Skip to main content
Log in

Genetic Etiology and Evaluation of Sudden Cardiac Death

  • Cardiovascular Genomics (C O'Donnell, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

A wide range of inherited syndromes can result in ventricular arrhythmias and sudden cardiac death (SCD). The natural histories of inherited arrhythmia syndromes are highly variable and current risk stratification techniques are limited. Thus, the management of these conditions can be difficult and often involves a combination of risk assessment, lifestyle modification, cardiac interventions, counselling, and family screening. Recent advances in high throughput sequencing have enabled routine testing in patients with a high clinical index of suspicion for an inherited arrhythmia condition, and cascade screening in relatives of mutation carriers. Given the complexity in screening and data interpretation that has been introduced by recent genomic advances, individuals with inherited arrhythmia syndromes are encouraged to seek care at specialized centers with cardiovascular genetics expertise. In this review, we discuss the etiologies of SCD syndromes and discuss strategies for the evaluation of patients at risk for SCD with a focus on the role of genetic testing and family screening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics–2013 update: a report from the American Heart Association. Circulation. 2013;127(1):e6–e245. doi:10.1161/CIR.0b013e31828124ad.

    Article  PubMed  Google Scholar 

  2. Nichol G, Thomas E, Callaway CW, Hedges J, Powell JL, Aufderheide TP, et al. Regional variation in out-of-hospital cardiac arrest incidence and outcome. JAMA: J Am Med Assoc. 2008;300(12):1423–31. doi:10.1001/jama.300.12.1423.

    Article  CAS  Google Scholar 

  3. Chugh SS, Kelly KL, Titus JL. Sudden cardiac death with apparently normal heart. Circulation. 2000;102(6):649–54.

    Article  PubMed  CAS  Google Scholar 

  4. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119(8):1085–92. doi:10.1161/CIRCULATIONAHA.108.804617.

    Article  PubMed  Google Scholar 

  5. Kim JH, Malhotra R, Chiampas G, d' Hemecourt P, Troyanos C, Cianca J, et al. Cardiac arrest during long-distance running races. N Engl J Med. 2012;366(2):130–40. doi:10.1056/NEJMoa1106468.

    Article  PubMed  CAS  Google Scholar 

  6. Harmon KG, Asif IM, Klossner D, Drezner JA. Incidence of sudden cardiac death in national collegiate athletic association athletes. Circulation. 2011;123(15):1594–600. doi:10.1161/CIRCULATIONAHA.110.004622.

    Article  PubMed  Google Scholar 

  7. Schwartz PJ, Stramba-Badiale M, Crotti L, Pedrazzini M, Besana A, Bosi G, et al. Prevalence of the congenital long-QT syndrome. Circulation. 2009;120(18):1761–7. doi:10.1161/CIRCULATIONAHA.109.863209.

    Article  PubMed  Google Scholar 

  8. Priori S, Schwartz P, Napolitano C. Risk stratification in the long-QT syndrome. N Engl J Med. 2003;348:1866–74.

    Article  PubMed  Google Scholar 

  9. Schwartz P, Priori S, Spazzolini C. Genotype-phenotype correlation in the long-QT syndrome: Gene-specific triggers for life-threatening arrhythmias. Circulation. 2001;103:89–95.

    Article  PubMed  CAS  Google Scholar 

  10. Moss A, Robinson J, Gessman L. Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QTsyndrome. Am J Cardiol. 1999;84:876–9.

    Article  PubMed  CAS  Google Scholar 

  11. Ackerman MJ, Tester DJ, Porter CJ. Swimming, a gene-specific arrhythmogenic trigger for inherited long QT syndrome. Mayo Clin Proc. 1999;74(11):1088–94.

    Article  PubMed  CAS  Google Scholar 

  12. Vincent GM, Timothy KW, Leppert M, Keating M. The spectrum of symptoms and QT intervals in carriers of the gene for the long-QT syndrome. N Engl J Med. 1992;327(12):846–52. doi:10.1056/NEJM199209173271204.

    Article  PubMed  CAS  Google Scholar 

  13. Priori SG, Napolitano C, Schwartz PJ. Low penetrance in the long-QT syndrome: clinical impact. Circulation. 1999;99(4):529–33.

    Article  PubMed  CAS  Google Scholar 

  14. Tester DJ, Will ML, Haglund CM, Ackerman MJ. Effect of clinical phenotype on yield of long QT syndrome genetic testing. J Am Coll Cardiol. 2006;47(4):764–8. doi:10.1016/j.jacc.2005.09.056.

    Article  PubMed  Google Scholar 

  15. Vyas H, Hejlik J, Ackerman MJ. Epinephrine QT stress testing in the evaluation of congenital long-QT syndrome: diagnostic accuracy of the paradoxical QT response. Circulation. 2006;113(11):1385–92. doi:10.1161/CIRCULATIONAHA.105.600445.

    Article  PubMed  CAS  Google Scholar 

  16. Takenaka K, Ai T, Shimizu W, Kobori A, Ninomiya T, Otani H, et al. Exercise stress test amplifies genotype-phenotype correlation in the LQT1 and LQT2 forms of the long-QT syndrome. Circulation. 2003;107(6):838–44.

