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Abstract

Background: Drosophila melanogaster has served as a powerful model system for genetic studies of courtship
songs. To accelerate research on the genetic and neural mechanisms underlying courtship song, we have
developed a sensitive recording system to simultaneously capture the acoustic signals from 32 separate pairs of
courting flies as well as software for automated segmentation of songs.

Results: Our novel hardware design enables recording of low amplitude sounds in most laboratory environments.
We demonstrate the power of this system by collecting, segmenting and analyzing over 18 hours of courtship
song from 75 males from five wild-type strains of Drosophila melanogaster. Our analysis reveals previously
undetected modulation of courtship song features and extensive natural genetic variation for most components of
courtship song. Despite having a large dataset with sufficient power to detect subtle modulations of song, we
were unable to identify previously reported periodic rhythms in the inter-pulse interval of song. We provide
detailed instructions for assembling the hardware and for using our open-source segmentation software.

Conclusions: Analysis of a large dataset of acoustic signals from Drosophila melanogaster provides novel insight
into the structure and dynamics of species-specific courtship songs. Our new system for recording and analyzing
fly acoustic signals should therefore greatly accelerate future studies of the genetics, neurobiology and evolution of
courtship song.

Keywords: courtship song, Drosophila, evolution, genetics, multi-channel recording, neurobiology, song segmenta-
tion software

Background
Many animals rely on acoustic signals to communicate
both social and sexual information. Single individuals
can produce highly dynamic signals, even during a single
bout of communication, and social signals, particularly
courtship songs, evolve quickly [1]. What genetic and
neural mechanisms produce such seemingly complex
patterns? Answering this question requires not only
tools for genetic and neural circuit manipulation, but
also sensitive assays to measure and quantify animal
sounds from many individuals rapidly.
Drosophila courtship song has been studied extensively

since Shorey discovered it in 1962 [2]. Among species

that sing, song varies both qualitatively and quantitatively
between species [3-5]. D. melanogaster courting males
usually stand to the side or behind females and produce
song by extending and vibrating one wing at a time.
Singing males alternate between producing trains of
pulses and trains of approximately sinusoidal (‘sine’)
song; these pulse and sine trains are typically concate-
nated into bouts. The Drosophila wing is small relative
to the wavelength of sound it produces by vibration, and
thus the wing produces pressure waves inefficiently. On
the scale of millimeters, which is approximately the dis-
tance between the singing male and the listening female,
the particle velocity component of the sound, however, is
larger, and the Drosophila female detects this sound
component via her feathery arista, which is attached to
the third segment of the antenna [6]. Movement of the
third antennal segment activates mechanosensory neu-
rons housed within the antenna that transmit auditory
information to the brain [7,8].
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Previous investigators have characterized Drosophila
courtship song either through visual or audio recordings
of a limited number of animals and, typically, investiga-
tors performed manual annotation of fly songs (for exam-
ple [3,7,9-11] but see [12-14]). Human annotation has
several obvious problems, including bias, fatigue-induced
errors and the production of small datasets, providing
limited power for statistical inference. In addition, scor-
ing of wing extension in video recordings provides insuf-
ficient resolution to capture even the gross structure of
song, such as the difference between pulse and sine
trains, let alone more subtle characteristics. Many pre-
vious audio recordings have suffered from a low signal-
to-noise ratio (SNR)–due to a combination of suboptimal
electronics, inappropriate microphones, and/or insuffi-
cient soundproofing of the recording chamber–such that
in some studies the lower amplitude components of song
could not be detected reliably [13].
Here, we describe a 32-channel recording system that

provides sufficient SNR to detect most song. This system
can be assembled from standard electronics components
and from simple recording chambers and associated parts,
and we provide detailed instructions for construction and
testing of the apparatus (Additional file 1). We also describe
and provide open-source software that allows automated
segmentation of courtship song. These resources enable
recording and analysis of several orders of magnitude more
courtship song data than has been available previously. We
demonstrate the power of this approach by analyzing over
18 hours of courtship song, including 18,975 song bouts,
from five strains of D. melanogaster, which allowed us to
discover several previously undetected patterns. In addition,
although many previous studies have characterized Droso-
phila song as relatively simple, we found that the songs of
D. melanogaster exhibit extraordinary complexity and
extensive genetic variation among natural strains for almost
every aspect of song.

