Skip to main content

Cardiovascular Evaluation and Treatment of the Endurance Athlete

  • Chapter
  • First Online:
Endurance Sports Medicine

Abstract

Endurance athletes have been the focus of scientific investigation for more than a century. Advances in our understanding of cardiac adaptations to endurance exercise have largely paralleled advances in diagnostic technology. In the present era, the electrical, structural, and functional cardiac adaptations that accompany long-term endurance training have been comprehensively characterized. With record-setting number of endurance event finishers, it has never been more critical for care providers to possess the fundamental skills required for the care of the active endurance athlete. This chapter is written to provide the clinician with a basic foundation of knowledge in principal areas of patient care most relevant to the endurance athlete.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Henschen S. Skidlauf und skidwettlauf:eine medizinische sportsudie. Mitt Med Klin Upsala. 1899: 2.

    Google Scholar 

  2. Darling E. The effects of training: as study of Harvard University crews. Boston Med Surg J. 1899;161:229–33.

    Article  Google Scholar 

  3. White P. The pulse after a marathon race. JAMA. 1918;71:1047–8.

    Article  Google Scholar 

  4. White P. Bradycardia in athletes, especially long distance runners. JAMA. 1942;120:642.

    Article  Google Scholar 

  5. Roskamm H, et al. Relations between heart size and physical efficiency in male and female athletes in comparison with normal male and female subjects. Arch Kreislaufforsch. 1961;35:67–102.

    Article  CAS  PubMed  Google Scholar 

  6. Reindell H, et al. The heart and blood circulation in athletes. Med Welt. 1960;31:1557–63.

    CAS  PubMed  Google Scholar 

  7. Bulychev VV, et al. Roentgenological and instrumental examination of the heart in athletes. Klin Med. 1965;43:108–14.

    CAS  Google Scholar 

  8. Baggish AL, et al. Cardiovascular screening in college athletes with and without electrocardiography: across-sectional study. Ann Intern Med. 2010;152:269–75.

    Article  PubMed  Google Scholar 

  9. Magalski A, et al. Cardiovascular screening with electrocardiography and echocardiography in collegiate athletes. Am J Med. 2011;124:511–8.

    Article  PubMed  Google Scholar 

  10. Weiner R, et al. Performance of the 2010 European Society of Cardiology criteria for ECG interpretation in athletes. Heart. 2011;97:1573–7.

    Article  PubMed  Google Scholar 

  11. Baggish A, Wood M. Athlete’s heart and cardiovascular care of the athlete scientific and clinical update. Circulation. 2011;123:2723–35.

    Article  PubMed  Google Scholar 

  12. Running USA. 2015 state of the sport. 2015. U.S. Race Trends, http://www.runningusa.org/2015-state-of-sport-us-trends?returnTo=annual-reports

  13. Maron B, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities. Circulation. 2015;66:2343–450.

    Google Scholar 

  14. Wasfy M, et al. Endurance exercise-induced cardiac remodeling: not all sports are created equal. J Am Soc Echocardiogr. 2015;28(12):1434–40.

    Article  PubMed  Google Scholar 

  15. Clifford PS, et al. Arterial blood pressure response to rowing. Med Sci Sports Exerc. 1994;6(26):715–9.

    Article  Google Scholar 

  16. Pelliccia A, et al. Physiologic left ventricular cavity dilation in elite athletes. Ann Intern Med. 1999;130:23–31.

    Article  CAS  PubMed  Google Scholar 

  17. Pelliccia A, et al. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Eng J Med. 1991;324:295–301.

    Article  CAS  Google Scholar 

  18. Sharma S, et al. Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J Am Coll Cardiol. 2002;40:1431–6.

    Article  PubMed  Google Scholar 

  19. Weiner R, et al. The feasibility, diagnostic yield, and learning curve of portable echocardiography of out-of-hospital cardiovascular disease screening. J Am Soc Echocardiogr. 2012;25:568–75.

    Article  PubMed  Google Scholar 

  20. Rawlins J, et al. Ethnic differences in physiological cardiac adaptation to intense physical exercise in highly trained female athletes. Circulation. 2010;121:1078–85.

