Skip to main content
Log in

Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments

  • REVIEWS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Hypertrophic cardiomyopathy (HCM) is the most common genetically determined heart pathology and is often accompanied by fatal complications. Today, the traditional view of the monogenic origin of HCM is being replaced by the idea of it as an oligogenic disease, the clinical phenotype of which is determined not only by mutations in the genes encoding sarcomere proteins in cardiomyocytes, but also by the contribution of other genes (other sarcomeric genes, non-sarcomeric protein-coding modifier genes, and regulatory non-coding RNA genes). Transcriptome analysis is an informative approach for elucidating the nature of HCM, which allows one to evaluate the expression of all genes, evaluate the effect of mutations in a gene on its transcript level, and reveal the mechanisms involved in the regulation of gene expression. This review presents an analysis of published data on the spectra of genes whose differential expression has been detected in the myocardium during the development of HCM in humans and model animals. Special attention is paid to the genes of non-coding regulatory RNAs: miRNAs and long non-coding RNAs, which may be involved in the pathogenesis of the disease. We analyzed studies devoted to the investigation of miRNA levels in the blood of HCM patients to explore the available diagnostic and prognostic biomarkers of the disease. The totality of the reviewed data, despite their relative scarcity, indicates the effectiveness of transcriptome profiling in studying the molecular mechanisms of HCM pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. Elliott P.M., Anastasakis A., Borger M.A., Borggrefe M., Cecchi F., Charron P., Hagege A.A., Lafont A., Limongelli G., Mahrholdt H., McKenna W.J, Mogensen J., Nihoyannopoulos P., Nistri S., Pieper P.G., et al. 2014. ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy: The task force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur. Heart J. 35, 2733–2779.

    Article  PubMed  Google Scholar 

  2. Maron B.J., Gardin J.M., Flack J.M., Gidding S.S., Kurosaki T.T., Bild D.E. 1995. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4 111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation. 92, 785–789.

    Article  CAS  PubMed  Google Scholar 

  3. Semsarian C., Ingles J., Maron M.S., Maron B.J. 2015. New perspectives on the prevalence of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 65, 1249–1254.

    Article  PubMed  Google Scholar 

  4. Charron P., Elliott P.M., Gimeno J.R., Caforio A.L.P., Kaski J.P., Tavazzi L., Tendera M., Maupain C., Laroche C., Rubis P., Jurcut R., Calo L., Helio T.M., Sinagra G., Zdravkovic M., et al. 2018. The Cardiomyopathy Registry of the EURObservational Research Programme of the European Society of Cardiology: Baseline data and contemporary management of adult patients with cardiomyopathies. Eur. Heart J. 39, 1784–1793.

    Article  PubMed  Google Scholar 

  5. Maron B.J., Doerer J.J., Haas T.S., Tierney D.M., Mueller F.O. 2009. Sudden deaths in young competitive athletes: analysis of 1 866 deaths in the United States, 1980‒2006. Circulation. 119, 1085–1092.

    Article  PubMed  Google Scholar 

  6. Lorenzini M., Anastasiou Z., O’Mahony C., Guttman O.P., Gimeno J.R., Monserrat L., Anastasakis A., Rapezzi C., Biagini E., Garcia-Pavia P., Limongelli G., Pavlou M., Elliott P.M., Hypertrophic Cardiomyopathy Outcomes investigators. 2019. Mortality among referral patients with hypertrophic cardiomyopathy vs. the general European population. JAMA Cardiol. e194534.

  7. Raghow R. 2016. An ‘Omics’ perspective on cardiomyopathies and heart failure. Trends Mol. Med. 22, 813‒827.

    Article  PubMed  Google Scholar 

  8. Jarcho J.A., McKenna W., Pare J.A., Solomon S.D., Holcombe R.F., Dickie S., Levi T., Donis-Keller H., Seidman J.G., Seidman C.E. 1989. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N. Engl. J. Med. 321, 1372–1378.

    Article  CAS  PubMed  Google Scholar 

  9. Geisterfer-Lowrance A.A., Kass S., Tanigawa G., Vosberg H.P., McKenna W., Seidman C.E., Seidman J.G. 1990. A molecular basis for familial hypertrophic cardiomyopathy: A beta cardiac myosin heavy chain gene missense mutation. Cell. 62, 999–1006.

