Please note our website will be undergoing maintenance on Tuesday, May 28, 2024. e-Commerce transactions and new registrations will be temporarily unavailable during this time. We apologize for any inconvenience this may cause.

Cookies Notification

We use cookies to improve your website experience. To learn about our use of cookies and how you can manage your cookie settings, please see our Cookie Policy.
×

Analyzing gene expression profiles with preliminary validations in cardiac hypertrophy induced by pressure overload

Publication: Canadian Journal of Physiology and Pharmacology
6 March 2018

Abstract

The aim of this study was to identify the key genes involved in the cardiac hypertrophy (CH) induced by pressure overload. mRNA microarray data sets GSE5500 and GSE18801 were downloaded from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) were screened using the Limma package; then, functional and pathway enrichment analysis were performed for common DEGs using the Database for Annotation, Visualization and Integrated Discovery database. Furthermore, the top DEGs were further validated using quantitative PCR in the hypertrophic heart tissue induced by isoprenaline. A total of 113 common DEGs with absolute fold change > 0.5, including 60 significantly upregulated DEGs and 53 downregulated DEGs, were obtained. Gene ontology term enrichment analysis suggested that common upregulated DEG were mainly enriched in neutrophil chemotaxis, extracellular fibril organization, and cell proliferation; and the common downregulated genes were significantly enriched in ion transport, endoplasmic reticulum, and dendritic spine. Kyoto Encyclopedia of Genes and Genomes pathway analysis found that the common DEGs were mainly enriched in extracellular matrix receptor interaction, phagosome, and focal adhesion. Additionally, the expression of Mfap4, Ltbp2, Aspn, Serpina3n, and Cnksr1 were upregulated in the model of CH, while the expression of Anp32a was downregulated. The current study identified the key deregulated genes and pathways involved in the CH, which could shed new light to understand the mechanism of CH.

Résumé

Cette étude avait pour but d’établir les gènes clés jouant un rôle dans l’hypertrophie cardiaque (HC) engendrée par une surcharge de pression. Nous avons téléversé les ensembles de données de biopuces d’ARNm GSE5500 et GSE18801 de la base de données GEO (pour « Gene Expression Omnibus »), et nous avons criblé des gènes exprimés de manière différentielle (GED) au moyen du progiciel Limma; puis, nous avons effectué une analyse d’enrichissement fonctionnel et des voies de signalisation pour les GED proéminents à l’aide de la base de données DAVID (pour « Database for Annotation, Visualisation and Integrated Discovery »). De plus, nous avons validé encore davantage les GED proéminents à l’aide de la technique de PCR quantitatif dans le tissu cardiaque hypertrophié engendré par l’isoprénaline. Nous avons obtenu au total 113 GED proéminents avec un double changement absolu inférieur à 0,5, y compris 60 GED nettement régulés à la hausse et 53 GED régulés à la baisse. L’analyse d’enrichissement des termes d’ontologie génique a laissé entrevoir que les GED proéminents régulés à la hausse s’enrichissaient principalement avec le chimiotactisme des neutrophiles, l’organisation des fibrilles extracellulaires et la prolifération cellulaire, tandis que les gènes proéminents régulés à la baisse s’enrichissaient de façon marquée avec le transport ionique, le réticulum endoplasmique et les épines dendritiques. L’analyse de la voie de signalisation KEGG (pour « Kyoto Encyclopedia of Genes and Genomes ») a montré que les GED proéminents s’enrichissaient principalement avec l’interaction du récepteur de la matrice extracellulaire, le phagosome et l’adhésion focale. De plus, l’expression des gènes Mfap4, Ltbp2, Aspn, Serpina3n et Cnksr1 était régulée à la hausse dans le modèle d’HC, tandis que l’expression du gène Anp32a était régulée à la baisse. La présente étude a permis d’établir les gènes et les voies de signalisation dérégulés jouant un rôle proéminent dans l’HC, ce qui pourrait jeter un nouvel éclairage permettant de comprendre les modes d’action inhérents à l’HC. [Traduit par la Rédaction]

Get full access to this article

View all available purchase options and get full access to this article.