Results
Hardware
We sought to develop a multi-channel recording system
with sufficient sensitivity to detect Drosophila courtship
songs. Since 1962 [2], multiple hardware combinations
have been developed for recording Drosophila courtship
song (Table S2 in Additional file 2). We reviewed micro-
phone type, amplifier design and chamber size used in
these previous studies to identify elements of successful
components that could be employed in a multiplexed sys-
tem, and we chose to work with pressure-gradient micro-
phones (Figure S1 in Additional file 3). Bennet-Clark
[6,15] emphasized the advantages of detecting Drosophila
song using pressure-gradient microphones (which indir-
ectly detect particle velocity) versus pressure-sensitive
microphones. Because particle velocity is directional,

oblique sounds are attenuated, and because particle velo-
city falls off as 1/r3, the intensity of nearby sound is con-
siderably greater than distant sound. Thus, by using
pressure-gradient microphones, extraneous laboratory
sounds can be reduced significantly with simple shielding.
We have found that the amplitude of the noise detected
by the microphones when the apparatus is placed within
an acrylic box (design provided in Additional file 1) and
then on an air table is indistinguishable from the ampli-
tude of the noise measured within a soundproof chamber.
We designed a custom electronic circuit to power the

microphones and to amplify and filter their output signal
(Figure S2 in Additional file 3), and we designed courtship
chambers to position singing males as close to the micro-
phones as possible (Figure 1 and Figures S3 and S4 in
Additional file 3). We adopted a sloped-floor design [16]
to discourage flies from crawling on the ceiling of the
chamber. Our chamber allows pre-loading of a single male
and single female into either side of a chamber separated
by a sliding septum. Flies can be recovered live after
recording by placing the chamber on a diffusive CO2 pad
to anaesthetize flies.

Software
We developed software for segmenting song, called
FlySongSegmenter (Figure 2), which, at its core, employs
the continuous wavelet transform [17] to detect individual
pulses and multitaper spectral analysis [18] to detect sine
trains. We then compared the automated detection of
pulse and sine events with a sample of manually annotated
recordings (Figure 3). With optimized parameters for
D. melanogaster, wavelet detection of song pulses com-
bined with heuristic rules for winnowing (resulting
in Pulses.IPICull) displayed high sensitivity (Figure 3a, b),
but sometimes relatively low positive predictive values
(Figure 3c), especially for recordings that contained non-
song sounds (such as grooming and jumping). To reduce
the number of false positives detected, we employed a
likelihood-based approach to winnow putative pulses
(resulting in Pulses.ModelCull; see Additional file 3).
Likelihood-based winnowing improved the positive pre-
dictive values with minimal reduction in the sensitivity
(Figure 3b, c). Because of the tradeoff between sensitivity
and positive predictive value in these recordings, all of the
automated outputs therefore had similar overall accuracy
(Figure 3d). After culling with the likelihood model, we
confirmed that the automated outputs produced estimates
of the inter-pulse interval - a key song parameter - that
were similar to those estimated from manually annotated
song (Figure 3g, h).
The sine trains detected by multitaper spectral analysis

were shorter (Student’s t = 5.2, 8 degrees of freedom (df),
P < 0.001) and more numerous (Student’s t = -7.0, 8 df,
P < 0.001; Figure 3e, f) than those scored by manual
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annotation. This confirmed that, although our sample of
manually annotated data came from a relatively small
sample of song, this sample was of sufficient size to
detect systematic biases resulting from automated seg-
mentation. The differences between sine train length and
number may result either from over-splitting of sine
trains by FlySongSegmenter or by over-grouping of sine
trains during manual annotation (Additional file 3). How-
ever, the systematic biases balanced out such that
FlySongSegmenter detected approximately the same
amount of total sine song as manual annotation (Stu-
dent’s t = -1.5, 8 df, P = 0.16; Figure 3g). Thus, FlySong-
Segmenter demonstrates high overall accuracy for
detecting both pulse and sine trains in fly song.

