ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Improved In Vitro and In Vivo Biocompatibility of Graphene Oxide through Surface Modification: Poly(Acrylic Acid)-Functionalization is Superior to PEGylation

View Author Information
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
Department of Urology, The Second Hospital of Tianjin Medical University, Tianjin Institute of Urology, Tianjin 300211, China
§ Research Center of Biomedical Engineering, Department of Biomaterials, College of Materials, Xiamen University, Xiamen 361005, China
College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300071, China
*Tel: 8610-62849330. E-mail: [email protected]
Cite this: ACS Nano 2016, 10, 3, 3267–3281
Publication Date (Web):February 8, 2016
https://doi.org/10.1021/acsnano.6b00539
Copyright © 2016 American Chemical Society

    Article Views

    5373

    Altmetric

    -

    Citations

    319
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    The unique physicochemical properties of two-dimensional (2D) graphene oxide (GO) could greatly benefit the biomedical field; however, recent research demonstrated that GO could induce in vitro and in vivo toxicity. We determined the mechanism of GO induced toxicity, and our in vitro experiments revealed that pristine GO could impair cell membrane integrity and functions including regulation of membrane- and cytoskeleton-associated genes, membrane permeability, fluidity and ion channels. Furthermore, GO induced platelet depletion, pro-inflammatory response and pathological changes of lung and liver in mice. To improve the biocompatibility of pristine GO, we prepared a series of GO derivatives including aminated GO (GO-NH2), poly(acrylamide)-functionalized GO (GO-PAM), poly(acrylic acid)-functionalized GO (GO-PAA) and poly(ethylene glycol)-functionalized GO (GO-PEG), and compared their toxicity with pristine GO in vitro and in vivo. Among these GO derivatives, GO-PEG and GO-PAA induced less toxicity than pristine GO, and GO-PAA was the most biocompatible one in vitro and in vivo. The differences in biocompatibility were due to the differential compositions of protein corona, especially immunoglobulin G (IgG), formed on their surfaces that determine their cell membrane interaction and cellular uptake, the extent of platelet depletion in blood, thrombus formation under short-term exposure and the pro-inflammatory effects under long-term exposure. Overall, our combined data delineated the key molecular mechanisms underlying the in vivo and in vitro biological behaviors and toxicity of pristine GO, and identified a safer GO derivative that could be used for future applications.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acsnano.6b00539.

    • Characterization properties, cytotoxicity assay, membrane permeability assay, Ca2+ flux assay, membrane fluidity assay, survival rate and body weight change, complete blood count analysis, histological assays, Western blot analysis, biochemical analysis and proteins identification information. (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 319 publications.

    1. Arun Kumar Manoharan, Mohamed Ismail Kamal Batcha, Shanmugam Mahalingam, Balwinder Raj, Junghwan Kim. Recent Advances in Two-Dimensional Nanomaterials for Healthcare Monitoring. ACS Sensors 2024, 9 (4) , 1706-1734. https://doi.org/10.1021/acssensors.4c00015
    2. Hazel Lin, Tina Buerki-Thurnherr, Jasreen Kaur, Peter Wick, Marco Pelin, Aurelia Tubaro, Fabio Candotto Carniel, Mauro Tretiach, Emmanuel Flahaut, Daniel Iglesias, Ester Vázquez, Giada Cellot, Laura Ballerini, Valentina Castagnola, Fabio Benfenati, Andrea Armirotti, Antoine Sallustrau, Frédéric Taran, Mathilde Keck, Cyrill Bussy, Sandra Vranic, Kostas Kostarelos, Mona Connolly, José Maria Navas, Florence Mouchet, Laury Gauthier, James Baker, Blanca Suarez-Merino, Tomi Kanerva, Maurizio Prato, Bengt Fadeel, Alberto Bianco. Environmental and Health Impacts of Graphene and Other Two-Dimensional Materials: A Graphene Flagship Perspective. ACS Nano 2024, 18 (8) , 6038-6094. https://doi.org/10.1021/acsnano.3c09699