References

Ahmed M.S., Øie E., Vinge L.E., Yndestad A., Øystein Andersen G., Andersson Y., et al. 2004. Connective tissue growth factor — a novel mediator of angiotensin II-stimulated cardiac fibroblast activation in heart failure in rats. J. Mol. Cell. Cardiol. 36(3): 393–404.
Aoyagi T. and Matsui T. 2011. Phosphoinositide-3 kinase signaling in cardiac hypertrophy and heart failure. Curr. Pharm. Des. 17(18): 1818–1824.
Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., et al. 2017. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation, 135(10): e146–e603.
Berk B.C., Fujiwara K., and Lehoux S. 2007. ECM remodeling in hypertensive heart disease. J. Clin. Invest. 117(3): 568–575.
Bisping E., Ikeda S., Kong S.W., Tarnavski O., Bodyak N., McMullen J.R., et al. 2006. Gata4 is required for maintenance of postnatal cardiac function and protection from pressure overload-induced heart failure. Proc. Natl. Acad. Sci. U.S.A. 103(39): 14471–14476.
Crowley S.D., Gurley S.B., Herrera M.J., Ruiz P., Griffiths R., Kumar A.P., et al. 2006. Angiotensin II causes hypertension and cardiac hypertrophy through its receptors in the kidney. Proc. Natl. Acad. Sci. U.S.A. 103(47): 17985–17990.
Daugherty, A., Rateri, D., Hong, L., and Balakrishnan, A. 2009. Measuring blood pressure in mice using volume pressure recording, a tail-cuff method. J. Vis. Exp. (27): e1291.
Dhahbi J.M., Tsuchiya T., Kim H.J., Mote P.L., and Spindler S.R. 2006. Gene expression and physiologic responses of the heart to the initiation and withdrawal of caloric restriction. J. Gerontol., Ser. A, 61(3): 218–231.
Dobaczewski M., Chen W., and Frangogiannis N.G. 2011. Transforming growth factor (TGF)-beta signaling in cardiac remodeling. J. Mol. Cell. Cardiol. 51(4): 600–606.
Dyck J.R. and Lopaschuk G.D. 2006. AMPK alterations in cardiac physiology and pathology: enemy or ally? J. Physiol. 574(1): 95–112.
Edgar R., Domrachev M., and Lash A.E. 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1): 207–210.
Fritz R.D. and Radziwill G. 2005. The scaffold protein CNK1 interacts with the angiotensin II type 2 receptor. Biochem. Biophys. Res. Commun. 338(4): 1906–1912.
Fujikawa Y., Yoshida H., Inoue T., Ohbayashi T., Noda K., von Melchner H., et al. 2017. Latent TGF-beta binding protein 2 and 4 have essential overlapping functions in microfibril development. Sci. Rep. 7: 43714.
Galindo C.L., Skinner M.A., Errami M., Olson L.D., Watson D.A., Li J., et al. 2009. Transcriptional profile of isoproterenol-induced cardiomyopathy and comparison to exercise-induced cardiac hypertrophy and human cardiac failure. BMC Physiol. 9: 23.
Habrukowich C., Han D.K., Le A., Rezaul K., Pan W., Ghosh M., et al. 2010. Sphingosine interaction with acidic leucine-rich nuclear phosphoprotein-32A (ANP32A) regulates PP2A activity and cyclooxygenase (COX)-2 expression in human endothelial cells. J. Biol. Chem. 285(35): 26825–26831.
Henriksen P.A. and Kotelevtsev Y. 2002. Application of gene expression profiling to cardiovascular disease. Cardiovasc. Res. 54(1): 16–24.
Heymans S., Schroen B., Vermeersch P., Milting H., Gao F., Kassner A., et al. 2005. Increased cardiac expression of tissue inhibitor of metalloproteinase-1 and tissue inhibitor of metalloproteinase-2 is related to cardiac fibrosis and dysfunction in the chronic pressure-overloaded human heart. Circulation, 112(8): 1136–1144.
Hoffarth S., Zitzer A., Wiewrodt R., Hähnel P.S., Beyer V., Kreft A., et al. 2008. pp32/PHAPI determines the apoptosis response of non-small-cell lung cancer. Cell Death Differ. 15(1): 161–170.
Honsho S., Nishikawa S., Amano K., Zen K., Adachi Y., Kishita E., et al. 2009. Pressure-mediated hypertrophy and mechanical stretch induces IL-1 release and subsequent IGF-1 generation to maintain compensative hypertrophy by affecting Akt and JNK pathways. Circ. Res. 105(11): 1149–1158.
Horiguchi M., Ota M., and Rifkin D.B. 2012. Matrix control of transforming growth factor-beta function. J. Biochem. 152(4): 321–329.
Huang D.W., Sherman B.T., and Lempicki R.A. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4(1): 44–57.
Institute of Laboratory Animal Resources. 1996. Guide for the care and use of laboratory animals. NIH Publication No. 85-23 (revised 1996). National Academy Press, Washington, D.C.