    Article  CAS  PubMed  Google Scholar 

  10. Solomon S.D., Jarcho J.A., McKenna W., Geisterfer-Lowrance A., Germain R., Salerni R., Seidman J.G., Seidman C.E. 1990. Familial hypertrophic cardiomyopathy is a genetically heterogeneous disease. J. Clin. Invest. 86, 993–999.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Seidman C.E., Seidman J.G. 2011. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: A personal history. Circ. Res. 108, 743–750.

    Article  CAS  PubMed  Google Scholar 

  12. Lopes L.R., Rahman M.S., Elliott P.M. 2013. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart. 99, 1800–1811.

    Article  PubMed  Google Scholar 

  13. Wolf C.M. 2019. Hypertrophic cardiomyopathy: Genetics and clinical perspectives. Cardiovasc. Diagn. Ther. 9, S388–S415.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Palmer B.M., Wang Y., Teekakirikul P., Hinson J.T., Fatkin D., Strouse S., Vanburen P., Seidman C.E., Seidman J.G., Maughan D.W. 2008. Myofilament mechanical performance is enhanced by R403Q myosin in mouse myocardium independent of sex. Am. J. Physiol. Heart Circ. Physiol. 294, H1939–H1947.

    Article  CAS  PubMed  Google Scholar 

  15. Green E.M., Wakimoto H., Anderson R.L., Evanchik M.J., Gorham J.M., Harrison B.C., Henze M., Kawas R., Oslob J.D., Rodriguez H.M., Song Y., Wan W., Leinwand L.A., Spudich J.A., McDowell R.S., et al. 2016. A small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 351, 617–621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Tyska M.J., Hayes E., Giewat M., Seidman C.E., Seidman J.G., Warshaw D.M. 2000. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ. Res. 86, 737–744.

    Article  CAS  PubMed  Google Scholar 

  17. Tardiff J.C. 2005. Sarcomeric proteins and familial hypertrophic cardiomyopathy: linking mutations in structural proteins to complex cardiovascular phenotypes. Heart Fail. Rev. 10, 237–248.

    Article  CAS  PubMed  Google Scholar 

  18. Sequeira V., Wijnker P.J., Nijenkamp L.L., Kuster D.W., Najafi A., Witjas-Paalberends E.R., Regan J.A., Boontje N., Ten Cate F.J., Germans T., Carrier L., Sadayappan S., van Slegtenhorst M.A., Zaremba R., Foster D.B., et al. 2013. Perturbed length-dependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ. Res. 112, 1491–1505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Linke W.A. 2008. Sense and stretchability: the role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc. Res. 77, 637–648.

    CAS  PubMed  Google Scholar 

  20. Fatkin D., McConnell B.K., Mudd J.O., Semsarian C., Moskowitz I.G., Schoen F.J., Giewat M., Seidman C.E., Seidman J.G. 2000. An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J. Clin. Invest. 106, 1351–1359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Crilley J.G., Boehm E.A., Blair E., Rajagopalan B., Blamire A.M., Styles P., McKenna W.J., Ostman-Smith I., Clarke K., Watkins H. 2003. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol. 41, 1776–1782.

    Article  CAS  PubMed  Google Scholar 

  22. Ashrafian H., McKenna W.J., Watkins H. 2011. Disease pathways and novel therapeutic targets in hypertrophic cardiomyopathy. Circ. Res. 109, 86–96.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrantini C., Belus A., Piroddi N., Scellini B., Tesi C., Poggesi C. 2009. Mechanical and energetic consequences of HCM-causing mutations. J. Cardiovasc. Transl. Res. 2, 441–451.

    Article  PubMed  Google Scholar 

  24. Marston S.B. 2011. How do mutations in contractile proteins cause the primary familial cardiomyopathies? J. Cardiovasc. Transl. Res. 4, 245–255.

    Article  PubMed  Google Scholar 

  25. Walsh R., Thomson K.L., Ware J.S., Funke B.H., Woodley J., McGuire K.J., Mazzarotto F., Blair E., Seller A., Taylor J.C., Minikel E.V., MacArthur D.G., Farrall M., Cook S.A., Watkins H. 2017. Reassessment of Mendelian gene pathogenicity using 7855 cardiomyopathy cases and 60 706 reference samples. Genet. Med. 19, 192–203.