    3. Yuudai Iwai, Yuki Imamura, Manabu Nakaya, Miki Inada, Benjamin Le Ouay, Masaaki Ohba, Ryo Ohtani. Janus-Type Mixed-Valent Copper–Cyanido Honeycomb Layers. Inorganic Chemistry 2023, 62 (45) , 18707-18713. https://doi.org/10.1021/acs.inorgchem.3c03100
    4. Lingling Ou, Xiner Tan, Shijia Qiao, Junrong Wu, Yuan Su, Wenqiang Xie, Nianqiang Jin, Jiankang He, Ruhui Luo, Xuan Lai, Wenjing Liu, Yanli Zhang, Fujian Zhao, Jia Liu, Yiyuan Kang, Longquan Shao. Graphene-Based Material-Mediated Immunomodulation in Tissue Engineering and Regeneration: Mechanism and Significance. ACS Nano 2023, 17 (19) , 18669-18687. https://doi.org/10.1021/acsnano.3c03857
    5. Yongyi Wei, Hainan Sun, Bing Yan. Oxidized Graphene Alleviates Benzo[a]pyrene-Induced Cytotoxicity by Suppressing Mitochondrial Apoptosis Pathways. ACS Sustainable Chemistry & Engineering 2023, 11 (5) , 1917-1927. https://doi.org/10.1021/acssuschemeng.2c06673
    6. Yekkuni L. Balachandran, Wei Wang, Hongyi Yang, Haiyang Tong, Lulu Wang, Feng Liu, Hongsong Chen, Kai Zhong, Ye Liu, Xingyu Jiang. Heterogeneous Iron Oxide/Dysprosium Oxide Nanoparticles Target Liver for Precise Magnetic Resonance Imaging of Liver Fibrosis. ACS Nano 2022, 16 (4) , 5647-5659. https://doi.org/10.1021/acsnano.1c10618
    7. Feng Wu, Yaqian Du, Jiani Yang, Boyang Shao, Zhensheng Mi, Yuanfei Yao, Ying Cui, Fei He, Yanqiao Zhang, Piaoping Yang. Peroxidase-like Active Nanomedicine with Dual Glutathione Depletion Property to Restore Oxaliplatin Chemosensitivity and Promote Programmed Cell Death. ACS Nano 2022, 16 (3) , 3647-3663. https://doi.org/10.1021/acsnano.1c06777
    8. Salma Achawi, Jérémie Pourchez, Bruno Feneon, Valérie Forest. Graphene-Based Materials In Vitro Toxicity and Their Structure–Activity Relationships: A Systematic Literature Review. Chemical Research in Toxicology 2021, 34 (9) , 2003-2018. https://doi.org/10.1021/acs.chemrestox.1c00243
    9. Juan Ma, Xinlei Liu, Yi Yang, Jiahuang Qiu, Zheng Dong, Quanzhong Ren, Yi Y. Zuo, Tian Xia, Wei Chen, Sijin Liu. Binding of Benzo[a]pyrene Alters the Bioreactivity of Fine Biochar Particles toward Macrophages Leading to Deregulated Macrophagic Defense and Autophagy. ACS Nano 2021, 15 (6) , 9717-9731. https://doi.org/10.1021/acsnano.1c00324
    10. Sedigheh Borandeh, Vahid Alimardani, Samira Sadat Abolmaali, Jukka Seppälä. Graphene Family Nanomaterials in Ocular Applications: Physicochemical Properties and Toxicity. Chemical Research in Toxicology 2021, 34 (6) , 1386-1402. https://doi.org/10.1021/acs.chemrestox.0c00340
    11. Ji-Seon Lee, Seongchan Kim, Sungchul Kim, Kwangseog Ahn, Dal-Hee Min. Fluorometric Viral miRNA Nanosensor for Diagnosis of Productive (Lytic) Human Cytomegalovirus Infection in Living Cells. ACS Sensors 2021, 6 (3) , 815-822. https://doi.org/10.1021/acssensors.0c01843
    12. Mounika Gosika, Vasumathi Velachi, M. Natália D. S. Cordeiro, Prabal K. Maiti. Covalent Functionalization of Graphene with PAMAM Dendrimer and Its Implications on Graphene’s Dispersion and Cytotoxicity. ACS Applied Polymer Materials 2020, 2 (8) , 3587-3600. https://doi.org/10.1021/acsapm.0c00596
    13. Hélène Cazier, Carole Malgorn, Nathalie Fresneau, Dominique Georgin, Antoine Sallustrau, Céline Chollet, Jean-Claude Tabet, Stéphane Campidelli, Mathieu Pinault, Martine Mayne, Frédéric Taran, Vincent Dive, Christophe Junot, François Fenaille, Benoit Colsch. Development of a Mass Spectrometry Imaging Method for Detecting and Mapping Graphene Oxide Nanoparticles in Rodent Tissues. Journal of the American Society for Mass Spectrometry 2020, 31 (5) , 1025-1036. https://doi.org/10.1021/jasms.9b00070
    14. Yakun Wu, Wenya Feng, Rui Liu, Tian Xia, Sijin Liu. Graphene Oxide Causes Disordered Zonation Due to Differential Intralobular Localization in the Liver. ACS Nano 2020, 14 (1) , 877-890. https://doi.org/10.1021/acsnano.9b08127