    Article  CAS  PubMed  Google Scholar 

  21. Douglas PS, et al. Left ventricular structure and function by echocardiography in ultraendurance athletes. Am J Cardiol. 1986;58:805–9.

    Article  CAS  PubMed  Google Scholar 

  22. Abergel E, et al. Serial left ventricular adaptations in world-class professional cyclist: implications for disease screening and follow up. J Am Coll Cardiol. 2004;44:144–9.

    Article  PubMed  Google Scholar 

  23. Weiner R, Baggish AL. Cardiovascular adaptation and remodeling to rigorous athletic training. Clin Sports Med. 2015;34:405–18.

    Article  PubMed  Google Scholar 

  24. Baggish AL, et al. The impact of endurance exercise training on left ventricular systolic mechanics. Am J Physiol Heart Circ Physiol. 2008;296:H1109–16.

    Article  Google Scholar 

  25. Weiner RB, et al. The impact of endurance training on left ventricular torsion. JACC Cardiovasc Imaging. 2010;3:1001–3.

    Article  PubMed  Google Scholar 

  26. Baggish AL, et al. Differences in cardiac parameters among elite and subelite rowers. Med Sci Sports Exerc. 2010;42:1215–20.

    PubMed  Google Scholar 

  27. D'Andrea A, et al. Left ventricular myocardial velocities and deformation indexes in top-level athletes. J Am Soc Echocardiogr. 2010;23:1281–8.

    Article  PubMed  Google Scholar 

  28. Caso P, et al. Pulsed doppler tissue imaging in endurance athletes: relation between left ventricular preload and myocardial regional diastolic function. Am J Cardiol. 2000;85:1131–6.

    Article  CAS  PubMed  Google Scholar 

  29. Levine BD, et al. Left ventricular pressure-volume and Frank-Startling relations in endurance athletes. Implications for orthostatic tolerance and exercise performance. Circulation. 1991;84:1016–23.

    Article  CAS  PubMed  Google Scholar 

  30. Prior D, La Gerche A. The athlete’s heart. Heart. 2012;98:947–55.

    Article  PubMed  Google Scholar 

  31. Oxborough D, et al. The right ventricle of the endurance athlete: the relationship between morphology and deformation. J Am Soc Echocardiogr. 2012;25:263–71.

    Article  PubMed  Google Scholar 

  32. D’Andrea A, et al. Range of right heart measurements in top-level athletes: the training impact. Int J Cardiol. 2013;164:48–57.

    Article  PubMed  Google Scholar 

  33. La Gershe A, et al. Exercise strain rate imaging demonstrates normal right ventricular contractile reserve and clarifies ambiguous resting measures in endurance athletes. J Am Soc Echocardiogr. 2012;25:253–62.

    Article  Google Scholar 

  34. D’Andrea A, et al. Right Heart Structural and Functional Remodeling in Athletes. Echocardiography. 2015;23:11-S22.

    Google Scholar 

  35. Pellicia A, et al. Prevalence and clinical significance of left atrial remodeling in competitive athletes. J Am Coll Cardiol. 2005;46:690–6.

    Article  Google Scholar 

  36. D’Andrea A, et al. Left atrial volume index in highly trained athletes. Am Heart J. 2010;159:1155–61.

    Article  PubMed  Google Scholar 

  37. Weiner RB, Baggish AL. Exercise-induced cardiac remodeling. Prog Cardiovasc Dis. 2012;54:380–6.

    Article  PubMed  Google Scholar 

  38. Iskandar A, et al. Left atrium size in elite athletes. J Am Coll Cardiol Img. 2015;8:753–62.

    Article  Google Scholar 

  39. Wilhelm M, et al. Atrial remodeling, autonomic tone, and lifetime training hours in nonelite athletes. Am J Cardiol. 2011;108:580–5.

    Article  PubMed  Google Scholar 

  40. Grunig E, et al. Reference values for and determinants of right atrial area in healthy adults by 2-dimensional echocardiography. Circ Cardiovasc Imaging. 2013;6:117–24.

    Article  PubMed  Google Scholar 

  41. Wilhelm M, et al. Long-term cardiac remodeling and arrhythmias in nonelite marathon runners. Am J Cardiol. 2012;110:129–35.