    Article  PubMed  Google Scholar 

  26. Van Driest S.L., Ackerman M.J., Ommen S.R., Shakur R., Will M.L., Nishimura R.A., Tajik A.J., Gersh B.J. 2002. Prevalence and severity of “benign” mutations in the beta-myosin heavy chain, cardiac troponin T, and alpha-tropomyosin genes in hypertrophic cardiomyopathy. Circulation. 106, 3085–3090.

    Article  CAS  PubMed  Google Scholar 

  27. Oliva-Sandoval M.J., Ruiz-Espejo F., Monserrat L., Hermida-Prieto M., Sabater M., Garcia-Molina E., Ortiz M., Rodriguez-Garcia M.I., Nunez L., Gimeno J.R., Castro-Beiras A., Valdes M. 2010. Insights into genotype-phenotype correlation in hypertrophic cardiomyopathy. Findings from 18 Spanish families with a single mutation in MYBPC3. Heart. 96, 1980–1984.

    Article  PubMed  Google Scholar 

  28. Jansweijer J.A., van Spaendonck-Zwarts K.Y., Tanck M.W.T., van Tintelen J.P., Christiaans I., van der Smagt J., Vermeer A., Bos J.M., Moss A.J., Swan H., Priori S.G., Rydberg A., Tfelt-Hansen J., Ackerman M.J., Olivotto I., et al. 2019. Heritability in genetic heart disease: The role of genetic background. Open Heart. 6, e000929.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ingles J., Burns C., Bagnall R.D., Lam L., Yeates L., Sarina T., Puranik R., Briffa T., Atherton J.J., Driscoll T., Semsarian C. 2017. Nonfamilial hypertrophic cardiomyopathy: Prevalence, natural history, and clinical implications. Circ. Cardiovasc. Genet. 10.

  30. Bagnall R.D., Ingles J., Dinger M.E., Cowley M.J., Ross S.B., Minoche A.E., Lal S., Turner C., Colley A., Rajagopalan S., Berman Y., Ronan A., Fatkin D., Semsarian C. 2018. Whole genome sequencing improves outcomes of genetic testing in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 72, 419–429.

    Article  PubMed  Google Scholar 

  31. Maron B.J., Maron M.S., Maron B.A., Loscalzo J. 2019. Moving beyond the sarcomere to explain heterogeneity in hypertrophic cardiomyopathy: JACC review topic of the week. J. Am. Coll. Cardiol. 73, 1978–1986.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pasipoularides A. 2018. Challenges and controversies in hypertrophic cardiomyopathy: Clinical, genomic and basic science perspectives. Rev. Esp. Cardiol. Engl. Ed. 71, 132–138.

    Article  PubMed  Google Scholar 

  33. Burns C., Bagnall R.D., Lam L., Semsarian C., Ingles J. 2017. Multiple gene variants in hypertrophic cardiomyopathy in the era of next-generation sequencing. Circ. Cardiovasc. Genet. 10, S307.

    Article  CAS  Google Scholar 

  34. Mouton J.M., van der Merwe L., Goosen A., Revera M., Brink P.A., Moolman-Smook J.C., Kinnear C. 2016. MYBPH acts as modifier of cardiac hypertrophy in hypertrophic cardiomyopathy (HCM) patients. Hum. Genet. 135, 477–483.

    Article  CAS  PubMed  Google Scholar 

  35. Wooten E.C., Hebl V.B., Wolf M.J., Greytak S.R., Orr N.M., Draper I., Calvino J.E., Kapur N.K., Maron M.S., Kullo I.J., Ommen S.R., Bos J.M., Ackerman M.J., Huggins G.S. 2013. Formin homology 2 domain containing 3 variants associated with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 6, 10–18.

    Article  CAS  PubMed  Google Scholar 

  36. Perkins M.J., Van Driest S.L., Ellsworth E.G., Will M.L., Gersh B.J., Ommen S.R., Ackerman M.J. 2005. Gene-specific modifying effects of pro-LVH polymorphisms involving the renin-angiotensin-aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur. Heart J. 26, 2457–2462.