    15. M. Mugnano, G. C. Lama, R. Castaldo, V. Marchesano, F. Merola, D. del Giudice, A. Calabuig, G. Gentile, V. Ambrogi, P. Cerruti, P. Memmolo, V. Pagliarulo, P. Ferraro, S. Grilli. Cellular Uptake of Mildly Oxidized Nanographene for Drug-Delivery Applications. ACS Applied Nano Materials 2020, 3 (1) , 428-439. https://doi.org/10.1021/acsanm.9b02035
    16. Tingting Du, Guoliang Shi, Fangfei Liu, Tong Zhang, Wei Chen. Sulfidation of Ag and ZnO Nanomaterials Significantly Affects Protein Corona Composition: Implications for Human Exposure to Environmentally Aged Nanomaterials. Environmental Science & Technology 2019, 53 (24) , 14296-14307. https://doi.org/10.1021/acs.est.9b04332
    17. Błażej Scheibe, Jacek K. Wychowaniec, Magdalena Scheibe, Barbara Peplińska, Marcin Jarek, Grzegorz Nowaczyk, Łucja Przysiecka. Cytotoxicity Assessment of Ti–Al–C Based MAX Phases and Ti3C2Tx MXenes on Human Fibroblasts and Cervical Cancer Cells. ACS Biomaterials Science & Engineering 2019, 5 (12) , 6557-6569. https://doi.org/10.1021/acsbiomaterials.9b01476
    18. Min Li, Fang Cheng, Changying Xue, Hanqi Wang, Chen Chen, Qiqi Du, Dan Ge, Bingbing Sun. Surface Modification of Stöber Silica Nanoparticles with Controlled Moiety Densities Determines Their Cytotoxicity Profiles in Macrophages. Langmuir 2019, 35 (45) , 14688-14695. https://doi.org/10.1021/acs.langmuir.9b02578
    19. Rocío Cánovas, Sara Padrell Sánchez, Marc Parrilla, María Cuartero, Gastón A. Crespo. Cytotoxicity Study of Ionophore-Based Membranes: Toward On-Body and in Vivo Ion Sensing. ACS Sensors 2019, 4 (9) , 2524-2535. https://doi.org/10.1021/acssensors.9b01322
    20. Rong-Hui Deng, Mei-Zhen Zou, Diwei Zheng, Si-Yuan Peng, Wenlong Liu, Xue-Feng Bai, Han-Shi Chen, Yunxia Sun, Pang-Hu Zhou, Xian-Zheng Zhang. Nanoparticles from Cuttlefish Ink Inhibit Tumor Growth by Synergizing Immunotherapy and Photothermal Therapy. ACS Nano 2019, 13 (8) , 8618-8629. https://doi.org/10.1021/acsnano.9b02993
    21. Kok H. Tan, Shabnam Sattari, Siamak Beyranvand, Abbas Faghani, Kai Ludwig, Karin Schwibbert, Christoph Böttcher, Rainer Haag, Mohsen Adeli. Thermoresponsive Amphiphilic Functionalization of Thermally Reduced Graphene Oxide to Study Graphene/Bacteria Hydrophobic Interactions. Langmuir 2019, 35 (13) , 4736-4746. https://doi.org/10.1021/acs.langmuir.8b03660
    22. Shuping Zhang, Quanzhong Ren, Hui Qi, Sijin Liu, Yajun Liu. Adverse Effects of Fine-Particle Exposure on Joints and Their Surrounding Cells and Microenvironment. ACS Nano 2019, 13 (3) , 2729-2748. https://doi.org/10.1021/acsnano.8b08517
    23. Michael A. Luzuriaga, Raymond P. Welch, Madushani Dharmarwardana, Candace E. Benjamin, Shaobo Li, Arezoo Shahrivarkevishahi, Sarah Popal, Lana H. Tuong, Chayton T. Creswell, Jeremiah J. Gassensmith. Enhanced Stability and Controlled Delivery of MOF-Encapsulated Vaccines and Their Immunogenic Response In Vivo. ACS Applied Materials & Interfaces 2019, 11 (10) , 9740-9746. https://doi.org/10.1021/acsami.8b20504
    24. Song Wang, Shaohua Wei, Shigong Wang, Xiaohua Zhu, Chunyang Lei, Yan Huang, Zhou Nie, Shouzhuo Yao. Chimeric DNA-Functionalized Titanium Carbide MXenes for Simultaneous Mapping of Dual Cancer Biomarkers in Living Cells. Analytical Chemistry 2019, 91 (2) , 1651-1658. https://doi.org/10.1021/acs.analchem.8b05343
    25. Bengt Fadeel, Cyrill Bussy, Sonia Merino, Ester Vázquez, Emmanuel Flahaut, Florence Mouchet, Lauris Evariste, Laury Gauthier, Antti J. Koivisto, Ulla Vogel, Cristina Martín, Lucia G. Delogu, Tina Buerki-Thurnherr, Peter Wick, Didier Beloin-Saint-Pierre, Roland Hischier, Marco Pelin, Fabio Candotto Carniel, Mauro Tretiach, Fabrizia Cesca, Fabio Benfenati, Denis Scaini, Laura Ballerini, Kostas Kostarelos, Maurizio Prato, Alberto Bianco. Safety Assessment of Graphene-Based Materials: Focus on Human Health and the Environment. ACS Nano 2018, 12 (11) , 10582-10620. https://doi.org/10.1021/acsnano.8b04758
    26. Raymond P. Welch, Hamilton Lee, Michael A. Luzuriaga, Olivia R. Brohlin, Jeremiah J. Gassensmith. Protein–Polymer Delivery: Chemistry from the Cold Chain to the Clinic. Bioconjugate Chemistry 2018, 29 (9) , 2867-2883. https://doi.org/10.1021/acs.bioconjchem.8b00483