    Article  PubMed  Google Scholar 

  42. Pagourelias E, et al. Right atrial and ventricular adaptations to training in male Caucasian athletes: an echocardiographic study. J Am Soc Echocardiogr. 2013;26:1344–52.

    Article  PubMed  Google Scholar 

  43. Pelliccia A, et al. The genetics of left ventricular remodeling in competitive athletes. J Cardiovasc Med. 2006;7:267–70.

    Article  Google Scholar 

  44. Pelliccia A, et al. Athlete’s heart in women. Echocardiographic characterization of female athletes. JAMA. 1996;376:211–5.

    Article  Google Scholar 

  45. Basavarajaiah S, et al. Ethnic differences in left ventricular remodeling in highly-trained athletes relevance to differentiating physiologic left ventricular hypertrophy from hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;51:2256–62.

    Article  PubMed  Google Scholar 

  46. Zelinski J, et al. Myocardial adaptations to recreational marathon training among middle-aged men. Circ Cardiovasc Imaging. 2015;8.

    Google Scholar 

  47. La Gerche A, et al. Can intense endurance exercise cause myocardial damage and fibrosis? Curr Sports Med Rep. 2013;12(2):63–9.

    Article  PubMed  Google Scholar 

  48. La Gerche A, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33:998–1006.

    Article  PubMed  Google Scholar 

  49. Hanssen H, et al. Magnetic resonance imaging of myocardial injury and ventricular torsion after marathon running. Clin Sci. 2011;120:143–52.

    Article  PubMed  Google Scholar 

  50. O’Keefe JH, et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin Proc. 2012;87(6):587–95.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sorokin AV, et al. Atrial fibrillation in endurance-trained athletes. Br J Sports Med. 2011;45:185–8.

    Article  CAS  PubMed  Google Scholar 

  52. Link M. Arrhythmias and sport practice. Heart. 2010;96:398–405.

    Article  Google Scholar 

  53. La Gerche A, et al. Biochemical and functional abnormalities of left and right ventricular function after ultra-endurance exercise. Heart. 2008;94:860–6.

    Article  PubMed  Google Scholar 

  54. Mousavi N, et al. Relation of biomarkers and cardiac magnetic resonance imaging after marathon running. Am J Cardiol. 2009;103:1467–72.

    Article  PubMed  Google Scholar 

  55. Neilan TG, et al. Myocardial injury and ventricular dysfunction related to training levels among nonelite participants in the Boston marathon. Circulation. 2006;114:2325–33.

    Article  PubMed  Google Scholar 

  56. Neilan TG, et al. Persistent and reversible cardiac dysfunction among amateur marathon runners. Eur Heart J. 2006;27:1079–84.

    Article  PubMed  Google Scholar 

  57. Baggish AL, et al. The impact of endurance exercise training on left ventricular systolic mechanisms. Am J Physiol. 2008;395:H1109–16.

    Google Scholar 

  58. Heidbuchel H, et al. Ventricular arrhythmias associated with long-term endurance sports: what is the evidence? Br J Sports Med. 2012;46 Suppl 1:i44–50.

    Article  PubMed  Google Scholar 

  59. Möhlenkamp S, et al. Running: the risk of coronary events: prevalence and prognostic relevance of coronary atherosclerosis in marathon runners. Eur Heart J. 2008;29:1903–10.

    Article  PubMed  Google Scholar 

  60. Wilson M, et al. Diverse patterns of myocardial fibrosis in lifelong, veteran endurance athletes. J Appl Physiol. 1985;110:1622–6.

    Article  Google Scholar 

  61. Heidbuchel H, et al. Can intensive exercise harm the heart? Circulation. 2014;130:992–1002.

    Article  PubMed  Google Scholar 

  62. Kim JH, et al. Race Associated Cardiac Arrest Event Registry (RACER) Study Group. Cardiac arrest during long-distance running races. N Engl J Med. 2012;366:130–40.

    Article  CAS  PubMed  Google Scholar 

  63. Whyte G, et al. Treat the patient not the blood test: the implications of an increase in cardiac troponin after prolonged endurance exercise. Br J Sports Med. 2007;41:613–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Scharhag J, et al. Reproducibility and clinical significance of exercise-induced increase in cardiac troponins and N-terminal pro brain natriuretic peptide (NT-proBNP) in endurance athletes. Eur J Cardiovasc Prev Rehabil. 2006;13:388–97.

