Skip to main content

Abstract

Cardiovascular diseases (CVDs) are the leading global cause of death and encompass a broad range of disorders, including diseases of the vasculature, the myocardium, and the heart’s electrical circuit, and congenital heart disease (CHD). In the etiology of most CVDs, a clear hereditary component has been demonstrated. CVDs can be divided in two major categories: the monogenic and the polygenic/multifactorial forms and have long been at the forefront of gene testing in the clinic. The advent of next-generation sequencing (NGS) technologies has led to increasingly comprehensive testing for CVDs in both the monogenic and the polygenic/multifactorial forms, although the interpretation of the NGS data is still a challenge at this time. This chapter describes the genetic background of CVDs including inherited cardiomyopathy, inherited primary arrhythmia syndromes, CHD and inherited aortopathy, as well as the utility of NGS in the detection of CVDs-related genetic alterations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mozaffarian, D., et al.: Heart disease and stroke statistics – 2015 update: a report from the American Heart Association. Circulation. 131, e535 (2015)

    Article  Google Scholar 

  2. Faita, F., Vecoli, C., Foffa, I., Andreassi, M.G.: Next generation sequencing in cardiovascular diseases. World J. Cardiol. 4, 288–295 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hershberger, R.E.: Cardiovascular genetic medicine: evolving concepts, rationale, and implementation. J. Cardiovasc. Transl. Res. 1, 137–143 (2008)

    Article  PubMed  Google Scholar 

  4. Kathiresan, S., Srivastava, D.: Genetics of human cardiovascular disease. Cell. 148, 1242–1257 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ware, S.M., Jefferies, J.L.: New genetic insights into congenital heart disease. J. Clin. Exp. Cardiolog. S8, 003 (2012). doi:10.4172/2155-9880

    PubMed  Google Scholar 

  6. Maron, B.J.: Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 113, 1807–1816 (2006)

    Article  PubMed  Google Scholar 

  7. Geisterfer-Lowrance, A.A., et al.: A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell. 62, 999–1006 (1990)

    Article  CAS  PubMed  Google Scholar 

  8. Ho, C.Y., et al.: Genetic advances in sarcomeric cardiomyopathies: state of the art. Cardiovasc. Res. 105, 397–408 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mcnally, E.M., Golbus, J.R., Puckelwartz, M.J.: Genetic mutations and mechanisms in dilated cardiomyopathy. J. Clin. Invest. 123, 19–26 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Towbin, J.A.: Inherited cardiomyopathies. Circ. J. 78, 2347–2356 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Maron, B.J., et al.: Prevalence of hypertrophic cardiomyopathy in a general population of young Adults : echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation. 92, 785–789 (1995)

    Article  CAS  PubMed  Google Scholar 

  12. Teekakirikul, P., Kelly, M.A., Rehm, H.L., Lakdawala, N.K., Funke, B.H.: Inherited cardiomyopathies. J. Mol. Diagnostics. 15, 158–170 (2013)

    Article  Google Scholar 

  13. Profiles, P., Roberts, W.C., Mueller, F.O.: Sudden death in young competitive athletes. JAMA. 276, 199–204 (1996)

    Article  Google Scholar 

  14. Maron, B.J., Doerer, J.J., Haas, T.S., Tierney, D.M., Mueller, F.O.: Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 119, 1085–1092 (2009)

    Article  PubMed  Google Scholar 

  15. Tester, D.J., Ackerman, M.J.: Genetic testing for potentially lethal, highly treatable inherited cardiomyopathies/channelopathies in clinical practice. Circulation. 123, 1021–1037 (2012)

    Article  Google Scholar 

  16. Maron, B.J., Maron, M.S., Semsarian, C.: Genetics of hypertrophic cardiomyopathy after 20 years: clinical perspectives. J. Am. Coll. Cardiol. 60, 705–715 (2012)

    Article  PubMed  Google Scholar 

  17. Ho, C.Y.: Genetics and clinical destiny: improving care in hypertrophic cardiomyopathy. Circulation. 122, 2430–2440 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lopes, L.R., et al.: Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 50, 228–239 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Marston, S., et al.: Evidence from human Myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circ. Res. 105, 219–222 (2009)

    Article  CAS  PubMed  Google Scholar 

  20. Ingles, J., et al.: Clinical predictors of genetic testing outcomes in hypertrophic cardiomyopathy. Genet. Med. 15, 972–977 (2013)