    27. Alessia C. G. Weiss, Kristian Kempe, Stephan Förster, Frank Caruso. Microfluidic Examination of the “Hard” Biomolecular Corona Formed on Engineered Particles in Different Biological Milieu. Biomacromolecules 2018, 19 (7) , 2580-2594. https://doi.org/10.1021/acs.biomac.8b00196
    28. Susanne Dogan, Michael Paulus, Yury Forov, Christopher Weis, Matthias Kampmann, Christopher Cewe, Irena Kiesel, Patrick Degen, Paul Salmen, Heinz Rehage, Metin Tolan. Human Apolipoprotein A1 at Solid/Liquid and Liquid/Gas Interfaces. The Journal of Physical Chemistry B 2018, 122 (14) , 3953-3960. https://doi.org/10.1021/acs.jpcb.7b12481
    29. Zhen Li, Yonghui Zhang, Chun Chan, Chunyi Zhi, Xiaolin Cheng, Jun Fan. Temperature-Dependent Lipid Extraction from Membranes by Boron Nitride Nanosheets. ACS Nano 2018, 12 (3) , 2764-2772. https://doi.org/10.1021/acsnano.7b09095
    30. Wenpei Fan, Bryant Yung, Peng Huang, and Xiaoyuan Chen . Nanotechnology for Multimodal Synergistic Cancer Therapy. Chemical Reviews 2017, 117 (22) , 13566-13638. https://doi.org/10.1021/acs.chemrev.7b00258
    31. Xingli Zhang, Qixing Zhou, Wei Zou, and Xiangang Hu . Molecular Mechanisms of Developmental Toxicity Induced by Graphene Oxide at Predicted Environmental Concentrations. Environmental Science & Technology 2017, 51 (14) , 7861-7871. https://doi.org/10.1021/acs.est.7b01922
    32. Shaobo Zhang, Weisheng Guo, Jie Wei, Chan Li, Xing-Jie Liang, and Meizhen Yin . Terrylenediimide-Based Intrinsic Theranostic Nanomedicines with High Photothermal Conversion Efficiency for Photoacoustic Imaging-Guided Cancer Therapy. ACS Nano 2017, 11 (4) , 3797-3805. https://doi.org/10.1021/acsnano.6b08720
    33. Jianqiang Zhu, Ming Xu, Ming Gao, Zhihong Zhang, Yong Xu, Tian Xia, and Sijin Liu . Graphene Oxide Induced Perturbation to Plasma Membrane and Cytoskeletal Meshwork Sensitize Cancer Cells to Chemotherapeutic Agents. ACS Nano 2017, 11 (3) , 2637-2651. https://doi.org/10.1021/acsnano.6b07311
    34. Kun Lu, Shipeng Dong, Elijah J. Petersen, Junfeng Niu, Xiaofeng Chang, Peng Wang, Sijie Lin, Shixiang Gao, and Liang Mao . Biological Uptake, Distribution, and Depuration of Radio-Labeled Graphene in Adult Zebrafish: Effects of Graphene Size and Natural Organic Matter. ACS Nano 2017, 11 (3) , 2872-2885. https://doi.org/10.1021/acsnano.6b07982
    35. Jason N. Belling, Joshua A. Jackman, Saziye Yorulmaz Avsar, Jae Hyeon Park, Yan Wang, Michael G. Potroz, Abdul Rahim Ferhan, Paul S. Weiss, and Nam-Joon Cho . Stealth Immune Properties of Graphene Oxide Enabled by Surface-Bound Complement Factor H. ACS Nano 2016, 10 (11) , 10161-10172. https://doi.org/10.1021/acsnano.6b05409
    36. Wasawat Inthanusorn, Jakkrit Tummachote, Nattanicha Jangpon, Metha Rutnakornpituk. Cu-immobilized cellulose filter paper: effect of polymer structure and functionality on catalytic activity and reusability for 4-nitrophenol reduction. Polymer-Plastics Technology and Materials 2024, 63 (9) , 1083-1095. https://doi.org/10.1080/25740881.2024.2325416
    37. Kest Verstappen, Alexey Klymov, Mónica Cicuéndez, Daniela M. da Silva, Nathalie Barroca, Francisco-Javier Fernández-San-Argimiro, Iratxe Madarieta, Laura Casarrubios, María José Feito, Rosalía Diez-Orejas, Rita Ferreira, Sander C.G. Leeuwenburgh, María Teresa Portolés, Paula A.A.P. Marques, X. Frank Walboomers. Biocompatible adipose extracellular matrix and reduced graphene oxide nanocomposite for tissue engineering applications. Materials Today Bio 2024, 26 , 101059. https://doi.org/10.1016/j.mtbio.2024.101059
    38. Yunxia Ji, Yunqing Wang, Xiaoyan Wang, Changjun Lv, Qunfang Zhou, Guibin Jiang, Bing Yan, Lingxin Chen. Beyond the promise: Exploring the complex interactions of nanoparticles within biological systems. Journal of Hazardous Materials 2024, 468 , 133800. https://doi.org/10.1016/j.jhazmat.2024.133800
