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Background
Synthetic long read (SLR) technologies [1–4], including single tube long fragment 
read (stLFR) sequencing [5], have recently been developed to allow co-barcoding of 
next-generation sequencing (NGS) short reads from the same long DNA fragment. 
Similar to the previous whole-genome shotgun sequencing strategy for BAC [6] or 
fosmid libraries [7], an SLR library can retain long-range genomic information but 
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is more cost-effective. Since the relation between neighboring sequences is recover-
able, based on the barcode shared by reads from the same DNA fragment, SLR data 
can be applied to haplotyping [1, 3, 4, 8, 9], structural variation detection [10–12] 
and de novo genome assembly [13–19].

Limited by the current SLR sequencing technologies, each DNA fragment can-
not be directly reconstructed, as TruSPAdes does with a TruSeq dataset [20]. This is 
because the co-barcoding read coverage of a single DNA fragment is too low to sat-
isfy the minimum assembly requirement. There are several genome assembly tools 
designed for each specific SLR library type. For contiguity preserving transposition 
sequencing (CPT-seq) reads, Adey and colleagues developed fragScaff to conduct 
scaffolding using the minimum spanning tree (MST) algorithm on a scaffold graph 
based on co-barcoding information [13]. Their results for the human genome show a 
greater improvement for input assemblies of high contiguity (NG50 ~ 100 kb). Kule-
shov et al. utilized SLR sequencing technology from Illumina [2] and built scaffolds 
by combining co-barcoding with paired-end information to construct a scaffold 
graph and heuristically removing spurious edges using Architect [14]. For organisms 
with small genome sizes, the improvement by Architect also shows a clear depend-
ence on the contiguity of the input assembly. ARCS [16] and ARKS [17] are devel-
oped by Warren et al. to use 10X Genomics Chromium data (10XG-linked reads) [4]. 
ARKS accelerates the scaffolding procedure and dramatically increases the NG50 
of high-quality input assemblies (NG50 ~ 4.7 or 14.7  Mb). Weisenfeld et  al. also 
developed a de novo assembler named Supernova for raw 10XG-linked reads [15]. 
Recently, based on analyzing the assembly graph, a universal assembler CloudS-
PAdes is developed by Tolstoganov et al. [19]. However, both Supernova and Cloud-
SPAdes do not provide independent modules for scaffolding, and thus they cannot 
be combined with other sequencing data conveniently. For standalone scaffolders, 
an input assembly with long contiguity is usually required to obtain the co-barcod-
ing information with sufficient completeness and accuracy to construct scaffolds 
efficiently. Thus, it is still a challenge to develop a robust scaffolder that is insensi-
tive to input quality to effectively improve different draft assemblies.

Here, we presented a standalone scaffolder (SLR-superscaffolder) for stLFR reads. 
SLR-superscaffolder only requires a draft assembly (contigs or scaffolds) plus an SLR 
dataset as input. The tool exploited an overall top-to-bottom scheme, as outlined in 
Sect. 2.3, to hierarchically employ SLR information and lower the contiguity require-
ment of input assemblies. In addition, a screening algorithm was introduced in the 
ordering step to reduce the negative effect of non-ideal seed contigs on scaffolding.

We applied SLR-superscaffolder to an stLFR dataset for the human cell line 
NA12878 (HG001), benchmarked and compared with fragScaff, Architect, and 
ARKS. The results demonstrated that the scaffolds generated by SLR-superscaffolder 
had longer contiguity and higher accuracy than other tools for NGS-based draft 
assemblies. Since its algorithm was independent of the co-barcoding sequencing 
platform, SLR-superscaffolder had a great potential to be directly applied to various 
SLR datasets. The high robustness and accuracy would make SLR-superscaffolder a 
useful tool in a hybrid assembling strategy.
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Implementation
A scaffolding model employing co‑barcoding information