Natural variation in song features
We validated the utility of this platform by collecting and
segmenting 14-minute recordings from each of 88 court-
ing males sampled from five non-mutant, wild-type strains
of D. melanogaster. In our recordings, we detected a
majority of pulses with maximum energy at approximately
220 Hz (Figure 4a, c), the fundamental carrier frequency,
as has been reported previously [19]. Approximately 17%
of pulses had maximum energy at roughly double this fre-
quency, likely reflecting the second harmonic (Figure S5 in
Additional file 3).
We estimated models of pulse shape for each recording

(Figure S5 in Additional file 3). Consistent pulse models
could not be constructed for individuals that produced
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fewer than approximately 100 pulses and these indivi-
duals were thus excluded from further analysis. For the
remaining individuals (N = 75), we detected an average
of 2,418 pulses from each male (SD = 1,731; range, 182
to 7,879). All individuals displayed pulse models with
similar shapes (Figure 4a), although the five strains

displayed significant heterogeneity in pulse carrier fre-
quency (Figure 4c; analysis of variance (ANOVA), F4,68 =
7.01, P < 1e-4).
Different strains also displayed heterogeneity in sine

carrier frequency (Figure 4d; ANOVA, F4,67 = 11.35, P <
1e-6). We observed no significant correlation between
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Figure 2 Outline of the computational analysis performed by FlySongSegmenter. From top to bottom, the noise floor is estimated from
the raw signal. Wavelet analysis is performed to identify putative pulses. We apply two levels of heuristic winnowing, a very conservative
winnow based only on amplitude (Pulses.AmpCull) and a stricter winnow that includes amplitude winnowing and that has been tuned to
D. melanogaster song (Pulses.IPICull); both results are provided as output. To further refine putative pulses, the log likelihood ratio is then
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spectral analysis is applied to masked data (Sines.LengthCull). All of the above steps are performed with a single call to the software and the
software can be parallelized easily on a computer cluster. Modeling software is provided with the package to allow users to generate new pulse
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the average carrier frequencies of pulse and sine trains,
either among strains (compare Figure 4c and 4d), or
across the entire dataset (Table S1 in Additional file 3).
Pulse trains are composed of a series of pulses that are

separated by an IPI, a rapidly evolving component of song
that is important for female choice [3,4,10,20]. The distri-
bution of over 100,000 IPIs over the entire dataset is
skewed to longer IPIs (Figure 4b), as has been noted pre-
viously [10,11]. We discovered that a two-component
Gaussian mixture model fit the data better than most other
simple models (Figure 4b). The mean of the lower Gaus-
sian fit also displayed significant heterogeneity amongst
strains (Figure 4e: ANOVA, F4,61 = 9.54, P < 1e-5).

Temporal dynamics of courtship song
Song bouts often comprise alternating pulse and sine
trains of various lengths (Figure 2 and Additional file 3).

On average, flies that sang more song overall produced
relatively less sine song (Figure 4f; for slope, T = -10.48,
73 df, P < 0.0001). Different strains produced different
proportions of sine versus pulse trains (Figure 4f; analy-
sis of covariance, for intercepts F4,64 = 9.11, P < 0.0001).
We found heterogeneity among strains in both pulse
train length (Figure 4g; ANOVA, F4,68 = 3.63, P < 0.01)
and in sine train length (Figure 4h; ANOVA, F4,70 =
5.08, P = 0.001). Pulse and sine train lengths were
weakly correlated across the entire dataset (rho = 0.47;
Table S1 in Additional file 3).
We estimated all pauses between song bouts (consecu-

tive collections of sine and pulse trains that were separated
by less than 0.5 seconds) and found a wide distribution of
pause durations (Figure 4i). We also examined the distribu-
tions of all pulse train and sine train durations and found
that they, too, displayed broad distributions (Figure 4j, k).
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Figure 3 Comparison of FlySongSegmenter with hand-annotated song. We examined the accuracy of FlySongSegmenter by comparing automated
segmentation with manual segmentation (manual annotation was performed on 60 seconds of data starting at minute 5 of a recording from each of
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Previously, several studies have reported that the inter-
pulse interval exhibits periodicity, with a period of approxi-
mately 55 seconds (or 0.0182 Hz) in D. melanogaster
[9,21-23]. It appears that none of the previous datasets
have been of sufficient size to reliably estimate rhythms on
the scale of minutes [24]. In addition, no previous analysis
has dealt adequately with the fact that the inter-pulse inter-
val is sampled unevenly in time [24]. Our data contain
multiple samples of a length sufficient to rigorously assess