    Article  PubMed  Google Scholar 

  21. Ackerman, M.J., et al.: HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Hear. Rhythm. 8, 1308–1339 (2011)

    Article  Google Scholar 

  22. Wordsworth, S., et al.: DNA testing for hypertrophic cardiomyopathy: a cost-effectiveness model. Eur. Heart J. 31, 926–935 (2010)

    Article  PubMed  Google Scholar 

  23. Ingles, J., McGaughran, J., Scuffham, P.A., Atherton, J., Semsarian, C.: A cost-effectiveness model of genetic testing for the evaluation of families with hypertrophic cardiomyopathy. Heart. 98, 625–630 (2012)

    Article  PubMed  Google Scholar 

  24. Zhang, L., et al.: Hypertrophic cardiomyopathy: can the noninvasive diagnostic testing identify high risk patients? World J. Cardiol. 6, 764–770 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  25. Charron, P.: Genetic analysis for predictive screening in hypertrophic cardiomyopathy. Heart. 98, 603–604 (2012)

    Article  PubMed  Google Scholar 

  26. Meder, B., et al.: Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. Circ. Cardiovasc. Genet. 4, 110–122 (2011)

    Article  CAS  PubMed  Google Scholar 

  27. Dames, S., Durtschi, J., Geiersbach, K., Stephens, J., Voelkerding, K.V.: Comparison of the illumina genome analyzer and roche 454 GS FLX for resequencing of hypertrophic cardiomyopathy-associated genes. J. Biomol. Tech. 21, 73–80 (2010)

    PubMed  PubMed Central  Google Scholar 

  28. Towbin, J.A., et al.: Incidence, causes, and outcomes of dilated cardiomyopathy in children. JAMA. 296, 1867–1876 (2006)

    Article  CAS  PubMed  Google Scholar 

  29. Hershberger, R.E., Hedges, D.J., Morales, A.: Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat. Rev. Cardiol. 10, 531–547 (2013)

    Article  CAS  PubMed  Google Scholar 

  30. Deck, G.W., Fuster, V.: Idiopathic dilated cardiomyopathy. N. Engl. J. Med. 331, 1564–1575 (1994)

    Article  Google Scholar 

  31. Finsterer, J., Stöllberger, C., Wahbi, K.: Cardiomyopathy in neurological disorders. Cardiovasc. Pathol. 22, 389–400 (2013)

    Article  PubMed  Google Scholar 

  32. Norton, N., et al.: Genome-wide studies of copy number variation and exome sequencing identify rare variants in BAG3 as a cause of dilated cardiomyopathy. Am. J. Hum. Genet. 88, 273–282 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li, D., et al.: Identification of novel mutations in RBM20 in patients with dilated cardiomyopathy. Clin. Transl. Sci. 3, 90–97 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Herman, D.S., et al.: Truncations of titin causing dilated cardiomyopathy. N. Engl. J. Med. 366, 619–628 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Watkins, H., Ashrafian, H., Redwood, C.: Inherited cardiomyopathies. N. Engl. J. Med. 364, 1643–1656 (2011)

    Article  CAS  PubMed  Google Scholar 

  36. Morita, H., Seidman, J., Seidman, C.E.: Genetic causes of human heart failure. J. Clin. Invest. 115, 518–526 (2005)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Arbustini, E., et al.: Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. Am. J. Pathol. 153, 1501–1510 (1998)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. DeWitt, M.M., MacLeod, H.M., Soliven, B., McNally, E.M.: Phospholamban R14 deletion results in late-onset, mild, hereditary dilated cardiomyopathy. J. Am. Coll. Cardiol. 48, 1396–1398 (2006)

    Article  CAS  PubMed  Google Scholar 

  39. Van Rijsingen, I.A.W., et al.: Risk factors for malignant ventricular arrhythmias in Lamin A/C mutation carriers: a European cohort study. J. Am. Coll. Cardiol. 59, 493–500 (2012)

    Article  PubMed  CAS  Google Scholar 

  40. McNair, W.P., et al.: SCN5A mutations associate with arrhythmic dilated cardiomyopathy and commonly localize to the voltage-sensing mechanism. J. Am. Coll. Cardiol. 57, 2160–2168 (2011)

    Article  PubMed  Google Scholar 

  41. Theis, J.L., et al.: Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circ. Cardiovasc. Genet. 4, 585–594 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Mestroni, L., Taylor, M.R.G.: Genetics and genetic testing of dilated cardiomyopathy: a new perspective. Discov. Med. 15, 43–49 (2013)