Scaffolding is a process to determine the order and orientation of sequences by the 
correlations provided by different linkage information sources [21]. If the spatial rela-
tion is quantifiable, then the distance between two sequences can be estimated. SLR 
data contains two types of linkage information: paired-end and co-barcoding. Scaf-
folding based on paired-end information has been intensively discussed [22–24] and 
is not the focus of the present work. In SLR datasets, the co-barcoding information 
is obtained from shared barcodes (i.e., co-barcoded reads come from the same DNA 
fragment). As shown in Fig. 1a, the relation between adjacent contigs can be deter-
mined from mapped reads with the same barcode if these contigs overlap with the 
same DNA fragment. The length of the linkage region where the DNA fragment over-
laps with both contigs is equal to the difference between DNA fragment length and 
gap size. Typically, the sequencing depth of DNA fragments is low, and thus not all 
the overlaps can be detected by the corresponding barcode. However, on the assump-
tion that both the generation of DNA fragments and the capture of reads from each 
DNA fragment are unbiased and random, the linkage region length can be estimated 
by the correlation strength in statistics, which decreases with increasing gap size. 
This is the fundamental to order and orient contigs in the following steps (Fig. 1b, c). 
Figure 1b illustrates the ordering process of three adjacent contigs. The gap between 
Contig1 and Contig3 is the largest, indicating that their correlation strength is the 
weakest. Thus, the order of three contigs can be determined by deleting the weakest 
correlation in the graph. Since the linkage is undirected, a contig’s orientation cannot 

Fig. 1  Scaffolding model of the co-barcoding correlation between two contigs (a), ordering of three contigs 
(b), and orienting of a contig using its neighboring contig with co-barcoding information (c)



Page 4 of 16Guo et al. BMC Bioinformatics          (2021) 22:158 

be determined straightforwardly. This problem can be transformed into the ordering 
procedure of three sub-contigs as shown in Fig.  1c, where Contig2 is split into two 
parts: the head and the tail.

Quantified correlation strength

The correlation strength can be described by a function of shared barcodes between 
sequences. In this work, Jaccard Similarity (JS) was selected based on the discussion 
in Sect. 3.1. To avoid the effect of the contig length variation, JS between contig m and 
contig n was defined as the maximal JS between paired bins with the fixed size:

where binmi  is the ith bin in contig m. The bins were chopped from both ends of a contig, 
and there was no gap or overlap between neighboring bins. JS between bins from differ-
ent contigs can be calculated by

where barcodes(binmi  ) was the set of barcodes whose corresponding reads were mapped 
to the binmi .

Overview of the algorithm and data preparation

SLR-superscaffolder was designed with a high degree of modularity. Overall, five 
modules were integrated: data preparation, ordering, orienting, local scaffolding, and 
gap size estimation, as shown in Additional file  1: Figure S1. Both paired-end and 
co-barcoding information of stLFR reads were used in scaffolding. To make efficient 
use of information with different correlation length scales, we adopted a top-to-bot-
tom scheme, where the usage of global information occurs before local information. 
Specifically, the global scaffolding, including ordering and orienting using the co-
barcoding information, occurs prior to paired-end-based local scaffolding. In the co-
barcoding-based scaffolding, global ordering occurs prior to local orienting.

SLR-superscaffolder requires an SLR dataset plus a draft assembly as input. A draft 
assembly can be a set of contigs or scaffolds pre-assembled by various types of datasets 
(hereafter, we refer to contigs). Before scaffolding, we calculated the correlation between 
contigs to construct a scaffold graph and chose seed contigs to reduce the graph com-
plexities caused by repeats. BWA (version 0.7.17) [25] was used to align stLFR reads to 
contigs, and reads only with a unique alignment were used to provide barcoding infor-
mation based on their aligned positions on contigs. The ideal seed contigs are long and 
non-repetitive in the genome, without any misassemblies. Their mapped read depth 
should be around the average. As a result, the seed contigs were chosen according to a 
length threshold and an interval centered on the average depth. However, a few repeti-
tive or misassembled contigs might be contained in seeds. Therefore, it is necessary to 
reduce the negative effect of these non-ideal seed contigs on scaffolding.