the presence of rhythms. To search for these rhythms, we
used the Lomb-Scargle periodogram [25,26] (Figure 5),
which was developed originally to study astronomical phe-
nomena and is an accepted method for estimating the peri-
odogram of unequally spaced time series [27].
All of the songs displayed significant rhythms in multiple

frequency ranges (Figure 5c, e), but a minority of songs
(29) displayed rhythms with power in the relevant fre-
quency range of 0.016 to 0.022 HZ (P < 0.05; Figure 5e).
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For the songs that displayed significant power in the rele-
vant range, frequencies outside of the relevant range
usually displayed equal or stronger power (Figure 5c, e).
There is, therefore, no compelling signal of periodicity lim-
ited to any particular frequency range for the inter-pulse
interval data in this dataset. To determine whether this test
was sufficiently powered to detect rhythms in the relevant
range, were they to exist, we simulated inter-pulse interval
rhythms of 0.0182 HZ with sampling times taken from our
recorded songs, combined this rhythm with Gaussian noise
of various levels (for example, Figure 5b), and then calcu-
lated the Lomb-Scargle periodograms for these simulated
datasets (Figure 5d, f). Even when the simulated periodicity
was buried in considerable noise, the Lomb-Scargle period-
ogram displayed excellent power to detect periodicity
(Figure 5f). Over the signal-to-noise range of 0.1 to 2
(lower than the SNR for our recordings), our power to
detect significant periodicity between 0.016 and 0.022 HZ
exceeded 0.80 when the amplitude of the simulated peri-
odic signal was at least equal to the variance in inter-pulse
interval (SNR > 1; Figure S10 in Additional file 3).
Although we did not detect previously reported long

rhythms in the inter-pulse interval, we did find other
significant patterns in song. For example, we noticed

that the fundamental frequency of sine trains was highly
variable and appeared to be modulated during song
bouts (Figure 6a). This pattern of sine modulation has
not been noted previously. We used the Lomb-Scargle per-
iodogram to test for long time scale rhythms in sine train
fundamental frequency and we found no evidence for con-
sistent fluctuations on the order of seconds (Figure S7 in
Additional file 3). Our simulations showed that our power
exceeded 0.99 with a SNR of at least 0.1 to detect such
rhythms (Figures S8 and S9 in Additional file 3).
We therefore examined whether sine train fundamental

frequency varied in a consistent manner within song
bouts. We found that sine carrier frequency increases over
the first few sine trains within a song bout (Figure 6b), and
that all five strains display this pattern (Figure S10 in
Additional file 3). We tested whether this phenomenon
arises from a general increase in motor activity during
each song bout - as might be expected from the warming
of an active fly - by examining the within-bout dynamics
of pulse carrier frequencies. Consecutive pulse carrier fre-
quencies are more variable than for sines and they do not
display any general tendency to increase during a song
bout (Figure 6c). If anything, pulse carrier frequency tends
to decline during a song bout. Combined, these results
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suggest that male flies modulate sine fundamental fre-
quency during a song bout and that this modulation is not
driven by simple thermodynamic constraints.
We tested for trends across an entire recording by

measuring the correlation between elapsed time during
the recording and various song parameters. We found
that the average sine train carrier frequency increased
over the course of most recordings, by about 10 to
20 Hz (Figure 6d, e; t-test for equality of correlations on
average with 0, t = 8.97, 74 df, P < 0.0001). In addition,
we found a tendency for bout duration (t = 4.98, 74 df,
P < 0.0001) and sine train duration (t = 3.05, 74 df, P <
0.005) to increase during recordings (Figure 6e). Pre-
vious studies have suggested that females do not use
sine trains to guide mating decisions [28,29]. However,
most previous studies have not used natural sine trains,
and certainly not sine trains that were modulated as we
have observed, in tests of female preference. Our obser-
vation of striking temporal dynamics of sine train carrier
frequency, both within bouts on the order of seconds
and over the course of an entire 14-minute courtship
trial, suggests that it may be fruitful to reexamine the
role of sine song in Drosophila courtship.

Discussion
We have developed hardware and associated software that
allows rapid collection and segmentation of an unprece-
dented amount of courtship song from D. melanogaster.
We have illustrated the power of this system by analyzing
a large sample of song from five wild-type strains. All song
parameters that we have examined display intra-individual,
inter-individual, and inter-strain variation. Almost all
aspects of song display heterogeneity amongst strains.
Because these five strains represent independent isolates
from nature, and because all strains were treated identi-
cally in the laboratory, the variation between the strains
most likely results from genetic differences between strains
[30]. Additionally, separate song features were either
weakly correlated or uncorrelated (Table S1 in Additional
file 3), which suggests that these strains segregate for mul-
tiple genetic variants that can influence each song feature
independently. This observation is consistent with other
studies that have revealed that many loci contribute to
song variation [13,31,32]. These observations are also con-
sistent with the extreme diversity of courtship song found
amongst species of the genus Drosophila [3,4,10].
Previous studies of courtship song have reported a peri-

odic cycling of the inter-pulse interval and that the fre-
quency of this cycling is influenced by mutations at the
period locus [9,23]. Furthermore, this rhythm was reported
to differ between closely related species, at least partly as a
result of natural variation at the period locus [21,22]. The
existence of these rhythms proved to be controversial and
several groups reported that they were unable to detect

the rhythm [33,34]. One hallmark of these previous studies
is that they all involved datasets of a modest size, none sui-
table for estimation of rhythms with periods on the order
of tens of seconds [24]. Furthermore, most studies have
employed spectral analysis techniques that are not appro-
priate for time series data sampled at irregular intervals.
This limitation of classical spectral analysis was overcome
by the development of new approaches by Lomb and Scar-
gle that allow efficient detection of rhythms in irregularly
sampled time series data. In addition, we have generated
datasets where most individuals produced far more than
300 sample points, which, it has been suggested, is the
absolute minimum sample size required to estimate signif-
icant power within a particular spectral range [35]. We did
not detect any evidence for the existence of periodic cycles
of the inter-pulse interval at any frequency (Figure 5). Our
simulations confirmed that our dataset was of sufficient
size to find these rhythms if they existed. We must there-
fore conclude that flies singing in our apparatus do not
produce periodic cycling of the inter-pulse interval and
that this phenomenon is not available to us for further
study.
Given our difficulty in detecting long-term trends in the

inter-pulse interval, we were surprised to find several tem-
poral modulations in sine train carrier frequency. First,
male flies tend to increase the sine carrier frequency over
the first few trains of a song bout, and this effect is specific
to sine trains. Since we found no comparable trend for
changes in pulse frequency, it appears that male flies mod-
ulate the sine carrier frequency independently of physical
constraints on wing vibration. In addition, the inde-
pendent modulation of sine train frequency and pulse fre-
quency suggests that these two modes of song are
produced by different mechanisms. These results contrast
with the proposal of Ewing, who suggested that pulses are
generated by a dampening of sine song [36,37].
We also discovered that male flies modulate sine carrier

frequency over even longer time scales. Over the course of
the entire recording session of 14 minutes, average sine
fundamental frequency tended to increase in most record-
ings (Figure 6d, e). In addition, song bout duration and
sine train duration also displayed linear trends over this
time scale (Figure 6e). Our results indicate that fly song,
and sine song in particular, contains patterns on multiple
time scales. It remains to be seen how much of this varia-
bility is detected and utilized by females for mate
discrimination.
We observed extensive variation in many of the tem-

poral dynamics of song, such as the pauses between
bouts and the lengths of bouts and trains. This temporal
variability in the structure of courtship song contrasts
sharply with the highly stereotyped calling songs of other
insects, such as crickets and grasshoppers [38]. Currently,
it is not clear how the variability in Drosophila courtship
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song is generated at the neural level. Male flies may
switch between two central pattern generators to pro-
duce sine and pulse trains, a mechanism suggested by the
apparently independent genetic variation for sine and
pulse parameters, but we do not know what determines
the length of time spent in each mode. We suspect that
the patterns of sine and pulse trains may be related to
the dynamics of courtship behavior, and in particular to
the interaction of the male and the female, as has been
suggested recently [39].
New transgenic tools available in D. melanogaster pro-

vide the opportunity to manipulate sparse subsets of neu-
rons to interrogate neural networks [40]. Our platform
provides the opportunity to perform a systematic analysis
of the neural basis for courtship song, even for neurons
that contribute only subtle, quantitative aspects to song. In
preliminary studies, we have found that our hardware and
software can be employed, with minor modifications, to
record and analyze song from several other species of
Drosophila. We expect, therefore, that our platform will
accelerate research on the genetic and neural basis for
song within D. melanogaster and also will aid studies on
song evolution.

Methods
Biological materials
Five strains of D. melanogaster were studied: Antigua =
W-22 Antigua 89 from M. Ashburner; Beltsville = Belts-
ville, Missouri from M. Ashburner; CantonS (T. Tully);
Ore-R = W-38 Oregon-R from M. Ashburner; and Taiwan
= 14021-0231.07 from the University of California at San
Diego stock center. Virgin males were collected and aged
for 4 to 6 days. Virgin females at least one day old with
their arista removed were used for recording with virgin
males. Recordings were performed at approximately 25°C
and 50% relative humidity.

Software validation
One minute of song (from minutes 5 to 6 of each record-
ing) was hand-annotated by TS-M using custom MatLab
software (FlySongSegmenterByHand.m) that is part of the
FlySongSegmenter suite. We calculated the sensitivity (num-
ber of hand-annotated pulses found by FlySongSegmenter/
number of annotated pulses) and positive predictive value
(number of hand-annotated pulses found by FlySongSeg-
menter/number of pulses found by FlySongSegmenter). We
also calculated F, the harmonic mean of the sensitivity and
positive predictive value (F = (2 × sensitivity × positive pre-
dictive value)/(sensitivity + positive predictive value)),
where F = 1 implies perfect classification.

Statistical analyses
All statistical analyses were performed in MatLab
R2011b. Differences in sine statistics between segmented

and hand-annotated song were tested using paired, two-
tailed Student’s t tests. Statistical outliers were identified
and removed prior to statistical analysis and plotting
with an iterative Grubb’s test [41,42]. Heterogeneity
amongst strains in most song parameters was tested
using a one-way ANOVA and for the relative amount of
sine to pulse song compared to total song using analysis
of covariance.

Additional methods
Additional information, including complete plans and
instructions for building the hardware, using the soft-
ware, and further details of data analysis, are provided
in Additional files 1, 2, 3, 4, 5, and 6.

Data and software availability
The raw data from all recordings analyzed in the paper are
available as .wav files [43] and the open-source MatLab
software suite FlySongSegmenter is freely available [44].

Additional material

Additional file 1: Parts and instructions for soldering the 32-channel
amplifier for the courtship song recording system. Detailed parts list
and instructions for building and testing the amplifier described in the
paper.

Additional file 2: Prior art and parts and settings used for new
courtship chambers. Table that lists microphones and amplifiers used
previously in Drosophila courtship recording apparatuses and two tables
that list parts and laser settings required to build the courtship chambers
described in the paper.

Additional file 3: Additional methods and additional results.
Description of microphone performance, circuit design, acrylic courtship
chambers, details of pulse and sine detection algorithms, and additional
results.

Additional file 4: Testing and data acquisition software. MatLab
scripts that allow testing the amplifier board during construction and
data collection of the finished apparatus.

Additional file 5: Acrylic cdr files. CorelDRAW files for the laser cutter
to cut all parts used in the apparatus.

Additional file 6: Amplifier pcb and sch files. pcb and sch files that
provide design and detail for custom amplifier board. These files can be
used to order printed circuit boards for the 32-channel amplifier board.
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