    PubMed  PubMed Central  Google Scholar 

  43. Mogensen, J., Arbustini, E.: Restrictive cardiomyopathy. Curr. Opin. Cardiol. 24, 214–220 (2009)

    Article  PubMed  Google Scholar 

  44. Chen, S., Balfour, I.C., Jureidini, S.: Clinical spectrum of restrictive cardiomyopathy in children. J. Heart Lung Transplant. 2498, 90–92 (2001)

    Article  Google Scholar 

  45. Russo, L.M., Webber, S.A.: Idiopathic restrictive cardiomyopathy in children. Heart. 91, 1199–1202 (2005). doi:10.1136/hrt.2004.043869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Rivenes, S.M., Kearney, D.L., Smith, E.O.B., Towbin, J.A., Denfield, S.W.: Sudden death and cardiovascular collapse in children with restrictive cardiomyopathy. Circulation. 102, 876–883 (2015)

    Article  Google Scholar 

  47. Kaski, J.P., et al.: Idiopathic restrictive cardiomyopathy in children is caused by mutations in cardiac sarcomere protein genes. Heart. 94, 1478–1484 (2008)

    Article  CAS  PubMed  Google Scholar 

  48. Mogensen, J., et al.: Idiopathic restrictive cardiomyopathy is part of the clinical expression of cardiac troponin I mutations. J. Clin. Invest. 111, 209–216 (2003)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chen, Y., et al.: Pediatric restrictive cardiomyopathy due to a heterozygous mutation of the TNNI3 gene. J. Biomed. Res. 28, 59–63 (2014)

    Article  CAS  PubMed  Google Scholar 

  50. Peddy, S.B., et al.: Infantile restrictive cardiomyopathy resulting from a mutation in the cardiac troponin T gene. Pediatrics. 117, 1830–1833 (2006)

    Article  PubMed  Google Scholar 

  51. Sm, W., et al.: Pediatric restrictive cardiomyopathy associated with a mutation in b -myosin heavy chain. Clin. Genet. 134, 165–170 (2008)

    Google Scholar 

  52. Lopes, L.R., Elliott, P.M.: Biochimica et Biophysica Acta genetics of heart failure ☆. BBA – Mol. Basis Dis. 1832, 2451–2461 (2013)

    Article  CAS  Google Scholar 

  53. Teo, L.Y.L., Moran, R.T., Tang, W.H.W.: Evolving approaches to genetic evaluation of specific cardiomyopathies. Curr. Heart Fail. Rep. 12, 339–349 (2015)

    Article  PubMed  Google Scholar 

  54. Biswas, A., Sandeep, V.R.R.: Next generation sequencing in cardiomyopathy : towards personalized genomics and medicine. Mol. Biol. Rep. 41, 4881–4888 (2014)

    Article  CAS  PubMed  Google Scholar 

  55. Reviews, F., Arrhythmia, O.N.: Arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circ J. 79, S57–S61 (2015)

    Google Scholar 

  56. Marcus, F.I., Edson, S., Towbin, J.A.: Genetics of arrhythmogenic right ventricular cardiomyopathy a practical guide for physicians. JAC. 61, 1945–1948 (2013)

    Google Scholar 

  57. Campuzano, O., et al.: Genetics of arrhythmogenic right ventricular cardiomyopathy. J. Med. Genet. 50, 280–289 (2013)

    Article  CAS  PubMed  Google Scholar 

  58. Egle, I., et al.: Identification of a PKP2 gene deletion in a family with arrhythmogenic right ventricular cardiomyopathy. Eur. J. Hum. Genet. 21, 1226–1231 (2013)

    Article  CAS  Google Scholar 

  59. Shemisa, K., Li, J., Tam, M., Barcena, J.: Left ventricular noncompaction cardiomyopathy. Cardiovasc. Diagn. Ther. 3, 170–175 (2013)

    PubMed  PubMed Central  Google Scholar 

  60. Chin, T.K., Perloff, J.K., Williams, R.G., Jue, K., Mohrmann, R.: Isolated noncompaction of left ventricular myocardium a study of eight cases. Circulation. 82, 507–514 (1990)

    Article  CAS  PubMed  Google Scholar 

  61. Bahler, R.C.: Prevalence and characteristics of left ventricular noncompaction in a community hospital cohort of patients with systolic dysfunction. Echocardiography. 25, 8–12 (2008)