Irukayama-Tomobe Y., Miyauchi T., Sakai S., Kasuya Y., Ogata T., Takanashi M., et al. 2004. Endothelin-1-induced cardiac hypertrophy is inhibited by activation of peroxisome proliferator-activated receptor-alpha partly via blockade of c-Jun NH2-terminal kinase pathway. Circulation, 109(7): 904–910.
Isogai Z., Ono R.N., Ushiro S., Keene D.R., Chen Y., Mazzieri R., et al. 2003. Latent transforming growth factor beta-binding protein 1 interacts with fibrillin and is a microfibril-associated protein. J. Biol. Chem. 278(4): 2750–2757.
Jiang D.S., Wei X., Zhang X.F., Liu Y., Zhang Y., Chen K., et al. 2014. IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling. Nat. Commun. 5: 3303.
Kaliakatsos M., Tzetis M., Kanavakis E., Fytili P., Chouliaras G., Karachalios T., et al. 2006. Asporin and knee osteoarthritis in patients of Greek origin. Osteoarthritis Cartilage, 14(6): 609–611.
Kehat I., Davis J., Tiburcy M., Accornero F., Saba-El-Leil M.K., Maillet M., et al. 2011. Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ. Res. 108(2): 176–183.
Lemarié C.A. and Schiffrin E.L. 2010. The angiotensin II type 2 receptor in cardiovascular disease. J. Renin-Angiotensin-Aldosterone Syst. 11(1): 19–31.
Li Y., Ha T., Gao X., Kelley J., Williams D.L., Browder I.W., et al. 2004. NF-kappaB activation is required for the development of cardiac hypertrophy in vivo. Am. J. Physiol. Heart Circ. Physiol. 287(4): H1712–H1720.
Liu L., Zhao X., Pierre S.V., and Askari A. 2007. Association of PI3K-Akt signaling pathway with digitalis-induced hypertrophy of cardiac myocytes. Am. J. Physiol. Cell Physiol. 293(5): C1489–C1497.
Liu W., Zi M., Jin J., Prehar S., Oceandy D., Kimura T.E., et al. 2009. Cardiac-specific deletion of mkk4 reveals its role in pathological hypertrophic remodeling but not in physiological cardiac growth. Circ. Res. 104(7): 905–914.
Ma X., Song Y., Chen C., Fu Y., Shen Q., Li Z., and Zhang Y. 2011. Distinct actions of intermittent and sustained beta-adrenoceptor stimulation on cardiac remodeling. Sci. China Life Sci. 54(6): 493–501.
Miyamoto T., Takeishi Y., Takahashi H., Shishido T., Arimoto T., Tomoike H., and Kubota I. 2004. Activation of distinct signal transduction pathways in hypertrophied hearts by pressure and volume overload. Basic Res. Cardiol. 99(5): 328–337.
Miyazaki H., Oka N., Koga A., Ohmura H., Ueda T., and Imaizumi T. 2006. Comparison of gene expression profiling in pressure and volume overload-induced myocardial hypertrophies in rats. Hypertens. Res. 29(12): 1029–1045.
Molojavyi A., Lindecke A., Raupach A., Moellendorf S., Köhrer K., and Gödecke A. 2010. Myoglobin-deficient mice activate a distinct cardiac gene expression program in response to isoproterenol-induced hypertrophy. Physiol. Genomics, 41(2): 137–145.
Mozaffarian D., Benjamin E.J., Go A.S., Arnett D.K., Blaha M.J., Cushman M., et al. 2016. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation, 133(4): e38–e360.
Oparil S. 1985. Pathogenesis of ventricular hypertrophy. J. Am. Coll. Cardiol. 5(6, Suppl. 1): 57B–65B.
Ørn S., Ueland T., Manhenke C., Sandanger Ø., Godang K., Yndestad A., et al. 2012. Increased interleukin-1beta levels are associated with left ventricular hypertrophy and remodelling following acute ST segment elevation myocardial infarction treated by primary percutaneous coronary intervention. J. Intern. Med. 272(3): 267–276.
Peng X., Kraus M.S., Wei H., Shen T.L., Pariaut R., Alcaraz A., et al. 2006. Inactivation of focal adhesion kinase in cardiomyocytes promotes eccentric cardiac hypertrophy and fibrosis in mice. J. Clin. Invest. 116(1): 217–227.
Quadri H.S., Aiken T.J., Allgaeuer M., Moravec R., Altekruse S., Hussain S.P., et al. 2017. Expression of the scaffold connector enhancer of kinase suppressor of Ras 1 (CNKSR1) is correlated with clinical outcome in pancreatic cancer. BMC Cancer, 17: 495.
Reilly P.T., Afzal S., Gorrini C., Lui K., Bukhman Y.V., Wakeham A., et al. 2011. Acidic nuclear phosphoprotein 32kDa (ANP32)B-deficient mouse reveals a hierarchy of ANP32 importance in mammalian development. Proc. Natl. Acad. Sci. U.S.A. 108(25): 10243–10248.