    39. Renu Saharan, Sarvesh K. Paliwal, Abhishek Tiwari, M. Arockia Babu, Varsha Tiwari, Randhir Singh, Suresh Kumar Beniwal, Manish Kumar, Ajay Sharma, Waleed Hassan Almalki, Imran Kazmi, Sami I. Alzarea, Neelima Kukreti, Gaurav Gupta. Beyond traditional hydrogels: The emergence of graphene oxide-based hydrogels in drug delivery. Journal of Drug Delivery Science and Technology 2024, 94 , 105506. https://doi.org/10.1016/j.jddst.2024.105506
    40. Xiu Zheng, Hong Yang, Zongquan Zhang, Xiaoya Liang, Yan Liu, Chenglong Wang, Xi Yang, Jun Tang, Jingying Mao, Yu Nie, Xiangyu Zhou, Chunhong Li. pH-responsive size-adjustable liposomes induce apoptosis of fibroblasts and macrophages for rheumatoid arthritis treatment. Acta Biomaterialia 2024, 179 , 256-271. https://doi.org/10.1016/j.actbio.2024.03.006
    41. Yajuan Zou, Yutaka Shikano, Yuta Nishina, Naoki Komatsu, Eriko Kage-Nakadai, Masazumi Fujiwara. Size, polyglycerol grafting, and net surface charge of iron oxide nanoparticles determine their interaction and toxicity in Caenorhabditis elegans. Chemosphere 2024, 1 , 142060. https://doi.org/10.1016/j.chemosphere.2024.142060
    42. Fangzhou He, George Junior, Rajashree Konar, Yuanding Huang, Ke Zhang, Lijing Ke, Meng Niu, Boon Tong Goh, Amine El Moutaouakil, Gilbert Daniel Nessim, Mohamed Belmoubarik, Weng Kung Peng. The Comprehensive Roadmap Toward Malaria Elimination Using Graphene and its Promising 2D Analogs. Advanced NanoBiomed Research 2024, 71 https://doi.org/10.1002/anbr.202300130
    43. Yuyuan Guo, Jomon George Joy, Jin-Chul Kim. ThermOxshield ion pair self assembly unleashing suppressed release. Journal of Biomaterials Applications 2024, 38 (8) , 890-904. https://doi.org/10.1177/08853282241230483
    44. Hongfa Zhou, Jinyuan Chen, Xuan Zhang, JingJing Chen, Jiayou Chen, Shicheng Jia, Deli Wang, Hui Zeng, Jian Weng, Fei Yu. Exploring the Application of Graphene Oxide-Based Nanomaterials in the Repair of Osteoporotic Fractures. Nanomaterials 2024, 14 (6) , 553. https://doi.org/10.3390/nano14060553
    45. Yulin Wang, Bing Yang, Zhongbing Huang, Zhaopu Yang, Juan Wang, Qiang Ao, Guangfu Yin, Ya Li. Progress and mechanism of graphene oxide-composited materials in application of peripheral nerve repair. Colloids and Surfaces B: Biointerfaces 2024, 234 , 113672. https://doi.org/10.1016/j.colsurfb.2023.113672
    46. Xuri Wu, Jixiang Gong, Han Zhang, Yan Wang, Feng Tan. Cellular uptake and cytotoxicity of PEGylated MXene nanomaterials mediated by protein corona. Science of The Total Environment 2024, 912 , 169227. https://doi.org/10.1016/j.scitotenv.2023.169227
    47. Milena Keremidarska-Markova, Iliyana Sazdova, Bilyana Ilieva, Milena Mishonova, Milena Shkodrova, Kamelia Hristova-Panusheva, Natalia Krasteva, Mariela Chichova. Comprehensive Assessment of Graphene Oxide Nanoparticles: Effects on Liver Enzymes and Cardiovascular System in Animal Models and Skeletal Muscle Cells. Nanomaterials 2024, 14 (2) , 188. https://doi.org/10.3390/nano14020188
    48. Chunxue Kong, Junwen Chen, Ping Li, Yukang Wu, Guowei Zhang, Bimin Sang, Rui Li, Yuqin Shi, Xiuqing Cui, Ting Zhou. Respiratory Toxicology of Graphene-Based Nanomaterials: A Review. Toxics 2024, 12 (1) , 82. https://doi.org/10.3390/toxics12010082
    49. Shashank Shekhar, Bhasha Sharma, Amit Kumar. Graphene-based magnetic nanoparticles. 2024, 37-48. https://doi.org/10.1016/B978-0-323-85748-2.00003-7
    50. Hsin-Yi Wen, Rou-Yu Chen. Fiber Optic Fabry-Pérot Salinity Sensor Based Multiple Conductive Hydrogel Sensing Layers. 2024https://doi.org/10.2139/ssrn.4797984
    51. Bahareh Vakili, Mahboubeh Karami-Darehnaranji, Esmaeil Mirzaei, Farnaz Hosseini, Navid Nezafat. Graphene oxide as novel vaccine adjuvant. International Immunopharmacology 2023, 125 , 111062. https://doi.org/10.1016/j.intimp.2023.111062
    52. Yajuan Zou, Yuta Nishina, Alberto Bianco. The use of covalent reactions to improve the biomedical applications of carbon nanomaterials. Carbon Reports 2023, 2 (4) , 185-198. https://doi.org/10.7209/carbon.020405