    PubMed  Google Scholar 

  62. Ichida, F.: Left ventricular noncompaction. Circ J. 73, 19–26 (2009)

    Article  CAS  PubMed  Google Scholar 

  63. Stress, O., With, I., Matter, W., After, R.: HHS public access. Stroke. 44, 3516–3521 (2014)

    Google Scholar 

  64. Hoedemaekers, Y.M., et al.: The importance of genetic counseling, DNA diagnostics, and cardiologic family screening in left ventricular noncompaction cardiomyopathy. Circ. Cardiovasc. Genet. 3, 232–239 (2010)

    Article  PubMed  Google Scholar 

  65. Waldmüller, S., et al.: Targeted 46-gene and clinical exome sequencing for mutations causing cardiomyopathies. Mol. Cell. Probes. 29, 308–314 (2015)

    Article  PubMed  CAS  Google Scholar 

  66. Schaefer, E., et al.: Next-generation sequencing (NGS) as a fast molecular diagnosis tool for left ventricular noncompaction in an infant with compound mutations in the MYBPC3 gene. Eur. J. Med. Genet. 57, 129–132 (2014)

    Article  PubMed  Google Scholar 

  67. Deo, R., Albert, C.M.: Epidemiology and genetics of sudden cardiac death. Circulation. 125, 620–637 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  68. Spears, D.A., Gollob, M.H.: Genetics of inherited primary arrhythmia disorders. Appl. Clin. Genet. 8, 215–233 (2015)

    PubMed  PubMed Central  Google Scholar 

  69. Priori, S.G., et al.: HRS/EHRA/APHRS expert consensus statement on the diagnosis and management of patients with inherited primary arrhythmia syndromes. Hear. Rhythm. 10, 1932–1963 (2013)

    Article  Google Scholar 

  70. Priori, S.G., Napolitano, C., Schwartz, P.J.: Low penetrance in the long-QT syndrome: clinical impact. Circulation. 99, 529–533 (1999)

    Article  CAS  PubMed  Google Scholar 

  71. Tester, D.J., Will, M.L., Haglund, C.M., Ackerman, M.J.: Effect of clinical phenotype on yield of long QT syndrome genetic testing. J. Am. Coll. Cardiol. 47, 764–768 (2006)

    Article  PubMed  Google Scholar 

  72. Wei, J.Y.: The New England journal of medicine downloaded from nejm.Org at the TMC LIBRARY on June 13, 2014. For personal use only. No other uses without permission. From the NEJM archive. N. Engl. J. Med. 327, 1735–1739 (2010)

    Google Scholar 

  73. Priori, S.G., et al.: Risk stratification in the long-QT syndrome. N. Engl. J. Med. 348, 1866–1874 (2003)

    Article  PubMed  Google Scholar 

  74. Schwartz, P.J., et al.: Prevalence of the congenital long-QT syndrome. Circulation. 120, 1761–1767 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  75. Goldenberg, I., et al.: Risk factors for aborted cardiac arrest and sudden cardiac death in children with the congenital long-QT syndrome. Circulation. 117, 2184–2191 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hobbs, J.B., et al.: Risk of aborted cardiac arrest or sudden cardiac death during adolescence in the long-QT syndrome. JAMA. 296, 1249–1254 (2006)

    Article  CAS  PubMed  Google Scholar 

  77. Mönnig, G., et al.: Electrocardiographic risk stratification in families with congenital long QT syndrome. Eur. Heart J. 27, 2074–2080 (2006)

    Article  PubMed  Google Scholar 

  78. Sauer, A.J., et al.: Long QT syndrome in adults. J. Am. Coll. Cardiol. 49, 329–337 (2007)

    Article  PubMed  Google Scholar 

  79. Jons, C., et al.: Risk of fatal arrhythmic events in long QT syndrome patients after syncope. J. Am. Coll. Cardiol. 55, 783–788 (2010)

    Article  PubMed  Google Scholar 

  80. Wang, Q., et al.: SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell. 80, 805–811 (1995)

    Article  CAS  PubMed  Google Scholar 

  81. Schwartz, P.J.: Idiopathic long QT syndrome: progress and questions. Am. Heart J. 109, 399–411 (1985)

    Article  CAS  PubMed  Google Scholar 

  82. Goldenberg, I., et al.: Clinical course and risk stratification of patients affected with the Jervell and Lange-Nielsen syndrome. J. Cardiovasc. Electrophysiol. 17, 1161–1168 (2006)