Rossi M.A. 1998. Pathologic fibrosis and connective tissue matrix in left ventricular hypertrophy due to chronic arterial hypertension in humans. J. Hypertens. 16(7): 1031–1041.
Scheuer J. 1999. Catecholamines in cardiac hypertrophy. Am. J. Cardiol. 83(12A): 70H–74H.
Shindo K., Asakura M., Min K.D., Ito S., Fu H.Y., Yamazaki S., et al. 2017. Cartilage intermediate layer protein 1 suppresses TGF-β signaling in cardiac fibroblasts. Int. J. Gerontol. 11(2): 67–74.
Sopontammarak S., Aliharoob A., Ocampo C., Arcilla R.A., Gupta M.P., and Gupta M. 2005. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy. Cell Biochem. Biophys. 43(1): 61–76.
Sterner-Kock A., Thorey I.S., Koli K., Wempe F., Otte J., Bangsow T., et al. 2002. Disruption of the gene encoding the latent transforming growth factor-beta binding protein 4 (LTBP-4) causes abnormal lung development, cardiomyopathy, and colorectal cancer. Genes Dev. 16(17): 2264–2273.
Streicher J.M., Ren S., Herschman H., and Wang Y. 2010. MAPK-activated protein kinase-2 in cardiac hypertrophy and cyclooxygenase-2 regulation in heart. Circ. Res. 106(8): 1434–1443.
Sun M., Ouzounian M., de Couto G., Chen M., Yan R., Fukuoka M., et al. 2013. Cathepsin-L ameliorates cardiac hypertrophy through activation of the autophagy-lysosomal dependent protein processing pathways. J. Am. Heart Assoc. 2(2): e000191.
Taegtmeyer H., Sen S., and Vela D. 2010. Return to the fetal gene program: a suggested metabolic link to gene expression in the heart. Ann. N. Y. Acad. Sci. 1188: 191–198.
Tarca A.L., Romero R., and Draghici S. 2006. Analysis of microarray experiments of gene expression profiling. Am. J. Obstet. Gynecol. 195(2): 373–388.
Taylor J.M., Rovin J.D., and Parsons J.T. 2000. A role for focal adhesion kinase in phenylephrine-induced hypertrophy of rat ventricular cardiomyocytes. J. Biol. Chem. 275(25): 19250–19257.
Troyanskaya O., Cantor M., Sherlock G., Brown P., Hastie T., Tibshirani R., et al. 2001. Missing value estimation methods for DNA microarrays. Bioinformatics, 17(6): 520–525.
van Berlo J.H., Elrod J.W., Aronow B.J., Pu W.T., and Molkentin J.D. 2011. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo. Proc. Natl. Acad. Sci. U.S.A. 108(30): 12331–12336.
Vidal M., Wieland T., Lohse M.J., and Lorenz K. 2012. beta-Adrenergic receptor stimulation causes cardiac hypertrophy via a Gbetagamma/Erk-dependent pathway. Cardiovasc. Res. 96(2): 255–264.
Wang J.J., Rau C., Avetisyan R., Ren S., Romay M.C., Stolin G., et al. 2016. Genetic dissection of cardiac remodeling in an isoproterenol-induced heart failure mouse model. PLoS Genet. 12(7): e1006038.
Wang S., He Q., Ma D., Xue Y., and Liu F. 2015. Irf4 Regulates the choice between T lymphoid-primed progenitor and myeloid lineage fates during embryogenesis. Dev. Cell, 34(6): 621–631.
Westenbrink B.D., Ling H., Divakaruni A.S., Gray C.B., Zambon A.C., Dalton N.D., et al. 2015. Mitochondrial reprogramming induced by CaMKIIdelta mediates hypertrophy decompensation. Circ. Res. 116(5): e28–e39.
Wettenhall J.M. and Smyth G.K. 2004. limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics, 20(18): 3705–3706.
Wulf-Johansson H., Lock Johansson S., Schlosser A., Trommelholt Holm A., Rasmussen L.M., Mickley H., et al. 2013. Localization of microfibrillar-associated protein 4 (MFAP4) in human tissues: clinical evaluation of serum MFAP4 and its association with various cardiovascular conditions. PLoS One, 8(12): e82243.
Xue J., Mraiche F., Zhou D., Karmazyn M., Oka T., Fliegel L., and Haddad G.G. 2010. Elevated myocardial Na+/H+ exchanger isoform 1 activity elicits gene expression that leads to cardiac hypertrophy. Physiol. Genomics, 42(3): 374–383.
Yang S., Chen L., Sun S., Shah P., Yang W., Zhang B., et al. 2015. Glycoproteins identified from heart failure and treatment models. Proteomics, 15(2–3): 567–579.
Zhang H., Wu J., Dong H., Khan S.A., Chu M.L., and Tsuda T. 2014. Fibulin-2 deficiency attenuates angiotensin II-induced cardiac hypertrophy by reducing transforming growth factor-beta signalling. Clin. Sci. 126(4): 275–288.
Zhang T. and Brown J.H. 2004. Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc. Res. 63(3): 476–486.

Supplementary Material

Supplementary data (cjpp-2017-0585suppla.doc)

Information & Authors

Information

Published In

cover image Canadian Journal of Physiology and Pharmacology
Canadian Journal of Physiology and Pharmacology
Volume 96Number 8August 2018
Pages: 701 - 709

History

Received: 12 September 2017
Accepted: 15 December 2017
Accepted manuscript online: 6 March 2018
Version of record online: 6 March 2018

Permissions

Request permissions for this article.

Key Words

  1. cardiac hypertrophy
  2. differentially expressed genes
  3. pathway enrichment analysis
  4. isoprenaline
  5. functional enrichment analysis

Mots-clés

  1. hypertrophie cardiaque
  2. gènes exprimés de manière différentielle
  3. analyse d’enrichissement des voies de signalization
  4. isoprénaline
  5. analyse d’enrichissement fonctionnel

Authors

Affiliations

Jing Gao
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China.
Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
Yuhong Li
Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou 121001, China.
Tongmei Wang
Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China.
Zhuo Shi
Department of Anatomy, Jinzhou Medical University, Jinzhou 121001, China.
Yiqi Zhang
Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China.
Shuang Liu
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China.
Pushuai Wen [email protected]
Department of Pathophysiology, Jinzhou Medical University, Jinzhou 121001, China.
Chunyan Ma [email protected]
Department of Cardiovascular Ultrasound, The First Hospital of China Medical University, Shenyang 110001, China.

Notes

Copyright remains with the author(s) or their institution(s). Permission for reuse (free in most cases) can be obtained from RightsLink.

Metrics & Citations

Metrics

Other Metrics

Citations

Cite As

Export Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Simply select your manager software from the list below and click Download.

Cited by

1. Cardiomyocyte PAI-1 influences the cardiac transcriptome and limits the extent of cardiac fibrosis in response to left ventricular pressure overload
2. Microfibrillar-associated protein 4 in health and disease
3. ANP32A represses Wnt signaling across tissues thereby protecting against osteoarthritis and heart disease
4. Microfibrillar-Associated Protein 4 Regulates Stress-Induced Cardiac Remodeling
5. NETosis as a Pathogenic Factor for Heart Failure
6. Protective Effect of Ginsenoside Rg1 on Oxidative Damage Induced by Hydrogen Peroxide in Chicken Splenic Lymphocytes

View Options

Get Access

Login options

Check if you access through your login credentials or your institution to get full access on this article.

Subscribe

Click on the button below to subscribe to Canadian Journal of Physiology and Pharmacology

Purchase options

Purchase this article to get full access to it.

Restore your content access

Enter your email address to restore your content access:

Note: This functionality works only for purchases done as a guest. If you already have an account, log in to access the content to which you are entitled.

View options

PDF

View PDF

Full Text

View Full Text

Media

Media

Other

Tables

Share Options

Share

Share the article link

Share on social media