propagation made mandatory. Combination of NANs gives the highest pay-

load. Min and max instructions propagate NANs according to the forthcoming revision of

the IEEE-754 standard.
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• Floating point compare/jump instructions have ordered and unordered versions.

• Better support for half precision floating point vectors.

• Many small changes in instruction list.

Version 1.07, 2017-11-03.

• The first version of binary tools is published, including a high-level assembler and disas-

sembler. A manual is included in chapter 13. The assembly language is modified.

• A feature for relinking of executable files replaces the previous idea of load-time library dis-

patching.

• Triple size formats with template E added. Some formats renumbered.

• Some support for half precision floating point vectors.

• Function calling convention allows return using two registers.

• 4-bit constants in tiny format changed from signed to unsigned.

• Many small changes in instruction list.

• Object file format modified to indicate IP, DATAP, or THREADP addressing for sections and

symbols

Version 1.06, 2017-02-14.

• Added chapter: Proposal for reducing branch misprediction delay

• Added instruction: increment_jump_sabove.

• Modified various conditional jump instructions. More detailed descriptions.

Version 1.05, 2017-01-22.

• Systematic description of all instructions.

• Instruction list updated.

• Added chapter: Support for multiple instruction sets.

• Added chapter: Software optimization guidelines.

• Bit manipulation instructions improved.

• Shift instructions can multiply float by power of 2.

• Integer division with different rounding modes.

• Source of option bits for mul_add, add_add and compare instructions modified.

Version 1.04, 2016-12-08.

• Instruction formats made more consistent. Template E2 modified.

• Masking principle changed. Fallback value option. r0 and v0 allowed as masks.

• Compare instruction has additional features.

• Conditional jumps modified

• Several other instructions modified.
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Version 1.03, 2016-08-01.

• Minor changes and additions to manual.

• Three new instructions added.

Version 1.02, 2016-06-25.

• Name changed to ForwardCom.

• Moved to github.

• Various security features added.

• Support for dual stack.

• Some instruction formats modified, including more formats for jump and call instructions.

• System call, system return and trap instructions added.

• New addressing mode for arrays with bounds checking.

• Several instructions modified or added.

• Memory management and ABI standards described in more detail.

• Instruction list in comma separated file instruction_list.csv.

• Object file format defined in file elf_forwardcom.h

Version 1.01, 2016-05-10.

• The instruction set is given the name CRISC1.

• The length of a vector register is stored in the register itself. The basic code structure is

modified as a consequence of this. Function calling conventions are also simplified as a

consequence of this.

• All user-level instructions are defined.

• The entire text has been rewritten and updated.

Version 1.00, 2016-03-22.

This document is the result of a long discussion on Agner Fog’s blog, starting on 2015-12-27, as

well as input from the RISC-V mailing list and the Opencores forum.

Additional inspiration was found in various sources listed on page 9.

Version 1.00 of this manual was published at www.agner.org/optimize.
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Chapter 19

Copyright notice

This document is copyrighted 2016-2023 by Agner Fog with a Creative Commons license. cre-

ativecommons.org/licenses/by/4.0/legalcode.
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