    Article  CAS  PubMed  Google Scholar 

  37. Ortlepp J.R., Vosberg H.P., Reith S., Ohme F., Mahon N.G., Schroder D., Klues H.G., Hanrath P., McKenna W.J. 2002. Genetic polymorphisms in the renin-angiotensin-aldosterone system associated with expression of left ventricular hypertrophy in hypertrophic cardiomyopathy: A study of five polymorphic genes in a family with a disease causing mutation in the myosin binding protein C gene. Heart. 87, 270–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kolder I.C., Michels M., Christiaans I., Ten Cate F.J., Majoor-Krakauer D., Danser A.H., Lekanne Deprez R.H., Tanck M., Wilde A.A., Bezzina C.R., Dooijes D. 2012. The role of renin-angiotensin-aldosterone system polymorphisms in phenotypic expression of MYBPC3-related hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 20, 1071–1077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Helms A.S., Day S.M. 2016. Hypertrophic cardiomyopathy: Single gene disease or complex trait? Eur. Heart J. 37, 1823–1825.

    Article  PubMed  Google Scholar 

  40. Cerrone M., Remme C.A., Tadros R., Bezzina C.R., Delmar M. 2019. Beyond the one gene-one disease paradigm: Complex genetics and pleiotropy in inheritable cardiac disorders. Circulation. 140, 595–610.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Consortium E.P. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature. 489, 57–74.

    Article  CAS  Google Scholar 

  42. Costa F.F. 2010. Non-coding RNAs: Meet thy masters. Bioessays. 32, 599‒608.

    Article  CAS  PubMed  Google Scholar 

  43. Brosnan C.A., Voinnet O. 2009. The long and the short of noncoding RNAs. Curr. Opin. Cell Biol. 21, 416–425.

    Article  CAS  PubMed  Google Scholar 

  44. Bos J.M., Hebl V.B., Oberg A.L., Sun Z., Herman D.S., Teekakirikul P., Seidman J.G., Seidman C.E., Dos Remedios C.G., Maleszewski J.J., Schaff H.V., Dearani J.A., Noseworthy P.A., Friedman P.A., Ommen S.R., et al. 2020. Marked up-regulation of ACE2 in hearts of patients with obstructive hypertrophic cardiomyopathy: Implications for SARS-CoV-2-mediated COVID-19. Mayo Clin. Proc. 95, 1354–1368.

    Article  CAS  PubMed  Google Scholar 

  45. Malgija B., Kumar N.S., Piramanayagam S. 2018. Collective transcriptomic deregulation of hypertrophic and dilated cardiomyopathy: Importance of fibrotic mechanism in heart failure. Comput. Biol. Chem. 73, 85–94.

    Article  CAS  PubMed  Google Scholar 

  46. Ren C.W., Liu J.J., Li J.H., Li J.W., Dai J., Lai Y.Q. 2016. RNAseq profiling of mRNA associated with hypertrophic cardiomyopathy. Mol. Med. Rep. 14, 5573–5586.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y., Morley M., Brandimarto J., Hannenhalli S., Hu Y., Ashley E.A., Tang W.H., Moravec C.S., Margulies K.B., Cappola T.P., Li M., MAGNet consortium. 2015. RNA-Seq identifies novel myocardial gene expression signatures of heart failure. Genomics. 105, 83–89.

    Article  CAS  PubMed  Google Scholar 

  48. Seeger T., Shrestha R., Lam C.K., Chen C., McKeithan W.L., Lau E., Wnorowski A., McMullen G., Greenhaw M., Lee J., Oikonomopoulos A., Lee S., Yang H., Mercola M., Wheeler M., et al. 2019. A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay. Circulation. 139, 799–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Han L., Li Y., Tchao J., Kaplan A.D., Lin B., Li Y., Mich-Basso J., Lis A., Hassan N., London B., Bett G.C., Tobita K., Rasmusson R.L., Yang L. 2014. Study familial hypertrophic cardiomyopathy using patient-specific induced pluripotent stem cells. Cardiovasc. Res. 104, 258‒269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dieseldorff Jones K.M., Vied C., Valera I.C., Chase P.B., Parvatiyar M.S., Pinto J.R. 2020. Sexual dimorphism in cardiac transcriptome associated with a troponin C murine model of hypertrophic cardiomyopathy. Physiol. Rep. 8, e14396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Axelsson A., Iversen K., Vejlstrup N., Ho C., Norsk J., Langhoff L., Ahtarovski K., Corell P., Havndrup O., Jensen M., Bundgaard H. 2015. Efficacy and safety of the angiotensin II receptor blocker losartan for hypertrophic cardiomyopathy: The INHERIT randomised, double-blind, placebo-controlled trial. Lancet Diabetes Endocrinol. 3, 123–131.