    53. Jessica Mauriello, Romain Maury, Yohann Guillaneuf, Didier Gigmes. 3D/4D Printing of Polyurethanes by Vat Photopolymerization. Advanced Materials Technologies 2023, 8 (23) https://doi.org/10.1002/admt.202300366
    54. Hui Xue, Zhibing Tang, Ping Li, Lin Zhao, Guangxin Duan, Ling Wen. GO nanosheets inhibit the proliferation of hPDLCs by covering the membrane to block the EGFR-AKT signaling pathway. Colloid and Interface Science Communications 2023, 57 , 100746. https://doi.org/10.1016/j.colcom.2023.100746
    55. Peidong You, Anning Yang, Yue Sun, Hongwen Zhang, Yaling Zeng, Yinju Hao, Jiantuan Xiong, Shengchao Ma, Huiping Zhang, Bin Liu, Yideng Jiang. Pro-efferocytosis biomimetic nanocomplexes for targeted atherosclerosis therapy through promoting macrophage re-polarization and inhibiting senescence. Materials & Design 2023, 234 , 112316. https://doi.org/10.1016/j.matdes.2023.112316
    56. Ehteram Sadat Khataminezhad, Zahra Hajihassan, Fatemeh Razi Astaraei. Magnetically purification/immobilization of poly histidine-tagged proteins by PEGylated magnetic graphene oxide nanocomposites. Protein Expression and Purification 2023, 207 , 106264. https://doi.org/10.1016/j.pep.2023.106264
    57. Maged S. Al-Fakeh, Munirah S. Alazmi, Yassine EL-Ghoul. Preparation and Characterization of Nano-Sized Co(II), Cu(II), Mn(II) and Ni(II) Coordination PAA/Alginate Biopolymers and Study of Their Biological and Anticancer Performance. Crystals 2023, 13 (7) , 1148. https://doi.org/10.3390/cryst13071148
    58. Cong Li, Xinxin Huang, Weicui Min, Huoqing Zhong, Xiliang Yan, Yan Gao, Jianqiao Wang, Hongyu Zhou, Bing Yan. Inflammatory responses induced by synergistic actions between nanoplastics and typical heavy metal ions in human cells. Environmental Science: Nano 2023, 10 (6) , 1599-1613. https://doi.org/10.1039/D2EN01097F
    59. Renu Saharan, Sarvesh K. Paliwal, Abhishek Tiwari, Varsha Tiwari, Randhir Singh, Suresh Kumar Beniwal, Preeti Dahiya, Suresh Sagadevan. Exploring graphene and its potential in delivery of drugs and biomolecules. Journal of Drug Delivery Science and Technology 2023, 84 , 104446. https://doi.org/10.1016/j.jddst.2023.104446
    60. Eliane El Hayek, Eliseo Castillo, Julie G In, Marcus Garcia, Jose Cerrato, Adrian Brearley, Jorge Gonzalez-Estrella, Guy Herbert, Barry Bleske, Angelica Benavidez, Hsuan Hsiao, Lei Yin, Matthew J Campen, Xiaozhong Yu. Photoaging of polystyrene microspheres causes oxidative alterations to surface physicochemistry and enhances airway epithelial toxicity. Toxicological Sciences 2023, 193 (1) , 90-102. https://doi.org/10.1093/toxsci/kfad023
    61. Ziwei Lei, Jialong Fan, Xiaojie Li, Yanhua Chen, Dazhi Shi, Hailong Xie, Bin Liu. Biomimetic graphene oxide quantum dots nanoparticles targeted photothermal-chemotherapy for gastric cancer. Journal of Drug Targeting 2023, 31 (3) , 320-333. https://doi.org/10.1080/1061186X.2022.2162060
    62. Z. Dehghani, F. Ostovari, S. Sharifi. A comparison of the crystal structure and optical properties of reduced graphene oxide and aminated graphene nanosheets for optoelectronic device applications. Optik 2023, 274 , 170551. https://doi.org/10.1016/j.ijleo.2023.170551
    63. Jingke Yao, Gabriel López-Peña, José Lifante, M. Carmen Iglesias-de la Cruz, Riccardo Marin, Emma Martín Rodríguez, Daniel Jaque, Dirk H. Ortgies. (INVITED)Adjustable near-infrared fluorescence lifetime emission of biocompatible rare-earth-doped nanoparticles for in vivo multiplexing. Optical Materials: X 2023, 17 , 100225. https://doi.org/10.1016/j.omx.2022.100225
    64. Adrian Gheata, Alessandra Spada, Manon Wittwer, Ameni Dhouib, Emilie Molina, Yannick Mugnier, Sandrine Gerber-Lemaire. Modulating the Surface Properties of Lithium Niobate Nanoparticles by Multifunctional Coatings Using Water-in-Oil Microemulsions. Nanomaterials 2023, 13 (3) , 522. https://doi.org/10.3390/nano13030522
    65. Junnan Song, Anna S. Vikulina, Bogdan V. Parakhonskiy, Andre G. Skirtach. Hierarchy of hybrid materials. Part-II: The place of organics-on-inorganics in it, their composition and applications. Frontiers in Chemistry 2023, 11 https://doi.org/10.3389/fchem.2023.1078840