    Article  PubMed  Google Scholar 

  65. Wilson M, et al. Biological markers of cardiac damage are not related to measure of cardiac systolic and diastolic function using cardiovascular magnetic resonance and echocardiography after acute bout of prolonged endurance exercise. Br J Sports Med. 2011;45:780–4.

    Article  CAS  PubMed  Google Scholar 

  66. Maron BJ, Pelliccia AM. The heart of trained athletes cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114:1633–44.

    Article  PubMed  Google Scholar 

  67. Corrado D, et al. Screening for hypertrophic cardiomyopathy in young athletes. N Engl J Med. 1998;336(6):364–9.

    Article  Google Scholar 

  68. Corrado D, et al. Cardiovascular pre-participation screening of young competitive athletes for prevention of sudden death: proposal for a common European protocol. Eur Heart J. 2005;26(5):516–24.

    Article  PubMed  Google Scholar 

  69. Corrado D, et al. Recommendations for interpretation of 12-lead electrocardiogram in the athlete. Eur Heart J. 2010;31:243–59.

    Article  PubMed  Google Scholar 

  70. Drezner JA, et al. Abnormal electrocardiographic findings in athletes: recognising changes suggestive of primary electrical disease. Br J Sports Med. 2013;47(3):153–67.

    Article  PubMed  Google Scholar 

  71. Sharma S, et al. Comparison of ECG criteria for the detection of cardiac abnormalities in elite black and white athletes. Circulation. 2014;129(16):1637–49.

    Google Scholar 

  72. Wasfy MM, et al. ECG findings in competitive rowers: normative data and the prevalence of abnormalities using contemporary screening recommendations. Br J Sports Med. doi:10.1136/bjsports-2014-093919, Published Online First 9/8/14.

    Google Scholar 

  73. Brosnan M, et al. Modest agreement in ECG interpretation limits the application of ECG screening in young athletes. Heart Rhythm. 2015;12:130–6.

    Article  PubMed  Google Scholar 

  74. Maron BJ, et al. Sudden death in young competitive athletes: clinical, demographic and pathologic profiles. JAMA. 1996;276:199–204.

    Article  CAS  PubMed  Google Scholar 

  75. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349:1064–75.

    Article  CAS  PubMed  Google Scholar 

  76. Maron BJ, et al. Prevalence of sudden cardiac death during competitive sports activities in Minnesota high school athletes. J Am Coll Cardiol. 1998;32:1881–4.

    Article  CAS  PubMed  Google Scholar 

  77. Maron BJ, et al. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119:1085–92.

    Article  PubMed  Google Scholar 

  78. Pellicia A. CHest pain in athletes. Clin Sports Med. 2003:37–50.

    Google Scholar 

  79. Spalding L, et al. Cause and outcome of atypical chest pain in patients admitted to hospital. J R Soc Med. 2003;96(3):122–5.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Pelliccia A, et al. Prospective echocardiographic screening for coronary artery anomalies in 1,360 elite competitive athletes. Am J Cardiol. 1993;72:978–9.

    Article  CAS  PubMed  Google Scholar 

  81. McConnell MV, et al. Identification of anomalous coronary arteries and their anatomic course by magnetic resonance coronary angiography. Circulation. 1995;92:3158–62.

    Article  CAS  PubMed  Google Scholar 

  82. Pelliccia A. Chest pain in athletes. Clin Sports Med. 2003;22:37–50.

    Article  Google Scholar 

  83. Pelliccia A, et al. European Society of Cardiology consensus document: recommendations for competitive sports participation in athletes with cardiovascular disease. Eur Heart J. 2005;26:1422–45.

    Article  PubMed  Google Scholar 

  84. Colivicchi F, et al. Epidemiology and prognostic implications of syncope in young competitive athletes. Eur Heart J. 2004;25(19):1749–53.

    Article  PubMed  Google Scholar 

  85. Strickberger SA, et al. AHA/ACCF scientific statement on the evaluation of syncope. Circulation. 2006;113:316–27.

    Article  PubMed  Google Scholar 

  86. Colivicchi F, et al. Exercise-related syncope in young competitive athletes without evidence of structural heart disease. Clinical presentation ad long-term outcome. Eur Heart J. 2002;23(14):1125–30.