    Article  CAS  PubMed  Google Scholar 

  52. Maron M.S., Chan R.H., Kapur N.K., Jaffe I.Z., McGraw A.P., Kerur R., Maron B.J., Udelson J.E. 2018. Effect of spironolactone on myocardial fibrosis and other clinical variables in patients with hypertrophic cardiomyopathy. Am. J. Med. 131, 837–841.

    Article  CAS  PubMed  Google Scholar 

  53. Vakrou S., Fukunaga R., Foster D.B., Sorensen L., Liu Y., Guan Y., Woldemichael K., Pineda-Reyes R., Liu T., Tardiff J.C., Leinwand L.A., Tocchetti C.G., Abraham T.P., O’Rourke B., Aon M.A., Abraham M.R. 2018. Allele-specific differences in transcriptome, miRNome, and mitochondrial function in two hypertrophic cardiomyopathy mouse models. JCI Insight. 3, e94493

    Article  PubMed Central  Google Scholar 

  54. Sasagawa S., Nishimura Y., Okabe S., Murakami S., Ashikawa Y., Yuge M., Kawaguchi K., Kawase R., Okamoto R., Ito M., Tanaka T. 2016. Downregulation of gstk1 is a common mechanism underlying hypertrophic cardiomyopathy. Front. Pharmacol. 7, 162.

    PubMed  PubMed Central  Google Scholar 

  55. Zhao Y., Wang Z., Zhang W., Zhang L. 2019. MicroRNAs play an essential role in autophagy regulation in various disease phenotypes. Biofactors. 45, 844–856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kuster D.W., Mulders J., Ten Cate F.J., Michels M., Dos Remedios C.G., da Costa Martins P.A., van der Velden J., Oudejans C.B. 2013. MicroRNA transcriptome profiling in cardiac tissue of hypertrophic cardiomyopathy patients with MYBPC3 mutations. J. Mol. Cell. Cardiol. 65, 59–66.

    Article  CAS  PubMed  Google Scholar 

  57. Song L., Su M., Wang S., Zou Y., Wang X., Wang Y., Cui H., Zhao P., Hui R., Wang J. 2014. MiR-451 is decreased in hypertrophic cardiomyopathy and regulates autophagy by targeting TSC1. J. Cell. Mol. Med. 18, 2266–2274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Bagnall R.D., Tsoutsman T., Shephard R.E., Ritchie W., Semsarian C. 2012. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLoS One. 7, e44744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Palacin M., Reguero J.R., Martin M., Diaz Molina B., Moris C., Alvarez V., Coto E. 2011. Profile of microRNAs differentially produced in hearts from patients with hypertrophic cardiomyopathy and sarcomeric mutations. Clin. Chem. 57, 1614–1616.

    Article  CAS  PubMed  Google Scholar 

  60. Care A., Catalucci D., Felicetti F., Bonci D., Addario A., Gallo P., Bang M.L., Segnalini P., Gu Y., Dalton N.D., Elia L., Latronico M.V., Hoydal M., Autore C., Russo M.A., et al. 2007. MicroRNA-133 controls cardiac hypertrophy. Nat. Med. 13, 613–618.

    Article  CAS  PubMed  Google Scholar 

  61. Gao J., Collyer J., Wang M., Sun F., Xu F. 2020. Genetic dissection of hypertrophic cardiomyopathy with myocardial RNA-Seq. Int. J. Mol. Sci. 21, e3040.

    Article  PubMed  CAS  Google Scholar 

  62. Roncarati R., Viviani Anselmi C., Losi M.A., Papa L., Cavarretta E., Da Costa Martins P., Contaldi C., Saccani Jotti G., Franzone A., Galastri L., Latronico M.V., Imbriaco M., Esposito G., De Windt L., et al. 2014. Circulating miR-29a, among other up-regulated microRNAs, is the only biomarker for both hypertrophy and fibrosis in patients with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 63, 920–927.