    66. Raunak K. Tamrakar, Kanchan Upadhyay, Judith Gomes, Sunil Kumar. Toxicity, Stability, Recycling, and Risk Assessments. 2023, 427-441. https://doi.org/10.1007/978-3-031-36249-1_24
    67. Tian Xia, Haiyuan Zhang, Shunhao Wang, Wei Xin, Sijin Liu. Environmental Health and Safety of Engineered Nanomaterials. 2023, 801-846. https://doi.org/10.1007/978-981-16-8984-0_23
    68. Arathi, K. B. Megha, X. Joseph, P. V. Mohanan. Biological Safety and Cellular Interactions of Nanoparticles. 2023, 559-587. https://doi.org/10.1007/978-981-19-7834-0_21
    69. Bartłomiej Dąbrowski, Agnieszka Żuchowska, Zbigniew Brzózka. Graphene oxide internalization into mammalian cells – a review. Colloids and Surfaces B: Biointerfaces 2023, 221 , 112998. https://doi.org/10.1016/j.colsurfb.2022.112998
    70. K. A. Esther Jebakumari, N. K. Murugasenapathi, Tamilarasan Palanisamy. Engineered Two-Dimensional Nanostructures as SERS Substrates for Biomolecule Sensing: A Review. Biosensors 2023, 13 (1) , 102. https://doi.org/10.3390/bios13010102
    71. Mehdi Bazi Alahri, Alhawarin Jibril Ibrahim, Mahmood Barani, Hassan Arkaban, Seyedeh Malahat Shadman, Soodeh Salarpour, Payam Zarrintaj, Javad Jaberi, Abduladheem Turki Jalil. Management of Brain Cancer and Neurodegenerative Disorders with Polymer-Based Nanoparticles as a Biocompatible Platform. Molecules 2023, 28 (2) , 841. https://doi.org/10.3390/molecules28020841
    72. A. Aslam, M. R. Berger, I. Ullah, A. Hameed, F. Masood. Preparation and evaluation of cytotoxic potential of paclitaxel containing poly-3-hydroxybutyrate-co-3-hydroxyvalarate (PTX/PHBV) nanoparticles. Brazilian Journal of Biology 2023, 83 https://doi.org/10.1590/1519-6984.275688
    73. Monika Singh, Pradip Paik. Polymer Nanoparticles and Their Biomedical Applications. 2023, 73-100. https://doi.org/10.1007/978-981-99-3629-8_5
    74. Hitesh Malhotra, Rupesh K. Gautam. Role of Block Copolymers in the Treatment of Brain Disorders. 2023, 121-142. https://doi.org/10.1007/978-981-99-6917-3_5
    75. Xiaomeng Ding, Yuepu Pu, Meng Tang, Ting Zhang. Pulmonary hazard identifications of Graphene family nanomaterials: Adverse outcome pathways framework based on toxicity mechanisms. Science of The Total Environment 2023, 857 , 159329. https://doi.org/10.1016/j.scitotenv.2022.159329
    76. Yee Yee Khine, Xinyue Wen, Xiaoheng Jin, Tobias Foller, Rakesh Joshi. Functional groups in graphene oxide. Physical Chemistry Chemical Physics 2022, 24 (43) , 26337-26355. https://doi.org/10.1039/D2CP04082D
    77. Lin Ding, Minli Liang, Chenchen Li, Xinting Ji, Junfeng Zhang, Weifen Xie, Rui L. Reis, Fu‐Rong Li, Shuo Gu, Yanli Wang. Design Strategies of Tumor‐Targeted Delivery Systems Based on 2D Nanomaterials. Small Methods 2022, 6 (11) https://doi.org/10.1002/smtd.202200853
    78. Wei Chen, Bing Wang, Shanshan Liang, Meng Wang, Lingna Zheng, Si Xu, Jiali Wang, Hao Fang, Pu Yang, Weiyue Feng. Understanding the Role of the Lateral Dimensional Property of Graphene Oxide on Its Interactions with Renal Cells. Molecules 2022, 27 (22) , 7956. https://doi.org/10.3390/molecules27227956
    79. Ruohua Ren, Chiaxin Lim, Shiqi Li, Yajun Wang, Jiangning Song, Tsung-Wu Lin, Benjamin W. Muir, Hsien-Yi Hsu, Hsin-Hui Shen. Recent Advances in the Development of Lipid-, Metal-, Carbon-, and Polymer-Based Nanomaterials for Antibacterial Applications. Nanomaterials 2022, 12 (21) , 3855. https://doi.org/10.3390/nano12213855
    80. Mostafa Torabi, Fatemeh Yaghoobi, Reza Karimi Shervedani, Amirhosein Kefayat, Fatemeh Ghahremani, Parisa Rashidiyan Harsini. Mn(II) & Gd(III) deferrioxamine complex contrast agents & temozolomide cancer prodrug immobilized on folic acid targeted graphene/polyacrylic acid nanocarrier: MRI efficiency, drug stability & interactions with cancer cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2022, 652 , 129797. https://doi.org/10.1016/j.colsurfa.2022.129797