JS
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)

= max
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JS
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n
j
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for all pair(i, j)
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Ordering

In our scheme, the order of contigs at a global scale was firstly determined by co-bar-
coding information. We constructed an undirected-weighted scaffold graph using JS 
between any two contigs. A node represents a seed contig. A weighted edge is created 
between two contigs when the JS between the contigs is higher than a given threshold; in 
that case, the weight of the edge is equal to the value of the JS between the correspond-
ing contigs. The junction is a node with a degree more than two and the tip node is with 
a degree equal to one. The branch is a linear path from a tip node to the nearest junction. 
A branch with less than three nodes is defined as a tip branch, otherwise it is defined as a 
long branch. A junction with more than two long branches is defined as a long junction, 
otherwise it is defined as a tip branch. As described in Algorithm 1, the MST of a co-
barcoding scaffold graph was obtained using Prim’s algorithm, and then the tip branches 
of the MST were pruned, finally the branches of the pruned MST were used to order the 
seed contigs. However, there are still too many junctions in a pruned MST to render the 
above process inefficient for ordering. We analyzed the property of contigs around junc-
tions and found that long junctions strongly correlated with the non-ideal seed contigs, 
as discussed in Sect. 3.2. Thus, Algorithm 2 was designed to remove non-ideal seed con-
tigs. The number of iterations and the ratio of screened contigs were set to avoid a pos-
sible significant reduction of connectivity in the co-barcoding scaffold graph.

Algorithm 1: Ordering
Input: A set of seed contigs, JS between contigs
Output: Ordered scaffolds
1. Screen non-ideal seed contigs by Screening Algorithm
2. Construct a co-barcoding scaffold graph for unscreened contigs 
3. Get MST of the co-barcoding scaffold graph 
4. Prune tip branches
5. Determine long branches as ordered scaffolds 

Algorithm 2: Screening
Input: A co-barcoding scaffold graph
Output: Unscreened contigs 
1. While (the end condition is not satisfied) do
2. Get MST of the co-barcoding scaffold graph 
3. Prune tip branches in the MST
4. Detect junctions  
5. Update the co-barcoding scaffold graph by deleting the junctions 
6. Determine unscreened contigs

Orienting

Because the co-barcoding information is undirected, it cannot be directly used for ori-
enting. Thus, each contig was firstly split into two parts to be oriented, as shown in 
Fig. 1c. In this work, the head of a contig refers to the part from the 5′ terminal to the 
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middle point and the residue is the tail. Unlike previous tools, which simultaneously 
determine order and orientation, we utilized the relation between neighboring contigs 
in an ordered scaffold to facilitate the orientation of each contig by the consensus strat-
egy shown in Algorithm 3. In this strategy, each neighboring contig can provide a sup-
port for the contig’s orientation, as shown in Fig. 1c. The orientation of a contig has two 
states: an up state meaning the same direction relative to that of the ordered scaffold, 
and a down state meaning the opposite direction. The supported state was determined 
by the JS between the head and the neighboring contig (JS_Head) and that between the 
tail and the neighbor (JS_Tail). To increase computational efficiency, all neighboring 
contigs were uniformly split into two parts.

Algorithm 3: Orienting 
Input: An ordered scaffold, alignment relations between barcodes and contigs
Output: An ordered and oriented scaffold 
1. For each contig in the ordered scaffold do
2. Split the contig into a head/tail structure;
3. For each neighboring contig do
4. Calculate JS_Head and JS_Tail;

5. 
If JS_Head is larger than JS_Tail and the order of 
neighboring contig is larger than that of the contig then

6. Down_index++; 

7. 
If JS_Head is larger than JS_Tail and the order of 
neighboring contig is smaller than that of the contig then

8. Up_index++; 

9. 
If JS_Head is smaller than JS_Tail and the order of 
neighboring contig is larger than that of the contig then

10. Up_index++; 

11. 
If JS_Head is smaller than JS_Tail and the order of 
neighboring contig is smaller than that of the contig then

12. Down_index++; 
13. If Up_index is larger than Down_index then
14. Orientation is up state
15. If Up_index is smaller than Down_index then
16. Orientation is down state
17. Else then
18. Orientation is undetermined 