    Article  PubMed  Google Scholar 

  17. Goldenberg I, Horr S, Moss AJ, Lopes CM, Barsheshet A, McNitt S, et al. Risk for life-threatening cardiac events in patients with genotype-confirmed long-QT syndrome and normal-range corrected QT intervals. J Am Coll Cardiol. 2011;57(1):51–9. doi:10.1016/j.jacc.2010.07.038.

    Article  PubMed  Google Scholar 

  18. Zareba W, Moss AJ, Schwartz PJ, Vincent GM, Robinson JL, Priori SG, et al. Influence of genotype on the clinical course of the long-QT syndrome. International Long-QT Syndrome Registry Research Group. N Engl J Med. 1998;339(14):960–5. doi:10.1056/NEJM199810013391404.

    Article  PubMed  CAS  Google Scholar 

  19. •• Ackerman M, Priori S, Willems S, Berul C, Brugada R, Calkins H, et al. HRS/EHRA Expert Consensus Statement on the State of Genetic Testing for the Channelopathies and Cardiomyopathies. Hear Rhythm. 2011;8(8):1308–39. This consensus document reviews current indications for and utility of common genetic testing for inherited cardiac arrhythmia and cardiomyopathy conditions.

    Article  Google Scholar 

  20. Barsheshet A, Goldenberg I, O-Uchi J. Mutations in cytoplasmic loops are associated with increased risk for cardiac events in type-1 long QT syndrome. Circulation. 2010;122, A13466.

    Google Scholar 

  21. Moss AJ, Shimizu W, Wilde AA, Towbin JA, Zareba W, Robinson JL, et al. Clinical aspects of type-1 long-QT syndrome by location, coding type, and biophysical function of mutations involving the KCNQ1 gene. Circulation. 2007;115(19):2481–9. doi:10.1161/CIRCULATIONAHA.106.665406.

    Article  PubMed  CAS  Google Scholar 

  22. Shimizu W, Moss A, Wilde A. Genotype-phenotype aspects of type 2 long QT syndrome. J Am Coll Cardiol. 2009;54:2052–62.

    Article  PubMed  CAS  Google Scholar 

  23. Liu J, Moss A, Jons C. Mutation-specific risk in two genetic forms of type 3 long QT syndrome. Am J Cardiol. 2010;105:210–3.

    Article  PubMed  CAS  Google Scholar 

  24. Itoh H, Shimizu W, Hayashi K. Long QT syndrome with compound mutations is associated with a more severe phenotype: A Japanese multicenter study. Hear Rhythm. 2010;7:1411–8.

    Article  Google Scholar 

  25. Moss AJ, Zareba W, Hall WJ, Schwartz PJ, Crampton RS, Benhorin J, et al. Effectiveness and limitations of beta-blocker therapy in congenital long-QT syndrome. Circulation. 2000;101(6):616–23.

    Article  PubMed  CAS  Google Scholar 

  26. Schwartz PJ, Priori SG, Locati EH, Napolitano C, Cantu F, Towbin JA, et al. Long QT syndrome patients with mutations of the SCN5A and HERG genes have differential responses to Na + channel blockade and to increases in heart rate. Implications for gene-specific therapy. Circulation. 1995;92(12):3381–6.

    Article  PubMed  CAS  Google Scholar 

  27. Ruan Y, Liu N, Bloise R, Napolitano C, Priori SG. Gating properties of SCN5A mutations and the response to mexiletine in long-QT syndrome type 3 patients. Circulation. 2007;116(10):1137–44. doi:10.1161/CIRCULATIONAHA.107.707877.

    Article  PubMed  CAS  Google Scholar 

  28. Schwartz PJ, Spazzolini C, Priori SG, Crotti L, Vicentini A, Landolina M, et al. Who are the long-QT syndrome patients who receive an implantable cardioverter-defibrillator and what happens to them?: data from the European Long-QT Syndrome Implantable Cardioverter-Defibrillator (LQTS ICD) Registry. Circulation. 2010;122(13):1272–82. doi:10.1161/CIRCULATIONAHA.110.950147.

    Article  PubMed  Google Scholar 

  29. Horner JM, Kinoshita M, Webster TL, Haglund CM, Friedman PA, Ackerman MJ. Implantable cardioverter defibrillator therapy for congenital long QT syndrome: a single-center experience. Heart Rhythm. 2010. 7(11):1616–22. 10.1016/j.hrthm.2010.08.023.

    Google Scholar 

  30. Gollob MH, Redpath CJ, Roberts JD. The short QT syndrome: proposed diagnostic criteria. J Am Coll Cardiol. 2011;57(7):802–12. doi:10.1016/j.jacc.2010.09.048.

    Article  PubMed  Google Scholar 

  31. Goldberg RJ, Bengtson J, Chen ZY, Anderson KM, Locati E, Levy D. Duration of the QT interval and total and cardiovascular mortality in healthy persons (The Framingham Heart Study experience). Am J Cardiol. 1991;67(1):55–8.

    Article  PubMed  CAS  Google Scholar 

  32. Giustetto C, Schimpf R, Mazzanti A, Scrocco C, Maury P, Anttonen O, et al. Long-term follow-up of patients with short QT syndrome. J Am Coll Cardiol. 2011;58(6):587–95. doi:10.1016/j.jacc.2011.03.038.

    Article  PubMed  Google Scholar 

  33. Patel C, Yan GX, Antzelevitch C. Short QT syndrome: from bench to bedside. Circ Arrhythmia Electrophysiol. 2010;3(4):401–8. doi:10.1161/CIRCEP.109.921056.

    Article  Google Scholar 

  34. Gaita F, Giustetto C, Bianchi F, Schimpf R, Haissaguerre M, Calo L, et al. Short QT syndrome: pharmacological treatment. J Am Coll Cardiol. 2004;43(8):1494–9. doi:10.1016/j.jacc.2004.02.034.

    Article  PubMed  CAS  Google Scholar 

  35. Brugada P, Brugada J. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J Am Coll Cardiol. 1992;20(6):1391–6.

    Article  PubMed  CAS  Google Scholar 

  36. Hermida JS, Lemoine JL, Aoun FB, Jarry G, Rey JL, Quiret JC. Prevalence of the Brugada syndrome in an apparently healthy population. Am J Cardiol. 2000;86(1):91–4.

    Article  PubMed  CAS  Google Scholar 

  37. Donohue D, Tehrani F, Jamehdor R, Lam C, Movahed MR. The prevalence of Brugada ECG in adult patients in a large university hospital in the western United States. Am Heart Hosp J. 2008;6(1):48–50.

    Article  PubMed  Google Scholar 

  38. Sinner MF, Pfeufer A, Perz S, Schulze-Bahr E, Monnig G, Eckardt L, et al. Spontaneous Brugada electrocardiogram patterns are rare in the German general population: results from the KORA study. Europace. 2009;11(10):1338–44. doi:10.1093/europace/eup205.

    Article  PubMed  Google Scholar 

  39. Miyasaka Y, Tsuji H, Yamada K, Tokunaga S, Saito D, Imuro Y, et al. Prevalence and mortality of the Brugada-type electrocardiogram in one city in Japan. J Am Coll Cardiol. 2001;38(3):771–4.

    Article  PubMed  CAS  Google Scholar 

  40. Berne P, Brugada J. Brugada syndrome. Circ J. 2012;76(7):1563–71.

    Article  PubMed  CAS  Google Scholar 

  41. Probst V, Veltmann C, Eckardt L, Meregalli PG, Gaita F, Tan HL, et al. Long-term prognosis of patients diagnosed with Brugada syndrome: Results from the FINGER Brugada Syndrome Registry. Circulation. 2010;121(5):635–43. doi:10.1161/CIRCULATIONAHA.109.887026.

    Article  PubMed  CAS  Google Scholar 

  42. Brugada J, Brugada R, Brugada P. Determinants of sudden cardiac death in individuals with the electrocardiographic pattern of Brugada syndrome and no previous cardiac arrest. Circulation. 2003;108(25):3092–6. doi:10.1161/01.CIR.0 000104568.13957.4F.

    Google Scholar 

  43. Meregalli PG, Tan HL, Probst V, Koopmann TT, Tanck MW, Bhuiyan ZA, et al. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Hear Rhythm. 2009;6(3):341–8. doi:10.1016/j.hrthm.2008.11.009.

    Article  Google Scholar 

  44. Priori SG, Gasparini M, Napolitano C, Della Bella P, Ottonelli AG, Sassone B, et al. Risk stratification in Brugada syndrome: results of the PRELUDE (PRogrammed ELectrical stimUlation preDictive valuE) registry. J Am Coll Cardiol. 2012;59(1):37–45. doi:10.1016/j.jacc.2011.08.064.

    Article  PubMed  Google Scholar 

  45. Antzelevitch C, Brugada P, Borggrefe M, Brugada J, Brugada R, Corrado D, et al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation. 2005;111(5):659–70. doi:10.1161/01.CIR.0000152479.54298.51.

    Article  PubMed  Google Scholar 

  46. Priori SG, Napolitano C, Gasparini M, Pappone C, Della Bella P, Giordano U, et al. Natural history of Brugada syndrome: insights for risk stratification and management. Circulation. 2002;105(11):1342–7.

    Article  PubMed  Google Scholar 

  47. Brugada J, Brugada R, Antzelevitch C, Towbin J, Nademanee K, Brugada P. Long-term follow-up of individuals with the electrocardiographic pattern of right bundle-branch block and ST-segment elevation in precordial leads V1 to V3. Circulation. 2002;105(1):73–8.

    Article  PubMed  Google Scholar 

  48. Eckardt L, Probst V, Smits JP, Bahr ES, Wolpert C, Schimpf R, et al. Long-term prognosis of individuals with right precordial ST-segment-elevation Brugada syndrome. Circulation. 2005;111(3):257–63. doi:10.1161/01.CIR.0000153267.21278.8D.

    Article  PubMed  Google Scholar 

  49. Klatsky AL, Oehm R, Cooper RA, Udaltsova N, Armstrong MA. The early repolarization normal variant electrocardiogram: correlates and consequences. Am J Med. 2003;115(3):171–7.

    Article  PubMed  Google Scholar 

  50. Goldman MJ. RS-T segment elevation in mid- and left precordial leads as a normal variant. Am Heart J. 1953;46(6):817–20.

    Article  PubMed  CAS  Google Scholar 

  51. Garg A, Finneran W, Feld GK. Familial sudden cardiac death associated with a terminal QRS abnormality on surface 12-lead electrocardiogram in the index case. J Cardiovasc Electrophysiol. 1998;9(6):642–7.

    Article  PubMed  CAS  Google Scholar 

  52. Kalla H, Yan GX, Marinchak R. Ventricular fibrillation in a patient with prominent J (Osborn) waves and ST segment elevation in the inferior electrocardiographic leads: a Brugada syndrome variant? J Cardiovasc Electrophysiol. 2000;11(1):95–8.

    Article  PubMed  CAS  Google Scholar 

  53. Takagi M, Aihara N, Takaki H, Taguchi A, Shimizu W, Kurita T, et al. Clinical characteristics of patients with spontaneous or inducible ventricular fibrillation without apparent heart disease presenting with J wave and ST segment elevation in inferior leads. J Cardiovasc Electrophysiol. 2000;11(8):844–8.

    Article  PubMed  CAS  Google Scholar 

  54. Shinohara T, Takahashi N, Saikawa T, Yoshimatsu H. Characterization of J wave in a patient with idiopathic ventricular fibrillation. Hear Rhythm. 2006;3(9):1082–4. doi:10.1016/j.hrthm.2006.05.016.

    Article  Google Scholar 

  55. Noseworthy PA, Tikkanen JT, Porthan K, Oikarinen L, Pietila A, Harald K, et al. The early repolarization pattern in the general population: clinical correlates and heritability. J Am Coll Cardiol. 2011;57(22):2284–9. doi:10.1016/j.jacc.2011.04.003.

    Article  PubMed  Google Scholar 

  56. Reinhard W, Kaess BM, Debiec R, Nelson CP, Stark K, Tobin MD, et al. Heritability of early repolarization: a population-based study. Circ Cardiovasc Genet. 2011;4(2):134–8. doi:10.1161/CIRCGENETICS.110.958298.

    Article  PubMed  Google Scholar 

  57. Junttila MJ, Sager SJ, Tikkanen JT, Anttonen O, Huikuri HV, Myerburg RJ. Clinical significance of variants of J-points and J-waves: early repolarization patterns and risk. Eur Heart J. 2012;33(21):2639–43. doi:10.1093/eurheartj/ehs110.

    Article  PubMed  Google Scholar 

  58. Watanabe H, Nogami A, Ohkubo K, Kawata H, Hayashi Y, Ishikawa T, et al. Electrocardiographic characteristics and SCN5A mutations in idiopathic ventricular fibrillation associated with early repolarization. Circ Arrhythmia Electrophysiol. 2011;4(6):874–81. doi:10.1161/CIRCEP.111.963983.

    Article  CAS  Google Scholar 

  59. Haissaguerre M, Chatel S, Sacher F, Weerasooriya R, Probst V, Loussouarn G, et al. Ventricular fibrillation with prominent early repolarization associated with a rare variant of KCNJ8/KATP channel. J Cardiovasc Electrophysiol. 2009;20(1):93–8. doi:10.1111/j.1540-8167.2008.01326.x.

    Article  PubMed  Google Scholar 

  60. Burashnikov E, Pfeiffer R, Barajas-Martinez H, Delpon E, Hu D, Desai M, et al. Mutations in the cardiac L-type calcium channel associated with inherited J-wave syndromes and sudden cardiac death. Hear Rhythm. 2010;7(12):1872–82. doi:10.1016/j.hrthm.2010.08.026.

    Article  Google Scholar 

  61. Liu N, Ruan Y, Priori SG. Catecholaminergic polymorphic ventricular tachycardia. Prog Cardiovasc Dis. 2008;51(1):23–30. doi:10.1016/j.pcad.2007.10.005.

    Article  PubMed  Google Scholar 

  62. Priori SG, Napolitano C, Tiso N, Memmi M, Vignati G, Bloise R, et al. Mutations in the cardiac ryanodine receptor gene (hRyR2) underlie catecholaminergic polymorphic ventricular tachycardia. Circulation. 2001;103(2):196–200.

    Article  PubMed  CAS  Google Scholar 

  63. Laitinen PJ, Brown KM, Piippo K, Swan H, Devaney JM, Brahmbhatt B, et al. Mutations of the cardiac ryanodine receptor (RyR2) gene in familial polymorphic ventricular tachycardia. Circulation. 2001;103(4):485–90.

    Article  PubMed  CAS  Google Scholar 

  64. Lahat H, Eldar M, Levy-Nissenbaum E, Bahan T, Friedman E, Khoury A, et al. Autosomal recessive catecholamine- or exercise-induced polymorphic ventricular tachycardia: clinical features and assignment of the disease gene to chromosome 1p13-21. Circulation. 2001;103(23):2822–7.

    Article  PubMed  CAS  Google Scholar 

  65. Lahat H, Pras E, Olender T, Avidan N, Ben-Asher E, Man O, et al. A missense mutation in a highly conserved region of CASQ2 is associated with autosomal recessive catecholamine-induced polymorphic ventricular tachycardia in Bedouin families from Israel. Am J Hum Genet. 2001;69(6):1378–84. doi:10.1086/324565.

    Article  PubMed  CAS  Google Scholar 

  66. Swan H, Piippo K, Viitasalo M, Heikkila P, Paavonen T, Kainulainen K, et al. Arrhythmic disorder mapped to chromosome 1q42-q43 causes malignant polymorphic ventricular tachycardia in structurally normal hearts. J Am Coll Cardiol. 1999;34(7):2035–42.

    Google Scholar 

  67. Hayashi M, Denjoy I, Extramiana F, Maltret A, Buisson NR, Lupoglazoff JM, et al. Incidence and risk factors of arrhythmic events in catecholaminergic polymorphic ventricular tachycardia. Circulation. 2009;119(18):2426–34. doi:10.1161/CIRCULATIONAHA.108.829267.

    Article  PubMed  CAS  Google Scholar 

  68. Priori SG, Napolitano C, Memmi M, Colombi B, Drago F, Gasparini M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106(1):69–74.

    Article  PubMed  CAS  Google Scholar 

  69. Leenhardt A, Lucet V, Denjoy I, Grau F, Ngoc DD, Coumel P. Catecholaminergic polymorphic ventricular tachycardia in children. A 7-year follow-up of 21 patients. Circulation. 1995;91(5):1512–9.

    Article  PubMed  CAS  Google Scholar 

  70. Fisher JD, Krikler D, Hallidie-Smith KA. Familial polymorphic ventricular arrhythmias: a quarter century of successful medical treatment based on serial exercise-pharmacologic testing. J Am Coll Cardiol. 1999;34(7):2015–22.

    Article  PubMed  CAS  Google Scholar 

  71. •• Gersh B, Maron B, Bonow R, Dearani J, Fifer M, Link M, et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2011;124(24):2761–96. This American College of Cardiology and American Heart Association guideline document summarizes the current diagnostic and management recommendations for patients with hypertrophic cardiomyopathy.

    Article  PubMed  Google Scholar 

  72. Nishimura RA, Holmes Jr DR. Clinical practice. Hypertrophic obstructive cardiomyopathy. N Engl J Med. 2004;350(13):1320–7. doi:10.1056/NEJMcp030779 350/13/1320.

    Article  PubMed  CAS  Google Scholar 

  73. Roden D. Cardiovascular genetics and genomics. Chichester: Wiley-Blackwell; 2009.

    Book  Google Scholar 

  74. MacRae CA, Ellinor PT. Genetic screening and risk assessment in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(12):2326–8. doi:10.1016/j.jacc.2004.09.032.

    Article  PubMed  Google Scholar 

  75. Maron BJ, Spirito P, Shen WK, Haas TS, Formisano F, Link MS, et al. Implantable cardioverter-defibrillators and prevention of sudden cardiac death in hypertrophic cardiomyopathy. JAMA. 2007;298(4):405–12. doi:10.1001/jama.298.4.405.

    Article  PubMed  CAS  Google Scholar 

  76. Ho CY. Hypertrophic cardiomyopathy in 2012. Circulation. 2012;125(11):1432–8. doi:10.1161/CIRCULATIONAHA.110.017277.

    Article  PubMed  Google Scholar 

  77. Elliott PM, Gimeno Blanes JR, Mahon NG, Poloniecki JD, McKenna WJ. Relation between severity of left-ventricular hypertrophy and prognosis in patients with hypertrophic cardiomyopathy. Lancet. 2001;357(9254):420–4. doi:10.1016/S0140-6736(00)04005-8.

    Article  PubMed  CAS  Google Scholar 

  78. Maron MS, Appelbaum E, Harrigan CJ, Buros J, Gibson CM, Hanna C, et al. Clinical profile and significance of delayed enhancement in hypertrophic cardiomyopathy. Circ Heart Fail. 2008;1(3):184–91. doi:10.1161/CIRCHEARTFAILURE.108.768119.

    Article  PubMed  Google Scholar 

  79. Bruder O, Wagner A, Jensen CJ, Schneider S, Ong P, Kispert EM, et al. Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):875–87. doi:10.1016/j.jacc.2010.05.007.

    Article  PubMed  Google Scholar 

  80. O'Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, et al. Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2010;56(11):867–74. doi:10.1016/j.jacc.2010.05.010.

    Article  PubMed  Google Scholar 

  81. Niimura H, Patton KK, McKenna WJ, Soults J, Maron BJ, Seidman JG, et al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation. 2002; 105:446–451.

    Google Scholar 

  82. Van Driest SL, Vasile VC, Ommen SR, Will ML, Tajik AJ, Gersh BJ, et al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J Am Coll Cardiol. 2004;44(9):1903–10. doi:10.1016/j.jacc.2004.07.045.

    Article  PubMed  CAS  Google Scholar 

  83. Ingles J, Doolan A, Chiu C, Seidman J, Seidman C, Semsarian C. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J Med Genet. 2005;42(10):e59. doi:10.1136/jmg.2005.033886.

    Article  PubMed  CAS  Google Scholar 

  84. Maron BJ, Chaitman BR, Ackerman MJ, Bayes de Luna A, Corrado D, Crosson JE, et al. Recommendations for physical activity and recreational sports participation for young patients with genetic cardiovascular diseases. Circulation. 2004;109(22):2807–16. doi:10.1161/01.CIR.0000128363.85581.E1.

    Article  PubMed  Google Scholar 

  85. Hershberger RE, Morales A, Siegfried JD. Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med. 2010;12(11):655–67. doi:10.1097/GIM.0b013e3181f2481f.

    Article  PubMed  CAS  Google Scholar 

  86. Gillum RF. Idiopathic cardiomyopathy in the United States, 1970-1982. Am Heart J. 1986;111(4):752–5.

    Article  PubMed  CAS  Google Scholar 

  87. Codd MB, Sugrue DD, Gersh BJ, Melton 3rd LJ. Epidemiology of idiopathic dilated and hypertrophic cardiomyopathy. A population-based study in Olmsted County, Minnesota, 1975-1984. Circulation. 1989;80(3):564–72.

    Article  PubMed  CAS  Google Scholar 

  88. •• Herman DS, Lam L, Taylor MR, Wang L, Teekakirikul P, Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. N Engl J Med. 2012;366(7):619–28. doi:10.1056/NEJMoa1110186. This recent publication demonstrated the striking presence of truncating mutations in titin in approximately 20-25% of patients with dilated cardiomyopathy.

    Article  PubMed  CAS  Google Scholar 

  89. Parvari R, Levitas A. The mutations associated with dilated cardiomyopathy. Biochem Res Int. 2012;2012:639250. doi:10.1155/2012/639250.

    PubMed  Google Scholar 

  90. Guo W, Schafer S, Greaser ML, Radke MH, Liss M, Govindarajan T, et al. RBM20, a gene for hereditary cardiomyopathy, regulates titin splicing. Nat Med. 2012;18(5):766–73. doi:10.1038/nm.2693.

    Article  PubMed  CAS  Google Scholar 

  91. Elliott P, O'Mahony C, Syrris P, Evans A, Rivera Sorensen C, Sheppard MN, et al. Prevalence of desmosomal protein gene mutations in patients with dilated cardiomyopathy. Circ Cardiovasc Genet. 2010;3(4):314–22. doi:10.1161/CIRCGENETICS.110.937805.

    Article  PubMed  CAS  Google Scholar 

  92. Moolman-Smook JC, Mayosi BM, Brink PA, Corfield VA. Molecular genetics of cardiomyopathy: changing times, shifting paradigms. Cardiovasc J S Afr. 2003;14(3):145–55.

    PubMed  Google Scholar 

  93. Cannom DS. Prevention of sudden cardiac death. J Cardiovasc Electrophysiol. 2005;16 Suppl 1:S21–4. doi:10.1111/j.1540-8167.2005.50127.x.

    Article  PubMed  Google Scholar 

  94. Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MR, Towbin JA. Genetic evaluation of cardiomyopathy--a Heart Failure Society of America practice guideline. J Card Fail. 2009;15(2):83–97. doi:10.1016/j.cardfail.2009.01.006.

    Article  PubMed  Google Scholar 

  95. Uhl HS. A previously undescribed congenital malformation of the heart: almost total absence of the myocardium of the right ventricle. Bull Johns Hopkins Hosp. 1952;91(3):197–209.

    PubMed  CAS  Google Scholar 

  96. Marcus FI, Fontaine GH, Guiraudon G, Frank R, Laurenceau JL, Malergue C, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation. 1982;65(2):384–98.

    Article  PubMed  CAS  Google Scholar 

  97. Thiene G, Nava A, Corrado D, Rossi L, Pennelli N. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med. 1988;318(3):129–33. doi:10.1056/NEJM198801213180301.

    Article  PubMed  CAS  Google Scholar 

  98. McKoy G, Protonotarios N, Crosby A, Tsatsopoulou A, Anastasakis A, Coonar A, et al. Identification of a deletion in plakoglobin in arrhythmogenic right ventricular cardiomyopathy with palmoplantar keratoderma and woolly hair (Naxos disease). Lancet. 2000;355(9221):2119–24. doi:10.1016/S0140-6736(00)02379-5.

    Article  PubMed  CAS  Google Scholar 

  99. Norgett EE, Hatsell SJ, Carvajal-Huerta L, Cabezas JC, Common J, Purkis PE, et al. Recessive mutation in desmoplakin disrupts desmoplakin-intermediate filament interactions and causes dilated cardiomyopathy, woolly hair and keratoderma. Hum Mol Genet. 2000;9(18):2761–6.

    Article  PubMed  CAS  Google Scholar 

  100. Rampazzo A, Nava A, Malacrida S, Beffagna G, Bauce B, Rossi V, et al. Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet. 2002;71(5):1200–6. doi:10.1086/344208.

    Article  PubMed  CAS  Google Scholar 

  101. Gemayel C, Pelliccia A, Thompson PD. Arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2001;38(7):1773–81.

    Article  PubMed  CAS  Google Scholar 

  102. Hulot JS, Jouven X, Empana JP, Frank R, Fontaine G. Natural history and risk stratification of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Circulation. 2004;110(14):1879–84. doi:10.1161/01.CIR.0000143375.93288.82.

    Article  PubMed  Google Scholar 

  103. Bhonsale A, James CA, Tichnell C, Murray B, Gagarin D, Philips B, et al. Incidence and predictors of implantable cardioverter-defibrillator therapy in patients with arrhythmogenic right ventricular dysplasia/cardiomyopathy undergoing implantable cardioverter-defibrillator implantation for primary prevention. J Am Coll Cardiol. 2011;58(14):1485–96. doi:10.1016/j.jacc.2011.06.043.

    Article  PubMed  Google Scholar 

  104. Dalal D, Nasir K, Bomma C, Prakasa K, Tandri H, Piccini J, et al. Arrhythmogenic right ventricular dysplasia: a United States experience. Circulation. 2005;112(25):3823–32. doi:10.1161/CIRCULATIONAHA.105.542266.

    Article  PubMed  Google Scholar 

  105. •• Marcus FI, McKenna WJ, Sherrill D, Basso C, Bauce B, Bluemke DA, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation. 2010;121(13):1533–41. doi:10.1161/CIRCULATIONAHA.108.840827. This paper summarizes the 2010 revised task force criteria for the diagnosis of arrhythmogenic right ventricular cardiomyopathy.

    Article  PubMed  Google Scholar 

  106. Kirchhof P, Fabritz L, Zwiener M, Witt H, Schafers M, Zellerhoff S, et al. Age- and training-dependent development of arrhythmogenic right ventricular cardiomyopathy in heterozygous plakoglobin-deficient mice. Circulation. 2006;114(17):1799–806. doi:10.1161/CIRCULATIONAHA.106.624502.

    Article  PubMed  Google Scholar 

  107. Xu T, Yang Z, Vatta M, Rampazzo A, Beffagna G, Pilichou K, et al. Compound and digenic heterozygosity contributes to arrhythmogenic right ventricular cardiomyopathy. J Am Coll Cardiol. 2010;55(6):587–97. doi:10.1016/j.jacc.2009.11.020.

    Article  PubMed  CAS  Google Scholar 

  108. Bauce B, Basso C, Rampazzo A, Beffagna G, Daliento L, Frigo G, et al. Clinical profile of four families with arrhythmogenic right ventricular cardiomyopathy caused by dominant desmoplakin mutations. Eur Heart J. 2005;26(16):1666–75. doi:10.1093/eurheartj/ehi341.

    Article  PubMed  CAS  Google Scholar 

  109. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ. Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation. 2007;115(13):1710–20. doi:10.1161/CIRCULATIONAHA.106.660241.

    Article  PubMed  Google Scholar 

  110. Dalal D, Molin LH, Piccini J, Tichnell C, James C, Bomma C, et al. Clinical features of arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in plakophilin-2. Circulation. 2006;113(13):1641–9. doi:10.1161/CIRCULATIONAHA.105.568642.

    Article  PubMed  CAS  Google Scholar 

  111. Kapplinger JD, Landstrom AP, Salisbury BA, Callis TE, Pollevick GD, Tester DJ, et al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J Am Coll Cardiol. 2011;57(23):2317–27. doi:10.1016/j.jacc.2010.12.036.

    Article  PubMed  CAS  Google Scholar 

  112. van der Werf C, Hofman N, Tan HL, van Dessel PF, Alders M, van der Wal AC, et al. Diagnostic yield in sudden unexplained death and aborted cardiac arrest in the young: the experience of a tertiary referral center in The Netherlands. Hear Rhythm. 2010;7(10):1383–9. doi:10.1016/j.hrthm.2010.05.036.

    Article  Google Scholar 

  113. van der Werf C, van Langen IM, Wilde AA. Sudden death in the young: what do we know about it and how to prevent? Circ Arrhythmia Electrophysiol. 2010;3(1):96–104. doi:10.1161/CIRCEP.109.877142.

    Article  Google Scholar 

  114. Alders M, Koopmann TT, Christiaans I, Postema PG, Beekman L, Tanck MW, et al. Haplotype-sharing analysis implicates chromosome 7q36 harboring DPP6 in familial idiopathic ventricular fibrillation. Am J Hum Genet. 2009;84(4):468–76. doi:10.1016/j.ajhg.2009.02.009.

    Article  PubMed  CAS  Google Scholar 

  115. Radicke S, Cotella D, Graf EM, Ravens U, Wettwer E. Expression and function of dipeptidyl-aminopeptidase-like protein 6 as a putative beta-subunit of human cardiac transient outward current encoded by Kv4.3. J Physiol. 2005;565(Pt 3):751–6. doi:10.1113/jphysiol.2005.087312.

    Article  PubMed  CAS  Google Scholar 

  116. Krahn AD, Healey JS, Chauhan V, Birnie DH, Simpson CS, Champagne J, et al. Systematic assessment of patients with unexplained cardiac arrest: Cardiac Arrest Survivors With Preserved Ejection Fraction Registry (CASPER). Circulation. 2009;120(4):278–85. doi:10.1161/CIRCULATIONAHA.109.853143.