    Article  CAS  PubMed  Google Scholar 

  63. Derda A.A., Thum S., Lorenzen J.M., Bavendiek U., Heineke J., Keyser B., Stuhrmann M., Givens R.C., Kennel P.J., Schulze P.C., Widder J.D., Bauersachs J., Thum T. 2015. Blood-based microRNA signatures differentiate various forms of cardiac hypertrophy. Int. J. Cardiol. 196, 115–122.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Fang L., Ellims A.H., Moore X.L., White D.A., Taylor A.J., Chin-Dusting J., Dart A.M. 2015. Circulating microRNAs as biomarkers for diffuse myocardial fibrosis in patients with hypertrophic cardiomyopathy. J. Transl. Med. 13, 314.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yao R.W., Wang Y., Chen L.L. 2019. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21, 542–551.

    Article  CAS  PubMed  Google Scholar 

  66. Kitow J., Derda A.A., Beermann J., Kumarswarmy R., Pfanne A., Fendrich J., Lorenzen J.M., Xiao K., Bavendiek U., Bauersachs J., Thum T. 2016. Mitochondrial long noncoding RNAs as blood based biomarkers for cardiac remodeling in patients with hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 311, H707–H712.

    Article  PubMed  Google Scholar 

  67. Yang W., Li Y., He F., et al. 2015. Microarray profiling of long non-coding RNA (lncRNA) associated with hypertrophic cardiomyopathy. BMC Cardiovasc. Disord. 15, 62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Liu X., Ma Y., Yin K., Li W., Chen W., Zhang Y., Zhu C., Li T., Han B., Liu X., Wang S., Zhou Z. 2019. Long non-coding and coding RNA profiling using strand-specific RNA-seq in human hypertrophic cardiomyopathy. Sci. Data. 6, 90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Hu X., Shen G., Lu X., Ding G., Shen L. 2019. Identification of key proteins and lncRNAs in hypertrophic cardiomyopathy by integrated network analysis. Arch. Med. Sci. 15, 484–497.

    Article  CAS  PubMed  Google Scholar 

  70. Sonnenschein K., Wilczek A.L., de Gonzalo-Calvo D., Pfanne A., Derda A.A., Zwadlo C., Bavendiek U., Bauersachs J., Fiedler J., Thum T. 2019. Serum circular RNAs act as blood-based biomarkers for hypertrophic obstructive cardiomyopathy. Sci. Rep. 9, 20350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li J., Wu Z., Zheng D., Sun Y., Wang S., Yan Y. 2019. Bioinformatics analysis of the regulatory lncRNA–miRNA–mRNA network and drug prediction in patients with hypertrophic cardiomyopathy. Mol. Med. Rep. 20, 549–558.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Shi H., Li J., Song Q., Cheng L., Sun H., Fan W., Li J., Wang Z., Zhang G. 2019. Systematic identification and analysis of dysregulated miRNA and transcription factor feed-forward loops in hypertrophic cardiomyopathy. J. Cell. Mol. Med. 23, 306–316.

    Article  CAS  PubMed  Google Scholar 

  73. Sun D., Li C., Liu J., Wang Z., Liu Y., Luo C., Chen Y., Wen S. 2019. Expression profile of microRNAs in hypertrophic cardiomyopathy and effects of microRNA-20 in inducing cardiomyocyte hypertrophy through regulating gene MFN2. DNA Cell Biol. 38, 796–807.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Russian Science Foundation (grant no. 20-15-00353).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Baulina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Transalted by M. Novikova

Abbreviations: SCD, sudden cardiac death; HCM, hypertrophic cardiomyopathy; iPSCs, induced pluripotent stem cells; LV, left ventricle; RAAS, renin-angiotensin-aldosterone system; lncRNA, long non-coding RNA; ncRNA, non-coding RNA; NGS, next generation sequencing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baulina, N.M., Kiselev, I.S., Chumakova, O.S. et al. Hypertrophic Cardiomyopathy as an Oligogenic Disease: Transcriptomic Arguments. Mol Biol 54, 840–850 (2020). https://doi.org/10.1134/S0026893320060023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320060023

Keywords:

Navigation