    Article  PubMed  Google Scholar 

  83. Schwartz, P., The, J.: Jervell and Lange-Nielsen syndrome: natural history, molecular basis, and clinical outcome. Circulation. 113, 783–790 (2006)

    Article  PubMed  Google Scholar 

  84. Crotti, L., et al.: NOS1AP is a genetic modifier of the long-QT syndrome. Circulation. 120, 1657–1663 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li, X., et al.: Towards clinical molecular diagnosis of inherited cardiac conditions: a comparison of bench-top genome DNA sequencers. PLoS One. 8, e67744 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lubitz, S.A., Ellinor, P.T.: Next-generation sequencing for the diagnosis of cardiac arrhythmia syndromes. Heart Rhythm. 12, 1062–1070 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lieve, K.V., et al.: Results of genetic testing in 855 consecutive unrelated patients referred for long QT syndrome in a clinical laboratory. Genet. Test. Mol. Biomarkers. 17, 553–561 (2013)

    Article  CAS  PubMed  Google Scholar 

  88. Fröhler, S., et al.: Exome sequencing helped the fine diagnosis of two siblings afflicted with atypical Timothy syndrome (TS2). BMC Med. Genet. 15, 48 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  89. Whole, R., Sequencing, G.: HHS public access. Hear. Rhythm. 11, 1707–1713 (2014)

    Article  Google Scholar 

  90. Zhang, L., et al.: Spectrum of ST-T-wave patterns and repolarization parameters in congenital long-QT syndrome: ECG findings identify genotypes. Circulation. 102, 2849–2855 (2000)

    Article  CAS  PubMed  Google Scholar 

  91. Arrhythmias, G.T.L., et al.: Genotype-phenotype correlation in the long-QT syndrome. Circulation. 103, 89–95 (2001)

    Article  Google Scholar 

  92. Ackerman, M.J.: The long QT syndrome. Pediatr. Rev. 19, 232–238 (1998)

    Article  CAS  PubMed  Google Scholar 

  93. Choi, G.: Spectrum and frequency of cardiac channel defects in swimming-triggered arrhythmia syndromes. Circulation. 110, 2119–2124 (2004)

    Article  PubMed  Google Scholar 

  94. Moss, A.J., et al.: Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 115, 2481–2489 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Shimizu, W., et al.: Genotype-phenotype aspects of type 2 long QT syndrome. J. Am. Coll. Cardiol. 54, 2052–2062 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Splawski, I., et al.: CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell. 119, 19–31 (2004)

    Article  CAS  PubMed  Google Scholar 

  97. Donger, C., et al.: KVLQT1 C-terminal missense mutation causes a forme fruste long-QT syndrome. Circulation. 96, 2778–2781 (1997)

    Article  CAS  PubMed  Google Scholar 

  98. Locati, E.H., et al.: Age- and sex-related differences in clinical manifestations in patients with congenital long-QT syndrome: findings from the international LQTS registry. Circulation. 97, 2237–2244 (1998)

    Article  CAS  PubMed  Google Scholar 

  99. Villain, E., et al.: Low incidence of cardiac events with beta-blocking therapy in children with long QT syndrome. Eur. Heart J. 25, 1405–1411 (2004)

    Article  CAS  PubMed  Google Scholar 

  100. Mönnig, G., et al.: Implantable cardioverter-defibrillator therapy in patients with congenital long-QT syndrome: a long-term follow-up. Hear. Rhythm. 2, 497–504 (2005)

    Article  Google Scholar 

  101. Schwartz, P.J., et al.: Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European long-QT syndrome implantable cardioverter-defibrillator (LQTS ICD) registry. Circulation. 122, 1272–1282 (2010)

    Article  PubMed  Google Scholar 

  102. Horner, J.M., et al.: Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience. Heart Rhythm. 7, 1616–1622 (2010)

    Article  PubMed  Google Scholar 

  103. Moss, A.J., et al.: Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 101, 616–623 (2000)

    Article  CAS  PubMed  Google Scholar 

  104. Schwartz, P.J., et al.: Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na+ channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation. 92, 3381–3386 (1995)

    Article  CAS  PubMed  Google Scholar 

  105. Ruan, Y., Liu, N., Bloise, R., Napolitano, C., Priori, S.G.: Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 116, 1137–1144 (2007)

    Article  CAS  PubMed  Google Scholar 

  106. Moss, A.J., et al.: Safety and efficacy of flecainide in subjects with long QT-3 syndrome (DeltaKPQ mutation): a randomized, double-blind, placebo-controlled clinical trial. Ann. Noninvasive Electrocardiol. 10, 59–66 (2005)

    Article  PubMed  Google Scholar 

  107. Sarquella-Brugada, G., Campuzano, O., Arbelo, E., Brugada, J., Brugada, R.: Brugada syndrome: clinical and genetic findings. Genet. Med. 18, 3–12 (2016)

    Article  CAS  PubMed  Google Scholar 

  108. Antzelevitch, C.: Brugada syndrome clinical, genetic, molecular, cellular, and ionic aspects. Curr. Probl. Cardiol. 41, 7–57 (2016)

    Article  PubMed  Google Scholar 

  109. Antzelevitch, C., et al.: Brugada syndrome: report of the second consensus conference. Hear. Rhythm. 2, 429–440 (2005)

    Article  Google Scholar 

  110. Mizusawa, Y., Wilde, A.A.M.: Brugada syndrome. Circ. Arrhythmia Electrophysiol. 5, 606–616 (2012)

    Article  Google Scholar 

  111. Gollob, M.H., et al.: Recommendations for the use of genetic testing in the clinical evaluation of inherited cardiac arrhythmias associated with sudden cardiac death: Canadian cardiovascular society/Canadian Heart Rhythm Society joint position paper. Can. J. Cardiol. 27, 232–245 (2011)

    Article  PubMed  Google Scholar 

  112. Crotti, L., et al.: Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing. J. Am. Coll. Cardiol. 60, 1410–1418 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Reller, M.D., Strickland, M.J., Riehle-Colarusso, T., Mahle, W.T., Correa, A.: Prevalence of congenital heart defects in metropolitan Atlanta, 1998–2005. J. Pediatr. 153, 807–813 (2008)

    Article  PubMed  PubMed Central  Google Scholar 

  114. Hoffman, J.I., Kaplan, S.: The incidence of congenital heart disease. J. Am. Coll. Cardiol. 39, 1890–1900 (2002)

    Article  PubMed  Google Scholar 

  115. Fahed, C.A., Nemer, M.G.: In: Cooper, D. (ed.) Mutations in Human Genetic Disease, vol. 52, pp. 119–148. InTech, Rijeka (2012)

    Google Scholar 

  116. Wessels, M., Willems, P.: Genetic factors in non-syndromic congenital heart malformations. Clin. Genet. 78, 103–123 (2010)

    Article  CAS  PubMed  Google Scholar 

  117. Basson, C.T., et al.: Mutations in human TBX5 [corrected] cause limb and cardiac malformation in Holt-Oram syndrome. Nat. Genet. 15, 30–35 (1997)

    Article  CAS  PubMed  Google Scholar 

  118. Fahed, A.C., Gelb, B.D., Seidman, J.G., Seidman, C.E.: Genetics of congenital heart disease: the glass half empty. Circ. Res. 112, 707–720 (2013)

    Article  CAS  PubMed  Google Scholar 

  119. Erdogan, F., et al.: High frequency of submicroscopic genomic aberrations detected by tiling path array comparative genome hybridisation in patients with isolated congenital heart disease. J. Med. Genet. 45, 704–709 (2008)

    Article  CAS  PubMed  Google Scholar 

  120. Silversides, C.K., et al.: Rare copy number variations in adults with tetralogy of Fallot implicate novel risk gene pathways. PLoS Genet. 8, e1002843 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Soemedi, R., et al.: Contribution of global rare copy-number variants to the risk of sporadic congenital heart disease. Am. J. Hum. Genet. 91, 489–501 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kosaki, K., et al.: Characterization and mutation analysis of human LEFTY A and LEFTY B, homologues of murine genes implicated in left-right axis development. Am. J. Hum. Genet. 64, 712–721 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zhou, X., Sasaki, H., Lowe, L., Hogan, B.L., Kuehn, M.R.: Nodal is a novel TGF-beta-like gene expressed in the mouse node during gastrulation. Nature. 361, 543–547 (1993)

    Article  CAS  PubMed  Google Scholar 

  124. De Luca, A., et al.: Familial transposition of the great arteries caused by multiple mutations in laterality genes. Heart. 96, 673–677 (2010)

    Article  PubMed  Google Scholar 

  125. Garg, V., et al.: Mutations in NOTCH1 cause aortic valve disease. Nature. 437, 270–274 (2005)

    Article  CAS  PubMed  Google Scholar 

  126. Ching, Y.-H., et al.: Mutation in myosin heavy chain 6 causes atrial septal defect. Nat. Genet. 37, 423–428 (2005)

    Article  CAS  PubMed  Google Scholar 

  127. Blue, G.M., Winlaw, D.S.: Next generation sequencing in congenital heart disease: gene discovery and clinical application. J. Next Gener. Seq. Appl. 2, 2–5 (2015)

    Google Scholar 

  128. Andelfinger, G.: Next-generation sequencing in congenital heart disease. J. Am. Coll. Cardiol. 64, 2507–2509 (2014)

    Article  PubMed  Google Scholar 

  129. Arrington, C.B., et al.: Exome analysis of a family with pleiotropic congenital heart disease. Circ. Cardiovasc. Genet. 5, 175–182 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  130. Zaidi, S., et al.: De novo mutations in histone modifying genes in congenital heart disease. Nature. 498, 220–223 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Blue, G.M., et al.: Targeted next-generation sequencing identifies pathogenic variants in familial congenital heart disease. J. Am. Coll. Cardiol. 64, 2498–2506 (2014)

    Article  CAS  PubMed  Google Scholar 

  132. Tariq, M., Belmont, J.W., Lalani, S., Smolarek, T., Ware, S.M.: SHROOM3 is a novel candidate for heterotaxy identified by whole exome sequencing. Genome Biol. 12, R91 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ta-Shma, A., et al.: Isolated truncus arteriosus associated with a mutation in the plexin-D1 gene. Am. J. Med. Genet. A. 161A, 3115–3120 (2013)

    Article  PubMed  CAS  Google Scholar 

  134. Greenway, S.C., et al.: Exome sequencing identifies a novel variant in ACTC1 associated with familial atrial septal defect. Can. J. Cardiol. 30, 181–187 (2014)

    Article  PubMed  Google Scholar 

  135. Martin, L.J., et al.: Whole exome sequencing for familial bicuspid aortic valve identifies putative variants. Circ. Cardiovasc. Genet. 7, 677–683 (2014)

    Article  CAS  PubMed  Google Scholar 

  136. Wooderchak-Donahue, W.L., et al.: A direct comparison of next generation sequencing enrichment methods using an aortopathy gene panel- clinical diagnostics perspective. BMC Med. Genet. 5, 50 (2012)

    CAS  Google Scholar 

  137. Gillis, E., Laer, L.V., Loeys, B.L.: Genetics of thoracic aortic aneurysm. Circ. Res. 113, 327–340 (2015)

    Article  CAS  Google Scholar 

  138. Saratzis, A., Bown, M.J.: The genetic basis for aortic aneurysmal disease. Heart. 100, 916–922 (2014)

    Article  CAS  PubMed  Google Scholar 

  139. Halushka, M.K.: Single gene disorders of the aortic wall. Cardiovasc. Pathol. 21, 240–244 (2012)

    Article  CAS  PubMed  Google Scholar 

  140. Rea, G., Stewart, F.J.: Genetic biomarkers in aortopathy. Biomark. Med. 7, 547–563 (2013)

    Article  CAS  PubMed  Google Scholar 

  141. Paterick, T.E., et al.: Aortopathies: etiologies, genetics, differential diagnosis, prognosis and management. Am J Med. 126, 670–678 (2013)

    Article  PubMed  Google Scholar 

  142. Niwa, K.: Aortic root dilatation in tetralogy of Fallot long-term after repair – histology of the aorta in tetralogy of Fallot: evidence of intrinsic aortopathy. Int. J. Cardiol. 103, 117–119 (2005)

    Article  PubMed  Google Scholar 

  143. Milewicz, D.M., et al.: Genetic basis of thoracic aortic aneurysms and dissections: focus on smooth muscle cell contractile dysfunction. Annu. Rev. Genomics Hum. Genet. 9, 283–302 (2008)

    Article  CAS  PubMed  Google Scholar 

  144. Milewicz, D.M., Carlson, A.A., Regalado, E.S.: Genes predisposing to thoracic aortic aneurysms and dissections: associated phenotypes, gene-specific management, and genetic testing. Cardiol. Clin. 28, 191–197 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  145. Francois, K.: Aortopathy associated with congenital heart disease: a current literature review. Ann. Pediatr. Cardiol. 8, 25–36 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  146. Cornwall, J.W., Green, R.S., Nielsen, J.C., Gelb, B.D.: Frequency of aortic dilation in Noonan syndrome. Am. J. Cardiol. 113, 368–371 (2014)

    Article  PubMed  Google Scholar 

  147. Wooderchak-Donahue, W., et al.: Clinical utility of a next generation sequencing panel assay for Marfan and Marfan-like syndromes featuring aortopathy. Am. J. Med. Genet. Part A. 167, 1747–1757 (2015)

    Article  CAS  Google Scholar 

  148. Judge, D.P., Dietz, H.C.: Marfan ’ s syndrome. Lancet. 633, 1966–1976 (2005)

    Google Scholar 

  149. Romaniello, F., et al.: Aortopathy in Marfan syndrome: an update. Cardiovasc. Pathol. 23, 261–266 (2014)

    Article  PubMed  Google Scholar 

  150. Callewaert, B.L., et al.: Aneurysm syndromes caused by mutations in the TGF-β receptor. N. Engl. J. Med. 24, 788–798 (2006)

    Google Scholar 

  151. Loeys, B.L., et al.: A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37, 275–281 (2005)

    Article  CAS  PubMed  Google Scholar 

  152. Bradley, T.J., Bowdin, S.C.: Multidisciplinary aortopathy clinics should now Be the standard of Care in Canada. Can. J. Cardiol. 32, 1–5 (2015)

    Google Scholar 

  153. Michelena, H.I., et al.: Bicuspid aortic valve aortopathy in adults: incidence, etiology, and clinical significance. Int. J. Cardiol. 201, 400–407 (2015)

    Article  PubMed  Google Scholar 

  154. Bruckner, B.A., Reardon, M.J.: Bicuspid aortic valve and associated aortopathy: surgical considerations. Methodist Debakey Cardiovasc. J. 6, 29–32 (2010)

    Article  PubMed  Google Scholar 

  155. Abdulkareem, N., Smelt, J., Jahangiri, M.: Bicuspid aortic valve aortopathy: genetics, pathophysiology and medical therapy. Interact. Cardiovasc. Thorac. Surg. 17, 554–559 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  156. Jeremy, R.W., Robertson, E., Lu, Y., Hambly, B.D.: Perturbations of mechanotransduction and aneurysm formation in heritable aortopathies. Int. J. Cardiol. 169, 7–16 (2013)

    Article  PubMed  Google Scholar 

  157. Morris, S.A.: Arterial tortuosity in genetic arteriopathies. Curr. Opin. Cardiol. 30, 587–593 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  158. Westerland, O., et al.: Vascular manifestations of syndromic aortopathies: role of current and emerging imaging techniques. Clin. Radiol. 70, 1344–1354 (2015)

    Article  CAS  PubMed  Google Scholar 

  159. Jones, J.A., Ikonomidis, J.S.: The pathogenesis of aortopathy in Marfan syndrome and related diseases. Curr. Cardiol. Rep. 12, 99–107 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  160. Cury, M., Zeidan, F., Lobato, A.C.: Aortic disease in the young: pictorial review of genetic aneurysm syndromes, connective tissue disorders and familial aortic aneurysms and dissections. Int. J. Vasc. Med. 2013, 1–7 (2013)

    Article  Google Scholar 

  161. Guo, D.-C., et al.: MAT2A mutations predispose individuals to thoracic aortic aneurysms. Am. J. Hum. Genet. 96, 170–177 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Barbier, M., et al.: MFAP5 loss-of-function mutations underscore the involvement of matrix alteration in the pathogenesis of familial thoracic aortic aneurysms and dissections. Am. J. Hum. Genet. 95, 736–743 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Blinc, A., et al.: Clinical exome sequencing as a Novel tool for diagnosing Loeys-Dietz syndrome type 3. Eur. J. Vasc. Endovasc. Surg. 50, 816–821 (2015)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuxin Fan M.D., Ph.D., FACMG, FAAP .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Wang, G. et al. (2017). Application of NGS in the Diagnosis of Cardiovascular Genetic Diseases. In: Wong, LJ. (eds) Next Generation Sequencing Based Clinical Molecular Diagnosis of Human Genetic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-56418-0_12

Download citation

Publish with us

Policies and ethics