    Article  PubMed  Google Scholar 

  117. Champagne J, Geelen P, Philippon F, Brugada P. Recurrent cardiac events in patients with idiopathic ventricular fibrillation, excluding patients with the Brugada syndrome. BMC Med. 2005;3(1):1. doi:10.1186/1741-7015-3-1.

    Article  PubMed  Google Scholar 

  118. Knecht S, Sacher F, Wright M, Hocini M, Nogami A, Arentz T, et al. Long-term follow-up of idiopathic ventricular fibrillation ablation: a multicenter study. J Am Coll Cardiol. 2009;54(6):522–8. doi:10.1016/j.jacc.2009.03.065.

    Article  PubMed  Google Scholar 

  119. Noda T, Shimizu W, Taguchi A, Aiba T, Satomi K, Suyama K, et al. Malignant entity of idiopathic ventricular fibrillation and polymorphic ventricular tachycardia initiated by premature extrasystoles originating from the right ventricular outflow tract. J Am Coll Cardiol. 2005;46(7):1288–94. doi:10.1016/j.jacc.2005.05.077.

    Article  PubMed  Google Scholar 

  120. Milan DJ, Lubitz SA, Kaab S, Ellinor PT. Genome-wide association studies in cardiac electrophysiology: recent discoveries and implications for clinical practice. Hear Rhythm. 2010;7(8):1141–8. doi:10.1016/j.hrthm.2010.04.021.

    Article  Google Scholar 

  121. Arking DE, Junttila MJ, Goyette P, Huertas-Vazquez A, Eijgelsheim M, Blom MT, et al. Identification of a sudden cardiac death susceptibility locus at 2q24.2 through genome-wide association in European ancestry individuals. PLoS Genet. 2011;7(6):e1002158.

    Article  PubMed  CAS  Google Scholar 

  122. Bezzina CR, Pazoki R, Bardai A, Marsman RF, de Jong JS, Blom MT, et al. Genome-wide association study identifies a susceptibility locus at 21q21 for ventricular fibrillation in acute myocardial infarction. Nat Genet. 2010;42(8):688–91. doi:10.1038/ng.623.

    Article  PubMed  CAS  Google Scholar 

  123. Chambers JC, Zhao J, Terracciano CM, Bezzina CR, Zhang W, Kaba R, et al. Genetic variation in SCN10A influences cardiac conduction. Nat Genet. 2010;42(2):149–52. doi:10.1038/ng.516.

    Article  PubMed  CAS  Google Scholar 

  124. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. Nat Genet. 2012;44(6):670–5. doi:10.1038/ng.2261.

    Article  PubMed  CAS  Google Scholar 

  125. Yang T, Atack TC, Stroud DM, Zhang W, Hall L, Roden DM. Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ Res. 2012;111(3):322–32. doi:10.1161/CIRCRESAHA.112.265173.

    Article  PubMed  CAS  Google Scholar 

  126. Westaway SK, Reinier K, Huertas-Vazquez A, Evanado A, Teodorescu C, Navarro J, et al. Common variants in CASQ2, GPD1L, and NOS1AP are significantly associated with risk of sudden death in patients with coronary artery disease. Circ Cardiovasc Genet. 2011;4(4):397–402. doi:10.1161/CIRCGENETICS.111.959916.

    Article  PubMed  Google Scholar 

  127. London B, Michalec M, Mehdi H, Zhu X, Kerchner L, Sanyal S, et al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1-L) decreases cardiac Na + current and causes inherited arrhythmias. Circulation. 2007;116(20):2260–8. doi:10.1161/CIRCULATIONAHA.107.703330.

    Article  PubMed  CAS  Google Scholar 

  128. Chang KC, Barth AS, Sasano T, Kizana E, Kashiwakura Y, Zhang Y, et al. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc Natl Acad Sci U S A. 2008;105(11):4477–82. doi:10.1073/pnas.0709118105.

    Article  PubMed  CAS  Google Scholar 

  129. Jamshidi Y, Nolte IM, Dalageorgou C, Zheng D, Johnson T, Bastiaenen R, et al. Common variation in the NOS1AP gene is associated with drug-induced QT prolongation and ventricular arrhythmia. J Am Coll Cardiol. 2012;60(9):841–50. doi:10.1016/j.jacc.2012.03.031.

    Article  PubMed  CAS  Google Scholar 

  130. Ashley EA, Hershberger RE, Caleshu C, Ellinor PT, Garcia JG, Herrington DM, et al. Genetics and cardiovascular disease: a policy statement from the American Heart Association. Circulation. 2012;126(1):142–57. doi:10.1161/CIR.0b013e31825b07f8.

    Article  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Elena Dolmatova declares that she has no conflict of interest.

Saagar Mahida declares that he has no conflict of interest.

Patrick T. Ellinor declares that he has no conflict of interest.

Steven A. Lubitz declares that he has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Lubitz.

Additional information

This article is part of the Topical Collection on Cardiovascular Genomics

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolmatova, E., Mahida, S., Ellinor, P.T. et al. Genetic Etiology and Evaluation of Sudden Cardiac Death. Curr Cardiol Rep 15, 389 (2013). https://doi.org/10.1007/s11886-013-0389-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11886-013-0389-8

Keywords

Navigation