    Article  CAS  PubMed  Google Scholar 

  87. Lawless C. Palpitations in athletes. Sports Med. 2008;38(8):687–702.

    Article  PubMed  Google Scholar 

  88. Wehrens HT, et al. Chronic exercise: a contributing factor to atrial fibrillation? Am J Cardiol. 2013;62:78–80.

    Article  Google Scholar 

  89. Turagam MK, et al. Atrial fibrillation in athletes. Am J Cardiol. 2012;109:296–302.

    Article  PubMed  Google Scholar 

  90. Abdulla J, et al. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-review. Europace. 2009;11:1156–9.

    Article  PubMed  Google Scholar 

  91. Andersen K, et al. Risk of arrhythmias in 52755 long-distance cross-country skiers: a cohort study. Eur Heart J. 2013;34:3624–31.

    Article  PubMed  Google Scholar 

  92. Elosua R, et al. Sport practice and the risk of lone atrial fibrillation: a case-controlled study. Int J Cardiol. 2006;108:332–7.

    Article  PubMed  Google Scholar 

  93. Drca N, et al. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. Heart. 2014;100:1037–42.

    Article  PubMed  Google Scholar 

  94. Mont L, et al. Long-lasting sport practice and lone atrial fibrillation. Eur Heart J. 2002;23:477–82.

    Article  CAS  PubMed  Google Scholar 

  95. Levine B. Exercise dose. J Appl Physiol. 2014;116:736–45.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chakravarty EF, et al. Reduced disability and mortality among aging runners: a 21-year longitudinal study. Arch Intern Med. 2008;168(15):1638–46.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Wen CP, et al. Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet. 2011;378(9798):1244–53.

    Article  PubMed  Google Scholar 

  98. O’Keefe JH, et al. Exercise and life expectancy. Lancet. 2012;379(9818):800–1.

    Google Scholar 

  99. Sharma S, et al. The U-shaped relationship between exercise and cardiac morbidity. Trends Cardiovasc Med. 2015; doi:10.1016/j.tcm.2015.06.005.

    Google Scholar 

  100. Schnohr P. Dose of jogging and long-term mortality. J Am Coll Cardiol. 2015;65:411–9.

    Article  PubMed  Google Scholar 

  101. Lee J, et al. Running and all-cause mortality risk: is more better? Med Sci Sports Exerc. 2012;44(6):990–4.

    Article  Google Scholar 

  102. Harmon KG, et al. Incidence of sudden cardiac death in National Collegiate Athletic Association athletes. Circulation. 2011;123:1594–600.

    Article  PubMed  Google Scholar 

  103. Harris KM, et al. Sudden death during the triathlon. JAMA. 2010;303:1255–7.

    Article  CAS  PubMed  Google Scholar 

  104. Thompson PD, et al. Incidence of death during jogging in Rhode Island from 1975 through 1980. JAMA. 1982;247:2535–8.

    Article  CAS  PubMed  Google Scholar 

  105. Gerardin B, et al. Registry on acute cardiovascular events during endurance running races: the prospective RACE Paris registry. Eur Heart J. 2015; doi:10.1093/eurheartj/ehv675.

    Google Scholar 

  106. Webner D, et al. Sudden cardiac arrest and death in United States marathons. Med Sci Sports Exerc. 2012; doi:10.1249/MMS.0b013e318258b59a.

    Google Scholar 

  107. Redelmeier DA, Greenwald JA. Competing risks of mortality with marathons: retrospective analysis. BMJ. 2007.

    Google Scholar 

  108. Maron B, Poliac L, et al. Risk for sudden cardiac death associated with marathon running. JACC. 1996;28(2):428–31.

    Article  CAS  PubMed  Google Scholar 

  109. Roberts WO, Maron BJ. Evidence for decreasing occurrence of sudden cardiac death associated with the marathon. JACC. 2005;46(7):1373–7.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron L. Baggish .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Finch, J.A.M., Baggish, A.L. (2016). Cardiovascular Evaluation and Treatment of the Endurance Athlete. In: Miller, T. (eds) Endurance Sports Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-32982-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-32982-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-32980-2

  • Online ISBN: 978-3-319-32982-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics