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Abstract

Background: Kernel number per spike (KNS) and spike length (SL) are important spike-related traits in wheat variety
improvement. Discovering genetic loci controlling these traits is necessary to elucidate the genetic basis of wheat
yield traits and is very important for marker-assisted selection breeding.

Results: In the present study, we used a recombinant inbred line population with 248 lines derived from the two
founder genotypes of wheat, Bima4 and BainongAK58, to construct a high-density genetic map using wheat 55K
genotyping assay. The final genetic linkage map consists of 2356 bin markers (14,812 SNPs) representing all 21 wheat
chromosomes, and the entire map spanned 4141.24 cM. A total of 7 and 18 QTLs were identified for KNS and SL,
respectively, and they were distributed on 11 chromosomes. The allele effects of the flanking markers for 12 stable
QTLs, including four QTLs for KNS and eight QTLs for SL, were estimated based on phenotyping data collected from
15 environments in a diverse wheat panel including 384 elite cultivars and breeding lines. The positive alleles at
seven loci, namely, QKns.his-7D2-1, QKns.his-7D2-2, QSl.his-4A-1, QSLhis-5D1, QSLhis-4D2-2, QSI.his-5B and QSl.his-5A-2,
significantly increased KNS or SL in the diverse panel, suggesting they are more universal in their effects and are valu-
able for gene pyramiding in breeding programs. The transmission of Bima4 allele indicated that the favorite alleles at
five loci (QKns.his-7D2—1, QSl.his-5A-2, QSLhis-2D1-1, QSLhis-3A-2 and QS his-3B) showed a relatively high frequency or
an upward trend following the continuity of generations, suggesting that they underwent rigorous selection dur-
ing breeding. At two loci (QKns.his-7D2—1 and QSl.his-5A-2) that the positive effects of the Bima4 alleles have been
validated in the diverse panel, two and one kompetitive allele-specific PCR (KASP) markers were further developed,
respectively, and they are valuable for marker-assisted selection breeding.

Conclusion: Important chromosome regions controlling KNS and SL were identified in the founder parents. Our
results are useful for knowing the molecular mechanisms of founder parents and future molecular breeding in wheat.

Keywords: Kernel number per spike, Spike length, QTL, KASP markers

Background

Wheat (Triticum aestivum L.) is a major cereal crop
worldwide. The current yield trend in wheat is insuf-
ficient to meet the future demand of a growing world
population, and wheat yield and total production must be
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and KNS are closely related to spike morphology, which
is primarily determined by spike length (SL), spike-
let density, and fertile floret number. Previous studies
showed that increasing KNS is an effective approach for
wheat yield improvements compared to kernel weight [1,
2], and increasing SL without modification of the spike-
let density can increase KNS and subsequently raise yield
capacity [3]. A positive correlation between SL and yield
was also validated in some previous studies [4]. Besides,
the long spike is often associated with reduced severity
of Fusarium head blight in wheat [5]. Therefore, discover-
ing genetic loci controlling KNS and SL is necessary to
elucidate the genetic basis of wheat yield traits and is very
important for marker-assisted selection (MAS) breeding.

Like other spike-related traits, KNS and SL are con-
trolled by multiple genes and affected by environments.
Quantitative trait loci (QTL) analysis using different
genetic populations and diverse wheat panels provides
an effective method to study the genes governing these
traits. To date, numerous QTLs associated with KNS
have been mapped on nearly all the 21 chromosomes in
wheat, such as two QTLs identified on 2D and 4A [6],
eight QTLs identified on 1A, 1B, 2B, 2D, 3B, 4B, 6A and
7B [7], one QTL identified on 3D [8], one QTL identified
on 4A [9], four QTLs identified on 2A, 4B and 7A [10],
six QTLs identified on 1D, 2A, 2D, 3A, 4D and 6D [11],
three QTLs identified on 1D, 4D and 6B [12], 12 QTLs
identified on 1A, 2D, 3B, 4A, 4B, 5A, 5B, 7A and 7B [13],
and one QTL identified on 7A [14]. Likewise, many pre-
vious studies have proven that almost all the 21 wheat
chromosomes harbored factors affecting SL [3, 10, 15—
21]. Yao et al. [22] reported that approximately 350 QTLs
of SL have been identified currently, and some of them
with relatively large effects were distributed on chro-
mosomes 2D, 3A, 4A, 4B, 5A, 6A, 6B, 7A, 7B, and 7D.
Briefly, because of the complexity of the wheat genome,
although many QTL for KNS and SL have been reported,
common QTLs across different mapping populations
are limited, and few of them are used in practical wheat
breeding.

Founder parents have played particularly crucial
roles in the improvement of wheat worldwide. Many
QTLs or chromosomal regions associated with impor-
tant traits have been found in founder genotypes in
wheat [23-26]. However, the knowledge of the molec-
ular mechanisms for the formation of founder parents
remains unclear. In China, Bima4 is one of the founder
parents that played important roles in wheat breeding,
used widely in the Yellow and Huai River Facultative
Winter Wheat Region between 1950 and 1970 [27]. It
was obtained from the cross between another founder
parent Mazhamai and Quality from the United States.
More than 70 improved cultivars were developed from
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Bima4, and some of them such as Shijiazhuang54,
Jinan2, Beijing8 and Taishanl, had annual maximum
acreages over 667,000ha and were grown for at least
12years. Similarly, BainongAK58 is a famous culti-
var released in 2003 by the Henan Institute of Science
and Technology, and its maximum acreage was over
13,333,333 ha. It was also widely utilized as a crossing
parent in wheat breeding, from which more than fifty
improved cultivars were developed.

In the present study, we used a recombinant inbred
line (RIL) population with 248 lines derived from the
two founder genotypes of wheat, Bima4 and Bainon-
gAK58. The QTL analysis was conducted with a high-
density genetic map by using the developed wheat 55K
genotyping assay to identify QTLs responsible for KNS
and SL. These QTLs detected were further validated in
a diverse wheat panel. Furthermore, we analyzed the
transmission of Bima4 alleles to its derivative descend-
ants, and two and one KASP markers for two important
loci, QKns.his-7D2—1 and QSLhis-5A-2, were devel-
oped. This study is useful for knowing the molecular
mechanisms of founder parents and future molecular
breeding in wheat.

Results

Linkage map construction in the RIL population

Out of 53,063 SNPs in the 55k Infinium chip, 16,628
SNPs were polymorphic between the two parents and
among the RIL population. These 16,628 markers were
divided into 2488 bins. Only one marker was chosen to
represent each bin for the genetic map construction. The
final genetic linkage map consists of 2356 bin markers
(14,812 SNPs) representing all 21 wheat chromosomes.
Of them, 1147 bins include only one SNP marker, and the
remaining comprises two or more SNP markers.

The 2356 bin markers were mapped on 28 linkage maps
(Table 1 and Table S1). Each of the chromosomes 1A, 1D,
2D, 3D, 4D, 5D, and 7D was integrated by two linkage
groups. The entire map spanned 4141.24 cM with six gaps
(>30cM) distributed on chromosomes 2D, 6A, 4D, 5B,
and 7D. The mean of genetic distance among adjacent bin
markers across all chromosomes was 1.76 cM and varied
among 28 linkage groups from 0.71 (1A2) to 5.98 (7D1).
The bin markers mapped on the A genome (37.9%) were
more than those on the B (34.2%) and D (28.0%) genome.
Similarly, most of the mapped markers including bin and
redundant markers were distributed on A (43.0%) and
B genome (36.9%), and only 20.0% of the markers were
mapped on D genome. The number of bin markers on 21
chromosomes ranged from 51 on 1D to 177 on 7D, how-
ever the number of the mapped markers ranged from 168
on 4D to 1479 on 2A.
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Table 1 Distribution of markers in the genetic map developed using the RIL population derived from BainongAK58 x Bima4

Chromosome Group Number of bin marker  Number of mapped Length (cM) cM per
marker bin

marker
1A 1 8 18 24.69 3.09
2 124 920 88.63 0.71
1B 1 73 370 88.96 1.22
1D 1 42 261 137.95 3.28
2 9 41 44.36 493
2A 1 102 1479 193.72 1.90
2B 1 138 765 169.44 1.23
2D 1 90 402 269.98 3.00
2 13 34 61.04 4.70
3A 1 164 994 223.75 1.36
3B 1 119 1218 159.76 1.34
3D 1 10 28 76.02 7.60
2 81 640 195.84 242
4A 1 104 772 171.62 1.65
4B 1 108 1228 140.04 1.30
4D 1 5 10 14.64 293
2 54 158 152.69 2.83
5A 1 165 787 194.44 1.18
5B 1 160 921 209.27 131
5D 1 70 217 26853 3.84
2 17 90 87.20 513
6A 1 55 443 131.77 240
6B 1 103 585 133.25 1.29
6D 1 91 232 192.00 211
7A 1 170 961 226.19 1.33
7B 1 104 385 155.31 149
7D 1 13 61 77.72 598
2 164 792 25246 1.54
Total 28 2356 14,812 414124 1.76

Phenotypic analysis for KNS and SL in the RIL population

These two traits for the RIL populations and the two
parents in the four environments are shown in Table S2.
The SL and KNS showed inconsistency between the
parental lines over environments, indicating strongly
affected by the environment. In the RIL populations,
the KNS and SL showed normal distributions in all the
environments, suggesting the polygenic inheritance of
these traits (Fig. 1). The transgressive inheritance was
found in certain lines for SL and KNS (Fig. 2). The two
traits showed strong correlations with each other in all
environments. The correlation coefficients ranged from
0.86 to 0.96 for SL and from 0.50 to 0.86 for KNS. The
SL had a strong positive correlation with KNS at 0.24
(P<0.0001) (Table 2). The SL and KNS showed high
broad-sense heritability at 0.95 and 0.85, respectively.

QTL detection for KNS and SL in the RIL population

A total of seven QTLs were detected for KNS on chro-
mosomes 3A, 3D, 4A, 5A, and 7D (Table 3 and Fig. 3).
A major stable QTL, Qknus.his-4A, was detected in
all four environments and the average value and
explained 9.78-24.24% of the phenotypic variance.
Qkns.his-5A-2 was identified in three environments
and the average value and explained 3.72-7.01% of
phenotypic variation. The positive alleles of Qkuns.
his-4A and Qkns.his-5A-2 were contributed by Bima4.
The two QTLs, Qkns.his-7D-1 and Qkns.his-7D-2,
were detected in one environment and the average
value, and the positive alleles were contributed by
Bima4 and BainongAKS58, respectively. The remaining
three QTLs, Qkns.his-3A, Qkns.his-3D and Qkns.his-
5A-1, were detected in a single environment, and they
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Fig. 2 Phenotypes of the two parents (Bima4 and BainongAK58) and partial RILs

explain 5.29, 4.22, and 4.01% of the phenotypic vari-

Table 2 Correlations among different environments for SL and .
ance, respectively.

KNS A total of 18 QTLs were detected for SL on chro-
Trait 2017XI 2018XI 2018HU 2019XI Average mosomes 2D, 3A, 3B, 3D, 4A, 4D, 5A, 5B, 5D, 7B,
sL and 7D with phenotypic variations ranging from 2.04
2017X] 100 to 22.31% (Table 3 and Fig. 3). Among them, eight
018X 086° 100 QTLs were detected in a single environment, explain-
2019HU 0.88° 0.88° 100 ing 2.93-4.85% of the phenotypic variance. Two stable
019X 087° 0.92? 0.89° 100 QTLs, Qsl.his-2D1-1 and Qsl.his-5A-2, were detected
Average  0.94° 0,952 0.96° 0.96° 100 in all four environments and the average values, and the
KNS positive alleles were from Bima4. Of these, the major
2017X] 1.00 QTL, Qsl.his-2D1-1, explained 11.03-22.31% of the
018X 0612 100 phenotypic variance. Two QTLs, Qsl.his-4A-1 and Qsl.
2019HU 050° 055° 100 his-5D1, were identified in three environments and the
019X 063° 0.68° 056° 100 average values. They accounted for 3.43-8.21% of the
Average 083 0.84° 0.80° 086 100 phenotypic variance and the positive alleles were con-

tributed by BainongAK58. The two QTLs, Qsl.his-3A-2
and Qsl.his-3B, were detected in three environments
and the average values, and they explained 2.18-3.65%

Average-SL
Average-KNS  0.24°

2 Significance level at 0.0001
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Table 3 Significant QTLs for SL and KNS identified from different environments
Trait QTL Environment Location Left marker Right marker LOD PVE (%) Add
KNS QKns.his-3A 2019XI 58 AX-111799835 AX-109274841 3.98 529 —146
QKns.his-3D2 2019XI 190 AX-109403595 AX-110202442 3.26 4.22 —1.30
QKns.his-4A Average 123 AX-111600193 AX-109332913 18.16 24.24 —2.80
2018HU 123 AX-111600193 AX-109332913 529 9.78 —228
2018XI 122 AX-111508583 AX-109049937 1547 17.97 —266
2017XI 122 AX-111508583 AX-109049937 14.35 19.32 -3.17
2019XI 123 AX-111600193 AX-109332913 12.09 17.68 —2.76
QKns.his-5A-1 2018XI 2 AX-111275827 AX-109926388 3.71 4.01 1.20
QKns.his-5A-2 2019XI 106 AX-109980237 AX-110121838 282 372 —1.24
2017XI m AX-108912268 AX-111514440 540 7.01 —1.86
Average 125 AX-111102726 AX-109876198 467 522 —1.25
2018XI 125 AX-111102726 AX-109876198 6.10 6.51 —153
QKns.his-7D2-1 2018XI 3 AX-110196726 AX-109475040 472 539 —1.40
Average 6 AX-109475040 AX-111094913 3.38 3.82 —1.07
QKns.his-7D2-2 Average 159 AX-108912162 AX-111577597 528 6.11 135
2018XI 159 AX-108912162 AX-111577597 345 3.70 1.16
SL QSlLhis-2D1-1 2017XI 29 AX-111574926 AX-110332825 11.04 11.03 —043
2018HU 30 AX-108836084 AX-109911369 11.07 1112 —0.55
2018XI 37 AX-109911369 AX-111087066 13.95 18.65 —0.62
2019XI 37 AX-109911369 AX-111087066 19.10 22.31 —0.70
Average 37 AX-109911369 AX-111087066 1546 1873 —0.65
QSlhis-2D1-2 2017XI 131 AX-109449257 AX-109246010 413 3.89 0.25
2019XI 134 AX-109449257 AX-109246010 294 2.04 0.21
QSl.his-3A-1 2018HU 53 AX-109844195 AX-111048271 3.88 3.86 —0.32
QSl.his-3A-2 2017XI 103 AX-111618763 AX-110508416 3.90 3.65 —0.25
2019XI 17 AX-111098463 AX-110928333 3.92 2.82 —0.25
Average 116 AX-110962843 AX-111598704 3.09 2.18 —-0.22
QSl.his-3B 2018XI 41 AX-110931375 AX-111509127 344 2.78 —0.24
2019XI 42 AX-109876826 AX-109910758 442 3.3 —0.26
Average 41 AX-110931375 AX-111509127 3.71 2.77 —-0.25
QSlhis-3D2 2017XI 49 AX-109499958 AX-110477646 3.97 3.66 —0.25
QSl.his-4A-1 2019XI 58 AX-108955453 AX-108994889 4.82 343 0.28
2018XI 69 AX-109319707 AX-111268934 9.11 7.69 041
Average 69 AX-109319707 AX-111268934 5.55 4.08 0.31
2017XI 70 AX-110574688 AX-109391536 6.07 5.77 0.31
QSl.his-4A-2 2018XI 99 AX-111537186 AX-111056819 335 2.70 —024
QSl.his-4A-3 2017XI 121 AX-110171938 AX-111508583 4.85 453 —0.29
QSl.his-4D2-1 2018HU 28 AX-111494342 AX-110984743 293 2.83 028
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Table 3 (continued)
Trait QTL Environment Location Left marker Right marker LoD PVE (%) Add
QSl.his-4D2-2 Average 57 AX-110984743 AX-109924587 5.02 10.60 0.51
2018HU 65 AX-110984743 AX-109924587 5.95 1033 0.55
QSlhis-4D2-3 2017XI 89 AX-169337603 AX-111601811 3.95 3.69 0.25
QSlhis-5A-1 2019XI 63 AX-110950060 AX-111172588 358 251 0.23
QSlhis-5A-2 2018HU 94 AX-109622137 AX-111104892 5.08 4.84 —0.37
2018XI 95 AX-110199675 AX-110437938 5.68 4.65 —0.32
2017XI 96 AX-110199675 AX-110437938 846 8.38 —0.38
2019XI 96 AX-110199675 AX-110437938 9.63 7.24 —041
Average 96 AX-110199675 AX-110437938 6.82 5.16 —035
QSlhis-58 2018HU 73 AX-108886889 AX-109842839 459 434 034
2019XI 86 AX-110502620 AX-109068105 301 2.06 021
Average 85 AX-108814349 AX-110502620 339 241 0.23
QSl.his-5D1 2018HU 151 AX-110409786 AX-94969919 511 821 047
2019XI 157 AX-110409786 AX-94969919 3.29 3.97 0.29
2018XI 159 AX-110409786 AX-94969919 3.75 4.75 0.31
Average 156 AX-110409786 AX-94969919 411 5.06 0.34
QSl.his-7B 2017XI 49 AX-109478552 AX-110460118 2.94 271 —0.21
QSlhis-7D2 2018XI 144 AX-111038335 AX-110829820 342 2.68 0.24
2017XI 144 AX-111038335 AX-110829820 282 255 021

of phenotypic variation and the positive alleles were
from Bima4.

Validation of the QTL effects in the diverse wheat panel

The allele effects of the flanking markers for 12 stable
QTLs, including four QTLs for KNS and eight QTLs for
SL, were estimated based on phenotyping data in the
diverse wheat panel. T-test analyses were used to com-
pare the two different allele groups in the same locus
(P<0.05). For each QTL investigated, the QTL-associ-
ated SNP markers for which differences of phenotypic
values showed significance in most environments in the
diverse wheat panel were analyzed (Table 4). For KNS,
three QTL-associated SNP markers of QKnus.his-7D2-1
were analyzed. The marker AX-110196726 showed
significance in 14 environments in the diverse wheat
panel, while the other two markers (AX-109475040 and
AX-111094913) showed a significant difference of KNS
only in six environments, indicating that the former
was closer to this QTL compared to the latter. The posi-
tive allele of AX-110196726 contributed by Bima4 had a
more KNS than BainongAK58 allele in the diverse wheat

panel. Similarly, two QTL-associated SNP markers (AX-
108912162 and AX-111577597) of QKns.his-7D2-2 were
analyzed. The positive alleles contributed by Bainon-
gAK58 showed significant across all 15 environments
more KNS at 5.17 and 4.85 than the Bima4 alleles at these
two loci in the diverse wheat panel, respectively. In addi-
tion, among six QTL-associated SNP markers of QKus.
his-5A-2 where the favourable alleles were from Bima4,
four showed significant differences of KNS in 15 environ-
ments, respectively. At the same time, the effects on KNS
were inverse among them, i.e., the Bima4 alleles showed
negative effects at AX-109980237 and AX-110121838,
but positive effects at AX-111102726 and AX-109876198.
In the same way, of four QTL-associated SNP mark-
ers of QKuns.his-4A, two markers (AX-111508583 and
AX-109332913) showed significant differences of KNS
only in 6 environments respectively. At the same time,
the effects on KNS were inverse between them.

For SL, six and two QTL-associated SNP markers were
analyzed for QSLhis-4A-1 and QSI.his-5D1, respectively.
Only AX-108955453 and AX-110409786 had signifi-
cant differences of SL in 12 environments in the diverse
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Fig. 3 The genetic map of 11 linkage groups and QTL analysis for KNS (red) and SL (green) in the RIL population
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wheat panel separately, and the positive alleles contrib-
uted by BainongAK58 increased 0.52cm and 0.33cm SL
across these two loci, respectively. For QSILhis-4D2-2
and QSLhis-5B, two and four QTL-associated SNP mark-
ers were analyzed, respectively. Significant differences
of SL were found at AX-109924587 and AX-108886889
in 15 and 10 environments in the diverse wheat panel,
respectively, and the positive alleles from BainongAK58
increased 0.46cm and 0.31cm SL across these two loci,
respectively. Four QTL-associated SNP markers of QSL
his-5A-2 were analyzed. Two markers (AX-109622137
and AX-110199675) showed significant differences of SL
in 14 and 13 environments in the diverse wheat panel,
respectively, and the positive alleles from Bima4 had a
higher SL than BainongAK58 alleles. In addition, four
QTL-associated SNP markers of QSLhis-3A-2 and QSL
his-3B were analyzed, respectively. Only AX-111618763
and AX-110931375 showed significant differences of
SL in 8 and 12 environments separately, while the posi-
tive alleles obtained from Bima4 across the two loci were
unfavorable in the diverse wheat panel. Likewise, of five
QTL-associated SNP markers of QS/.his-2D1-1 analyzed,
two had significant differences of SL in 15 environments,
whereas the positive alleles from Bima4 across the two
loci were unfavorable in the diverse wheat panel.

Tracking of Bima4 allele in its derivatives and development
of KASP markers

Of the 12 stable QTLs analyzed above, the positive alleles
for 7 QTLs including 3 QTLs of KNS and 4 QTLs of SL
were contributed by Bima4 in the RIL population. The
transmission of Bima4 alleles in the QTL-associated
SNP markers was determined using its 70 descendants.
Among the seven QTLs, the transmission of Bima4
alleles at five loci (QKwns.his-7D2—-1, QSLhis-5A-2, QSI.
his-2D1-1, QSLhis-3A-2, and QSl.his-3B) to its deriva-
tive descendants showed a relatively high frequency or
an upward trend following the continuity of generations.
For example, the Bima4 allele at the QTL-associated SNP
marker (AX-110196726) of QKns.his-7D2—1 showed an
upward trend following the continuity of generations
(Fig. 4A). The Bima4 alleles at two QTL-associated SNP
markers (AX-109622137 and AX-110199675) of QSL
his-5A-2 also presented a relatively high frequency or
an upward trend following the continuity of genera-
tions (Fig. 4A). For these two QTLs, the positive effects
of Bima4 alleles have been validated in the diverse wheat
panel. Furthermore, two flanking SNP (AX-110945813
and AX-111490337) of QKns.his-7D2-1, which were
located in the same bin with AX-110196726 and the
physical distances between these two markers and
AX-110196726 were only 0.11 Mb and 0.20 Mb, were suc-
cessfully converted to kompetitive allele-specific PCR
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(KASP) markers (Table 5). Likewise, a KASP marker was
developed from the flanking SNP (AX-108964722) of
QSLhis-5A-2, which were located in the same bin with
AX-109622137 and the interval between them was only
1.57 Mb. Similarly, for the three SL QTLs (QS.Lhis-2D1-1,
QSLhis-3A-2, and QSl.his-3B), the Bima4 alleles at four
markers (AX-110332825, AX-108836084, AX-111618763,
and AX-110931375) showed a high frequency in its four
derivate generations, respectively (Fig. 4B). In addition,
for QKns.his-4A, the Bima4 allele showed a relatively
high frequency (100-80.0%) in its four derivate gen-
erations at Ax-109332913, but a low frequency (30.0%)
across all derivatives at the other marker AX-111508583
(Fig. 4C). A similar result could be observed for QKus.
his-5A-2, e.g., the Bima4 alleles showed a high fre-
quency or an upward trend following the continu-
ity of generations at two markers (AX-109980237 and
AX-110121838) but had a low frequency (50.0%) across
all derivatives at another two markers (AX-111102726
and AX-109876198) (Fig. 4D).

Discussion

Comparison of the QTLs identified for KNS and SL

with previous studies

Generally, the major QTLs consistent over environ-
ments may play a key role in modulating the agronomic
traits of wheat cultivars and have great value for MAS in
breeding programs. Based on genetic marker sequence
flanking for KNS and SL QTLs and the genome
sequence from Chinese Spring wheat (IWGSC V1.0)
(http://www.wheatgenome.org/), physical positions
of these stable QTLs detected in our study were com-
pared with those reported previously. In the present
study, four major QTLs, Qkns.his-4A, Qkns.his-5SA-2,
Qkns.his-7D2—1 and Qkns.his-7D2-2, were identified
for KNS. Of these, the locus Qknus.his-4A in the inter-
val 122.03-122.24 cM on 4A was identified in four envi-
ronments and the average value, and it was located in
the interval 642.37-672.88 Mb. Using a 660K wheat
SNP array, Cui et al. [28] identified a major stable QTL,
qKnps-4A, for KNS in the interval 680.40-683.64 Mb.
Gao et al. [29] detected a QTL, QKNS.caas-4AL, in
the interval 626.32-660.99 Mb using a 90 K wheat SNP
array. Kirigwi et al. [9] identified two simple sequence
repeat (SSR) loci, Xwmc89 and Xwmc420, related to
KNS at positions 515.85Mb and 538.22 Mb, respec-
tively. There were also some other reported QTLs for
KNS on 4A in previous studies [6, 13, 30]. Neverthe-
less, further research is needed to identify whether
these genes are identical. Qkns.his-5A-2, mapped in
three environments and the average value in the inter-
val 106.50—125.16cM on 5A in the present study, was
located in the interval 549.34—572.81 Mb, whereas only


http://www.wheatgenome.org/

Xu et al. BMC Plant Biology (2022) 22:146

Page 12 of 16

Frequency
o
-2
1

—o— AX-110196726
—o— AX-109622137
—o— AX-110199675

T T T T
1st 2nd 3rd 4th

Generation

C

‘\\/

Frequency
o
o
1

—o— AX-109332913
—— AX-111508583

0.0

T T T
2nd 3rd 4th

Generation

1
1st

Fig. 4 The frequency of Bima4-derived alleles of SNP markers related to the KNS or SL QTLs in four different generations

1.2 B
0.9
>
[*]
&
S 0.6
g
fras —e— AX-110332825
0.3+ - AX-111618763
-e— AX-110931375
0.0 . : . — -+ AX-108836084
1st 2nd 3rd 4th
Generation
129D
0.9
>
Q
]
S 0.6
o
et —e— AX-109980237
0.3 - AX-110121838
o AX-111102726
0.0 . ! . . —e— AX-109876198
1st 2nd 3rd 4th
Generation

a minor QTL for KNS reported by Wang et al. [13] in
a single environment in marker interval Xgwm126-
Xgwm291 on 5A positioned in the interval 671.39—
698.19 Mb, indicating that Qkns.his-5A-2 is likely to be
a new KNS QTL. Likewise, Qkns.his-7D2—1 and Qkuns.
his-7D2-2, mapped in the 2018XI environment and the
average values in the interval 3.00-6.00cM and 159 cM
on 7D in the present study separately, were located
in the interval 4.39-7.45Mb and 526.36-530.75 Mb,
respectively. There were also some other reported
QTLs for KNS on 7D using SSR or RFLP markers [6,
31], but these markers could not be obtained or pre-
cisely located in the reference genome. So, we cannot
determine whether the loci were nearby or identical
with our results or not.

Of 18 QTLs for SL identified in the present study, 10
were detected in at least two environments. Of these,
Qsl.his-2D1-1 was identified in all four environments

Table 5 Information of the KASP markers developed in this study

and the average value. The locus Qslhis-2D1-1 at the
interval 29.00-37.00cM explained 11.03-22.31% of
the phenotypic variance and was located on 2D in the
interval 13.25-36.89 Mb. Wu et al. [32] identified an SL-
associated gene, QSpl.nau-2D, near position 23.02 Mb.
Chai et al. [33] identified two QTLs (QPht/Sl.cau-2D.1
and QPht/Sl.cau-2D.2) with pleiotropic effects on plant
height and SL. QPht/Sl.cau-2D.1 is a novel QTL located
between SNP makers BS00022234 51 and BobWhite_
rep_c63957_1472 near position 20.77 Mb, whereas QPht/
Sl.cau-2D.2 was located on the same genetic interval
of Rht8. In addition, Sourdille et al. [15], Kumar et al.
[10] and Suenaga et al. [16] identified one SSR locus,
Xgwm?261, associated with SL on 2D at position 19.6 Mb.
The marker Xgwm?261 is linked to the dwarf gene RAt8.
Some previous studies [34-36] indicated that RAt8
does not affect SL, but contrasting with other recent
studies showing that RAt8 introgression decreased SL

QTL KASP marker Primer sequence
FAM VIC Common
QKns.his-7D2-1  KASP-AX-110945813  GTTCATTTTTCTCAGGGTTTGATG GTTCATTTTTCTCAGGGTTTGATG AAGCAGCCATGTCAGCTTCTCCTTA

TATG
KASP-AX-111490337 CGTCAACTCGAGCTGTATTGTT

QSlhis-5A-2 KASP-AX-108964722 ACTCGTTTTTGTTTCGGCGGCAA

TATC
CGTCAACTCGAGCTGTATTGTC
ACTCGTTTTTGTTTCGGCGGCAG

ACGGTGCTGCATCATTTGGACACAA
CGAGAGTGGTACTACCGTCCAAAAT
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with constant spikelet number [37]. Therefore, further
research is needed to identify whether Qsl.his-2D1-1 is
nearby or identical with RAt8.

In the present study, Qslhis-5A-2 was identified in
all four environments and the average value. It was at
the interval 94.00-96.00cM explained 4.65-8.38% of
the phenotypic variance and was located on 5A in the
interval 506.65-524.73 Mb. Fan et al. [38] identified an
SL-associated gene, gSI-5A.3, in the interval 478.65—
541.29 Mb. Kumar et al. [10] identified an SSR locus,
Xgwml86, related to SL on 5A at position 471.71 Mb.
Cui et al. [3] detected two QTLs related to SL on 5A at
positions 444.92 and 682.71 Mb, respectively. In addition,
Liu et al. [21] found an SNP maker, IAAV8258, related to
SL on 5A at position 572.84 Mb. In our study, the locus
Qsl.his-5D1, which accounted for 3.97-8.21% of the phe-
notypic variance and was identified in three environ-
ments and the average value at the interval 151-156 cM,
was located on 5D1 in the interval 446.80-475.31 Mb.
At a similar location to Qslhis-5D1, marker Xgwm182
(439.22 Mb) on 5D affecting SL was reported by Kumar
et al. [10]. Deng et al. [20] also reported a QTL, QSl.sdau-
5D, linked to SL in marker interval Xbarc1097-Xcfd8 on
5D positioned in the interval 287.41-396.41 Mb.

QTL effects in the diverse wheat panel

In this study, we conducted the allelic analysis based on
phenotyping data collected from 15 environments in
the diverse wheat panel. As the result showed, the posi-
tive alleles of QKwus.his-7D2—1, QKns.his-7D2-2, QSLhis-
4A-1, QSLhis-5D1, QSLhis-4D2-2, QSl.his-5B, and QSI.
his-5A-2 significantly increased KNS or SL in the diverse
panel, suggesting that they are more universal in their
effects. These important loci were very beneficial to pyr-
amid breeding in wheat. On the other hand, the positive
alleles of QSILhis-2D1-1, QSLhis-3A-2, and QSLhis-3B in
the RIL population were unfavorable in the diverse wheat
panel, indicating they may be population-specific QTL. In
addition, for QKus.his-5A-2 where the favorable allele was
obtained from Bima4 in the RIL population, the Bima4
alleles showed negative effects at two loci (AX-109980237
and AX-110121838), but positive effects at another two
loci (AX-111102726 and AX-109876198) in the diverse
wheat panel. QKuns.his-5A-2 was mapped at the interval
106.00-125.00cM and the physical distance between the
marker AX-110121838 (549336395) and AX-111102726
(572237027) reached 22.90Mb. These results indicated
that there may be a great distance between these flanking
markers and the peak markers for QKns.his-5A-2.

Transmission of Bima4 alleles to its derivative descendants
Bima4 possesses many superior agronomic traits, espe-
cially high resistance to stripe rust, and it has played a
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crucial role in Chinese wheat breeding and production.
In this study, the transmission of Bima4 alleles which
showed positive effects in the RIL population at five loci
(QKns.his-7D2-1, QSl.his-5A-2, QSLhis-2D1-1, QSI.
his-3A-2, and QSLhis-3B) to its derivative descendants
showed a relatively high frequency or an upward trend
following the continuity of generations, suggesting that
they underwent rigorous selection during breeding.
These important loci in Bima4 had a great effect on the
improvement of wheat breeding and should be stud-
ied intensively. Our results also accorded with previous
reports by Guo et al. [23], Li et al. [25], Russell et al. [39],
Pestsova and Roder [24] and Sjakste et al. [40], who found
that the alleles selected preferentially in progeny were
associated with advantageous traits. More importantly,
the positive effects of the Bima4 alleles at these two loci
QKns.his-7D2-1 and QSLhis-5A-2 have been validated
in the diverse panel. We further developed two and one
KASP markers for these two loci, which are valuable
for MAS breeding. Similarly, a few KASP markers were
developed in some studies for yield-related traits such as
thousand kernel weight [41], grain length [42], productive
tiller and fertile spikelet numbers [43], and plant height,
SL, and total spikelet number per spike [26]. Compared
with conventional molecular markers such as SSR, these
KASP markers are more accurate and high-throughput,
which can greatly improve the speed and efficiency of
genomic selection for MAS breeding [44, 45].

Conclusions

A high-density genetic map, consisting 2356 bin markers
(14,812 SNPs) and spanning 4141.24cM, was constructed
using the wheat 55K genotyping assay in the RIL popula-
tion with 248 lines derived from the two founder geno-
types of wheat, Bima4 and BainongAKS58. A total of seven
and 18 QTLs were identified for KNS and SL, respectively,
and they were distributed on 11 chromosomes. The allele
effects of the flanking markers for 12 stable QTLs including
four QTLs for KNS and eight QTLs for SL were estimated
based on phenotyping data collected from 15 environments
in a diverse wheat panel including 384 elite cultivars and
breeding lines. The positive alleles at seven loci significantly
increased KNS or SL in the diverse panel, suggesting that
they are more universal in their effects and are valuable
for gene pyramiding in breeding programs. The transmis-
sion of the Bima4 alleles indicated that the favorite alleles
at five loci showed a relatively high frequency or an upward
trend following the continuity of generations, suggesting
that they underwent rigorous selection during breeding.
The positive effects of the Bima4 alleles at two loci QKuws.
his-7D2—1 and QSLhis-5A-2 have been validated in the
diverse panel, and two and one KASP markers were devel-
oped for these two loci. Our results are useful for knowing
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the molecular mechanisms of founder parents and future
molecular breeding in wheat.

Methods

Plant materials

The QTL mapping population containing 248 RILs (F)
were derived from the F, population of the cross Bainon-
gAK58 x Bima4 by the single seed descent method. Bima4
is both an important founder genotype and a widely
grown cultivar with high yield potential and wide environ-
mental adaptability. BainongAK58 has many important
traits such as lodging resistance, disease resistance, and
yield potential. A diverse wheat panel containing 384 elite
cultivars and breeding lines was used for QTL validation
in this study, and detailed information was described in Li
et al. [46]. Seventy cultivars derived from Bima4 were also
included (Table S3), and there are 12, 35, 18, and 5 acces-
sions in the first, second, third, and fourth generations of
the derivatives, respectively. Seeds of all accessions were
provided by the National Crop Gene Bank, Chinese Acad-
emy of Agricultural Sciences, Beijing.

Field trials and data analysis

Field experiments for the RIL population were performed
at Xinxiang (117.17°E, 40.69°N) in 2017, 2018 and 2019
(2017XI, 2018XI and 2019XI) and Huixian (116.41°E,
39.91°N) in 2018 (2018HU) in Henan province in a ran-
domized block design. Thirty seeds for each line were
evenly planted in two rows of 2m in length and 25cm
between rows. The main spikes of at least 6 plants in each
plot were measured to investigate the SL and KNS when
ripening. Broad-sense heritability across different envi-
ronments was calculated based on the ANOVA model as
described by Wu et al. [47].

The diverse wheat panel was planted in randomized
complete blocks with two or three replicates in five major
wheat ecological regions of China in the 2007, 2008,
and 2009 planting seasons as described previously [46],
including Yangling (108.08°E, 34.27°N) in Shaanxi Prov-
ince, Tai’an (117.09°E, 36.21°N) in Shandong Province,
Shijiazhuang (114.52°E, 38.05°N) in Hebei Province,
Chengdu (104.08°E, 30.66°N) in Sichuan Province, and
Yangzhou (119.42°E, 32.40°N) in Jiangsu Province. Two
hundred seeds for each cultivar were evenly planted in
five rows 2m long and spaced 30cm apart. The SL and
KNS traits were assessed from 10 spikes randomly sam-
pled from the centre of each plot before harvesting.

SNP genotyping, linkage map construction and QTL
detection

The RIL lines and two parents were genotyped with the
high-density Illumina Infinium iSelect 55K SNP array by
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China Golden Marker (Beijing, China). The diverse wheat
panel was also genotyped using the same SNP array [46].
After excluding the monomorphic markers in the RIL
population, markers retained were analyzed using the
BIN function of IciMapping 4.2 (http://www.isbreeding.
net) based on their segregation patterns with the param-
eters of “Missing Rates” and “Distortion Value” being set
as 20 and 0.001, respectively. Only one marker with the
least “Missing Rate” was chosen to represent each bin
for constructing genetic maps and QTL mapping in this
study. Linkage analysis was performed with IciMapping
4.2 using the default mapping function, and the resulting
genetic map was displayed with MapChart v2.2 (http://
www.biometris.nl/uk/Software/MapChart/). QTLs for
SL and KNS in each environment and the average values
across all environments were detected using the inclusive
composite interval mapping (ICIM) function of IciMap-
ping 4.2 and LOD score values >2.5.

QTL validation and development of KASP markers

For certain stable QTLs identified for SL and KNS in the
RIL population, the QTL-associated flanking markers
were validated using the diverse wheat panel. Further-
more, of the stable QTLs analyzed at which the positive
alleles were contributed by Bima4 in the RIL population,
the transmission of Bima4 alleles at the QTL-associated
SNP markers were also determined using its 70 descend-
ants. SNP markers highly associated with a specific QTL
were selected and converted to KASP markers.
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