Local scaffolding

In the above steps, most seed contigs have been ordered and oriented by the co-barcod-
ing information. The unscaffolded contigs include non-seed contigs labeled in data prep-
aration, those of tip branches in the MST, and those screened in the ordering step. These 
contigs can be further scaffolded by the local paired-end information of stLFR reads. In 
this step, we inserted the first two types of contigs into the gaps of oriented scaffolds 
according to Algorithm 4. To avoid the complex structures caused by repeat sequences 
on a global scale, only unscaffolded contigs with strong co-barcoding correlation to the 
paired contigs of a gap were clustered as candidates for local scaffolding. In the local 
directed paired-end scaffold graph, the nodes refer to candidate contigs of the gap, and 
the directed edges refer to connections verified by read pairs more than a threshold. The 
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shortest connected path between the paired contigs was determined as the local scaffold 
using a depth-first search strategy.

Algorithm 4: Local scaffolding 
Input: An ordered and oriented scaffold, paired-end and co-barcoding 
information
Output: A scaffold filled by local scaffolds
1. For each gap in the scaffold do

2.
Cluster unscaffolded contigs near the gap by using co-barcoding 
information; 

3. Construct a direct paired-end scaffold graph 
4. Find the shortest connected path between the paired contigs of the gap;
5. If the shortest connected path exists then
6. Determine the path information as a local scaffold in the gap 

Gap size estimation

We estimated the gap size between adjacent contigs in the ordered and oriented scaf-
folds, similar to the method in ARKS [17]. Specifically, gap size was determined by an 
empirical relation between the distance and the JS for gaps constructed by co-barcoding 
information (Additional file  1: Figure S1E). Although the exact distance between two 
reads with the same barcode is unknown, we observed a strong relation between JS and 
the distance of two sequences in human chromosome 19 (Chr19) (Additional file 1: Fig-
ure S2). Then we applied a linear fit using the least square method to obtain the correla-
tion function for the gap size estimation step. The size was uniformly set to 11 bp for 
gaps constructed by the paired-end information due to the limited resolution.

Evaluation

The standard metrics of QUAST (version 5.0.2) [26] were used to evaluate the efficiency 
and accuracy of assembled results, where Minimap2 [27] is used to get valid align-
ments. QUAST defines a major misassembly if an alignment difference is larger than 
1 kb relative to the reference. These are further categorized into relocations, inversions, 
and translocations. An inversion indicates a reversion of part of a contig with respect to 
the reference genome. A relocation indicates a rearrangement of part of a contig within 
a chromosome. A translocation indicates a rearrangement of part of a contig between 
chromosomes. The relocations and translocations are used to measure ordering perfor-
mance, while inversions are used for orienting in this work. The QUAST evaluations are 
run with default parameters, except for the lower contig length threshold (-m 1000).

The topological properties of an MST are changed by screening nodes in the order-
ing algorithm. To analyze the effects of the screening algorithm on the MST, the nodes 
were evaluated according to their topology in the graph as described in Sect. 2.4 and the 
edges were also evaluated by alignments of connected contigs against the reference. The 
edges were categorized into four classes: 1-order, 2-order, high-order, and error edges. 
If there are no contigs between a paired contigs in the reference genome, the correla-
tion between the paired contigs was defined as a 1-order edge. If there is one, then the 
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correlation was defined as 2-order. More middle contigs make the correlation a high-
order edge. If the paired contigs are misassembled, then the correlation was defined as 
an error edge.

Draft assemblies and datasets

In this work, three draft assemblies for HG001 were used as input, including the con-
tigs assembled by MaSuRCA (version 3.3.5) [28] with 70 × stLFR reads only (MaSuRCA 
contigs), scaffolds assembled by SOAPdenovo2 (version r241) [29] with the same stLFR 
reads and an additional 20 × PE PCR-free NGS dataset (SOAPdenovo scaffolds) and 
the contigs assembled by Canu (version 1.9) [30] with 30 × Oxford Nanopore technol-
ogy (ONT) reads (ONT contigs) downloaded from Jain et al. work [31]. The evaluation 
for these input assemblies, the access information of these sequencing datasets, and 
the basic sequencing statistics of stLFR and PCR-free NGS reads were listed in Addi-
tional file  1: Tables S1–S3, respectively. The stLFR library was constructed using an 
MGIEasy stLFR Library Prep Kit and sequenced on a BGISEQ-500 instrument. Pair-end 
NGS reads with a ~ 390 bp insert size were randomly extracted from a PCR-free library 
constructed by an MGIEasy FS PCR-Free DNA Library Prep Set V1.0 (MGI, cat. No. 
1000013455) and sequenced by an MGISEQ-2000 PE150 instrument. For parameter 
sweeps and data analysis, the stLFR reads from human Chr19 were extracted according 
to read alignments against the reference genome.

Results and discussion
stLFR read properties

For SLR datasets, the number of DNA fragments per barcode is an important property 
for downstream analyses [32], and ideally is one. To evaluate this property, we analyzed 
the distance distribution of neighboring reads with the same barcode from the same 
DNA fragment and those from different DNA fragments, as shown in Fig. 2. The dis-
tances were calculated after sorting aligned reads based on their genomic coordinates 
in the reference. There were three typical peaks, of which the third was expanded in 
the inset (Fig. 2a). The first peak corresponded to gaps between paired reads from the 
same short paired-end fragment, and its position was 251 bp. The second corresponded 
to gaps between neighboring reads from the same DNA fragment, and its position 
was about 2512  bp. The third corresponded to gaps between neighboring reads from 

Table 1  Evaluation summary of assemblies using MaSuRCA contigs as input assemblies for HG001

SLR-superscaffolder fragScaff Architect ARKS MaSuRCA​

Number of scaffolds 
(> 1000 bp)

119,630 166,476 307,205 213,076 300,831

Largest scaffold (bp) 62,433,675 4,043,217 202,889 2,756,390 177,746

Total assembled length (bp) 3,345,341,888 3,672,256,418 3,038,310,109 2,908,519,565 2,907,642,015

NG50 (bp) 17,657,864 400,954 14,042 37,406 13,405

NGA50 (bp) 380,495 17,539 13,705 15,020 13,232

Relocation 11,015 92,267 3828 51,228 1648

Inversion 2939 5349 1637 5190 180

Translocation 2472 2294 903 10,828 849

Number of misassemblies 16,426 99,910 6368 67,246 4475
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different DNA fragments, and its position was 50 Mb. Compared with that of CPT-seq 
reads [13], the height ratio of the third peak to the second for stLFR reads was signifi-
cantly lower, indicating that the average number of DNA fragments per barcode is less. 
This is consistent with a great number of barcodes for a typical stLFR library (50 million 
magnetic beads) compared with those of other SLR libraries. The insert size distribution 
of stLFR reads was non-Gaussian (Fig. 2b), different from a standard NGS library. The 
statistics demonstrate that the unique properties of stLFR reads require a more robust 
scaffolding algorithm to efficiently exploit the paired-end and co-barcoding information.

A correlation of the co-barcoding information between contigs should be chose to 
construct the scaffold graph according to the scaffolding model. The number of shared 
barcodes (NB) between two contigs was used in fragScaff and ARKS. However, these 
tools ignored sequencing depth fluctuations of long DNA fragments randomly broken in 
SLR library. Instead, we used JS to reduce the effect of the fluctuation. To illustrate the 
advantage of JS relative to NB, all pairs of 5-kb bins in the human Chr19 reference were 
analyzed as a function of bin distance. Figure 3a, b showed that both JS and NB mono-
tonically decreased as the bin distance increases. However, the monotonical decrease of 
JS was not observed for randomly barcoded reads (Additional file 1: Figure S2). These 
indicate that both JS and NB are valid to determine the order and orientation of con-
tigs. As shown in Fig. 3c, d, the overlap between two normalized density distributions 
decreased as the bin distance increases for both JS and NB. However, the overlaps for 
NB were larger than those for JS. The same results were also observed in the distribu-
tions of different bin sizes, as shown in Additional file 1: Figures S3 and S4. Since the 
overlap is relevant to the error probability in scaffolding, these results indicate that JS is 
more efficient than NB.

Assembly results using stLFR reads‑alone

The MaSuRCA contigs were obtained by breaking the pre-assembled scaffolds at 
unknown bases (i.e., ‘N’). The evaluation of MaSuRCA contigs and run parameters were 
listed in Additional file  1: Tables S1 and S4. To evaluate the efficiency of SLR-super-
scaffolder (version 0.9), we benchmarked resulting scaffolds and compared them with 
those assembled by other SLR scaffolders, including fragScaff (version 140324.1), Archi-
tect (version 0.1), and ARKS (version 1.0.3). For each tool, run parameter sweeps were 

Fig. 2  The distribution of distance between neighboring reads with the same barcode (a) and the insert size 
distribution of read pairs for stLFR reads (b)
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completed based on the human Chr19 dataset, and the optimal results were listed in 
Additional file 1: Table S5.

For MaSuRCA contigs, scaffolds assembled by SLR-superscaffolder showed the long-
est contiguity and the highest accuracy (Table 1). The scaffold NG50 was improved by 
about 1349 fold (from 13.1  kb to 17.6  Mb), while NGA50 was improved by about 29 
fold (from 13.0 kb to 380.5 kb). Among other tools, fragScaff generated scaffolds with 
the highest quality; NG50 and NGA50 reached 400.9 kb and 17.5 kb, respectively. It is 
noted that the improvement by fragScaff, Architect, and ARKS were lower than those 
previously reported [17]. One possible reason is that the NG50 of MaSuRCA contigs is 
significantly shorter (~ 13 kb).

In our scheme, a screening algorithm was introduced to reduce the negative effect of 
non-ideal seed contigs in the ordering step. To evaluate its performance, the properties 
of MST were analyzed before and after screening based on the classification of nodes 
and edges defined in Sect.  2.8. According to the QUAST evaluation, there were 3083 
non-ideal seed contigs out of 182,046 contigs in the initial MST. After screening, 2327 
contigs were deleted, among which 858 were non-ideal seed contigs. It indicates that the 
screening algorithm can efficiently identify non-ideal seed contigs in an MST (Table 2).

The initial MST contained 179,204 edges in total, and 96% were 1-order. It demon-
strates the power of MST algorithm to determine 1-order edge. However, there were 
also 354 long junctions in the initial MST, which reduced the connectivity. Thus, the 
branches were too short to order the contigs efficiently. After the screening, the numbers 
of errors and higher-order edges were significantly reduced by 2524 and 181, but most of 
the 1-order and 2-order edges were maintained. Meanwhile, all the long junctions were 

Fig. 3  Mean values and distributions of NB and JS at different distances for a bin size of 5000 bp
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removed. The screening algorithm reduced the MST complexity without weakening the 
capability to detect 1-order edges. Additional file 1: Tables S8 and S9 also showed the 
strong correlation of junctions and non-ideal seed contigs. 70.3% of long junctions were 
non-ideal seed contigs, and 88.4% of local graphs around long junctions contained at 
least one non-ideal seed contig.

Effects of the length threshold of seed contigs

For the parameter optimization, we applied SLR-superscaffolder to human Chr19 stLFR 
reads. Compared with those of input contigs assembled by MaSuRCA, the scaffold 
NG50 and NGA50 values were improved by about 316 fold (from 27.5 kb to 8.7 Mb) and 
33 fold (from 26.3 kb to 873.7 kb), with the optimized parameters and the seed length 
threshold of 7000  bp (Additional file  1: Table  S6). In additional tests with simulated 
stLFR datasets, similar improvements were obtained for other model organisms with the 
same parameters (Additional file 1: Table S7). The methods of simulation and assembly 
were described in Additional file 1: Supplementary Note 1.

SLR-superscaffolder’s parameters can be categorized into two groups: those depend-
ent on stLFR read profiling, and those dependent on the contiguity and accuracy of 
input contigs. stLFR profiling is determined by the experimental processes, while the 
accuracy of input contig is unknown for a de novo assembly. Thus, only the effect of 
the input contigs’ contiguity was evaluated by varying the length threshold of seed con-
tigs for the human Chr19 dataset. As shown in Fig. 4, with increasing length threshold, 
the scaffold NG50 monotonically decreased, while NGA50 reached a saturation peak 
between 5 and 10  kb. In terms of major misassemblies, the number of inversion and 
relocation errors monotonically decreased as the length threshold increases. It indicates 
that short seed contigs can enhance the contiguity of scaffolding results but introduce 

Table 2  Statistics of nodes and edges in the MST before and after the screening

Tip 
junction

Long 
junction

Tip node Linear 
node

1-order 
edge

2-order 
edge

High-order 
edge

Error edge

Before 
screen-
ing

1826 354 2758 177,109 172,036 877 613 6441

After 
screen-
ing

1149 0 2430 176,140 172,016 865 432 3917

Fig. 4  Quality of scaffolds assembled by SLR-superscaffolder with different seed contig length thresholds
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more misassemblies. Thus, it is imperative to balance the connectivity and complexity of 
a co-barcoding scaffold graph by tuning the number of short contigs. Although the bal-
ance is not determined only by the length threshold, the scaffold NGA50 saturation peak 
indicates that our tool can achieve a relatively optimal balance.

Effects of the local scaffolding by paired-end information were tested using the same 
dataset (Additional file 1: Table S6). Compared with those of without local scaffolding, 
the local scaffolding constructed 27 more linkages among the input contigs and gen-
erated scaffolds with 6 fewer inversions and 8 fewer relocations. The local scaffolding 
is an efficient way to use the complementarity between paired-end and co-barcoding 
information.

Assembly results by combining stLFR with other sequencing reads

As a standalone scaffolding tool, SLR-superscaffolder can be easily implemented in a 
hybrid assembly strategy, where stLFR and other types of sequencing datasets can be 
used together. In this work, we also tested the hybrid assembling of a combination of 
stLFR and PCR-free NGS reads, as well as a combination of stLFR and ONT reads. In 
the first case, the input assembly (SOAPdenovo scaffolds) consisted of scaffolds assem-
bled by SOAPdenovo2 with both stLFR and PCR-free NGS reads. In the second case, 
the input (ONT contigs) consisted of contigs assembled by Canu with ONT reads. The 
benchmarking results of different SLR scaffolders were listed in Table 3.

For SOAPdenovo scaffolds, SLR-superscaffolder also obtained the longest contiguity 
and the highest accuracy. The scaffold NG50 was improved by 227 fold (from 40.1 kb 
to 9.1 Mb) and NGA50 by 44 fold (34.3 kb to 1.5 Mb). For ONT contigs, all scaffolders 

Table 3  Evaluation summary of assemblies using SOAPdenovo scaffolds and ONT contigs as input 
for HG001

SLR-superscaffolder fragScaff Architect ARKS

Human (SOAPdenovo scaffolds)

 Number of scaffolds (> 1000 bp) 48,278 54,193 79,435 80,400

 Largest scaffold (bp) 35,605,665 59,127,605 796,758 10,897,000

 Total assembled length (bp) 3,115,923,941 3,094,665,921 2,659,717,897 2,713,878,926

 NG50 (bp) 9,113,260 2,346,521 54,245 468,461

 NGA50 (bp) 1,510,911 101,813 44,836 59,899

 Relocation 2373 32,588 1104 20,906

 Inversion 105 1866 39 110

 Translocation 3694 2926 875 4060

 Number of misassemblies 6172 37,380 218 25,076

Human (ONT contigs)

 Number of scaffolds (> 1000 bp) 807 1051 1474 876

 Largest scaffold (bp) 90,148,984 109,245,684 45,826,758 170,045,596

 Total assembled length (bp) 2,829,830,390 2,828,106,943 2,823,722,824 2,823,836,148

 NG50 (bp) 21,779,983 26,579,775 8,806,572 39,604,458

 NGA50 (bp) 1,578,910 1,592,388 1,481,592 1,574,345

 Relocation 4378 4182 3962 4266

 Inversion 64 63 60 61

 Translocation 1575 1453 1383 1607

 Number of misassemblies 6017 5698 5405 5934
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remarkably improved the contiguity, but not the accuracy. SLR-superscaffolder increased 
the NG50 from 6.6  Mb to 21.8  Mb (i.e., 3.3 fold), which was slightly less than ARKS 
(about sixfold) and fragScaff (about fourfold). The largest improvement of NGA50 was 
obtained using fragScaff, and SLR-superscaffolder had a comparable value. One of the 
problems is that the average number of misassemblies of an ONT contig is as high as 3.2, 
although its contig NG50 is large. These contigs with plenty of misassemblies were more 
likely to be screened, and thus the connectivity of the co-barcoding scaffold graph was 
significantly reduced. The above results indicate that the accuracy of input assemblies is 
important to conduct scaffolding with co-barcoding information.

Overall performance

We evaluated the running time of each scaffolder for three inputs on the same com-
putational platform (Intel Xeon CPU E7-4890 v2 2.80 GHz, 60-core, 120 threads, and 
3 Tb RAM), as shown in Fig. 5. All computations were limited to 20 threads. The results 
showed that ARKS had the best overall performance because it adopted a k-mer-based 
mapping strategy to avoid time-consuming pairwise aligning. SLR-superscaffolder ran 
approximately 1.5 fold and 4.3 fold faster than fragScaff and Architect, respectively. As 
listed in Additional file  1: Table  S10, the data preparation step, including stLFR read 
mapping and co-barcoding information assignment, was the most time-consuming 
(averaging 58.3% of the total). The JS calculation was another time-consuming process, 
which could be reduced by random sampling of barcodes using the MinHash algorithm 
[33] (Additional file 1: Table S11). Note that we did not compare the peak memory con-
sumption since the maximal usage depended on the aligners instead of the scaffolders 
themselves.

Conclusions
stLFR sequencing data is a general SLR dataset with irregular insert size paired-end 
fragments and few DNA fragments per barcode. In this work, we have developed SLR-
superscaffolder to employ stLFR co-barcoding information in de novo genome assembly 
with high efficiency. In our scheme, the use of co-barcoding information with long cor-
relation length in global scaffolding is performed before using paired-end information in 
local scaffolding; and the global ordering step (with a lower input contig length require-
ment) is processed prior to the local orienting step. In our tests of the human genome, 

Fig. 5  Histogram of time consumption of four scaffolders (SLR-superscaffolder, fragScaff, Architect, ARKS) for 
three input assemblies (MaSuRCA contigs, SOAPdenovo scaffolds, Canu contigs)
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SLR-superscaffolder achieves several 100-fold scaffold NG50 improvements with high 
accuracy for input assemblies generated by NGS reads. These results demonstrate that 
the co-barcoding information from stLFR libraries can be used to significantly improve 
the quality of draft genomes in de novo assembly.

SLR-superscaffolder is the first SLR scaffolder that provides systematical screening of 
misassembled contigs to reduce the negative effect of these contigs in input assemblies. 
The strong correlation between misassembled contigs and long junctions in the MST of 
the scaffold graph is adopted to detect these contigs in our screening strategy. Compared 
with other SLR scaffolders, SLR-superscaffolder produces longer contiguity and higher 
accuracy for different input assemblies.

As a standalone scaffolder, SLR-superscaffolder improves the quality of assemblies 
generated by other types of libraries, such as standard NGS and single-molecule librar-
ies. The co-barcoding information in other SLR libraries can also be exploited with 
appropriate format conversion, considering the general properties of the algorithm. Fur-
thermore, since our approach is highly modularized, each step in SLR-superscaffolder 
can be separately combined with other types of sequencing datasets, such as single-mol-
ecule or mate-pair libraries, to design a new hybrid strategy in future.

Availability and requirements
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Project home page: https://​github.​com/​BGI-​Qingd​ao/​SLR-​super​scaff​older
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