    81. Zahra Niknam, Faezeh Hosseinzadeh, Forough Shams, Leyla Fath‐Bayati, Ghader Nuoroozi, Leila Mohammadi Amirabad, Fariba Mohebichamkhorami, Sahar Khakpour Naeimi, Soudeh Ghafouri‐Fard, Hakimeh Zali, Lobat Tayebi, Yousef Rasmi. Recent advances and challenges in graphene‐based nanocomposite scaffolds for tissue engineering application. Journal of Biomedical Materials Research Part A 2022, 110 (10) , 1695-1721. https://doi.org/10.1002/jbm.a.37417
    82. Haleh Bakhtkhosh Hagh, Larry D. Unsworth, Ali Olad. Evaluating the effect of graphene oxide PEGylation on the properties of chitosan‐graphene oxide nanocomposite scaffold. Journal of Biomedical Materials Research Part B: Applied Biomaterials 2022, 110 (10) , 2353-2368. https://doi.org/10.1002/jbm.b.35082
    83. Gamze Yesilay, Layla Hazeem, Mohamed Bououdina, Demet Cetin, Zekiye Suludere, Alexandre Barras, Rabah Boukherroub. Influence of graphene oxide on the toxicity of polystyrene nanoplastics to the marine microalgae Picochlorum sp.. Environmental Science and Pollution Research 2022, 29 (50) , 75870-75882. https://doi.org/10.1007/s11356-022-21195-w
    84. Shadi Rahimi, Yanyan Chen, Mohsen Zareian, Santosh Pandit, Ivan Mijakovic. Cellular and subcellular interactions of graphene-based materials with cancerous and non-cancerous cells. Advanced Drug Delivery Reviews 2022, 189 , 114467. https://doi.org/10.1016/j.addr.2022.114467
    85. Guotao Peng, Bengt Fadeel. Understanding the bidirectional interactions between two-dimensional materials, microorganisms, and the immune system. Advanced Drug Delivery Reviews 2022, 188 , 114422. https://doi.org/10.1016/j.addr.2022.114422
    86. Muhammad Bilal, Komal Rizwan, Abbas Rahdar, Mohamed Fathy Badran, Hafiz M.N. Iqbal. Graphene-based porous nanohybrid architectures for adsorptive and photocatalytic abatement of volatile organic compounds. Environmental Pollution 2022, 309 , 119805. https://doi.org/10.1016/j.envpol.2022.119805
    87. Zhiwei Jiang, Jin He, Xueting Wang, Danji Zhu, Na Li, Lingfei Ren, Guoli Yang. Nanomaterial-based cell sheet technology for regenerative medicine and tissue engineering. Colloids and Surfaces B: Biointerfaces 2022, 217 , 112661. https://doi.org/10.1016/j.colsurfb.2022.112661
    88. Zhen Wang, Hao Cheng, Yu Sheng, Zongkai Chen, Xiaohong Zhu, Jianye Ren, Xiangze Zhang, Lingyu Lv, Huaqing Zhang, Jianping Zhou, Yang Ding. Biofunctionalized graphene oxide nanosheet for amplifying antitumor therapy: Multimodal high drug encapsulation, prolonged hyperthermal window, and deep-site burst drug release. Biomaterials 2022, 287 , 121629. https://doi.org/10.1016/j.biomaterials.2022.121629
    89. Jianqiang Zhu, Leyi Liu, Juan Ma, Qingfeng Fu, Zhiwen Zheng, E Du, Yong Xu, Zhihong Zhang. Biotransformation of graphene oxide within lung fluids could intensify its synergistic biotoxicity effect with cadmium by inhibiting cellular efflux of cadmium. Environmental Pollution 2022, 306 , 119421. https://doi.org/10.1016/j.envpol.2022.119421
    90. Ye Lin, Ouyang Yi, Mingyue Hu, Shengtao Hu, Zhaoli Su, Jin Liao, Wei Wang, Shenzhi Wang, Liang Liu, Bin Liu, Xiong Cai. Multifunctional nanoparticles of sinomenine hydrochloride for treat-to-target therapy of rheumatoid arthritis via modulation of proinflammatory cytokines. Journal of Controlled Release 2022, 348 , 42-56. https://doi.org/10.1016/j.jconrel.2022.05.016
    91. Tereza Svadlakova, Drahomira Holmannova, Martina Kolackova, Andrea Malkova, Jan Krejsek, Zdenek Fiala. Immunotoxicity of Carbon-Based Nanomaterials, Starring Phagocytes. International Journal of Molecular Sciences 2022, 23 (16) , 8889. https://doi.org/10.3390/ijms23168889
    92. Fang Hao, Zhu-Ying Yan, Xiu-Ping Yan. Size- and shape-dependent cytotoxicity of nano-sized Zr-based porphyrinic metal-organic frameworks to macrophages. Science of The Total Environment 2022, 833 , 155309. https://doi.org/10.1016/j.scitotenv.2022.155309
    93. Shaoqing Xue, Hanglin Li, Yumei Guo, Baohua Zhang, Jiusheng Li, Xiangqiong Zeng. Water lubrication of graphene oxide-based materials. Friction 2022, 10 (7) , 977-1004. https://doi.org/10.1007/s40544-021-0539-8
    94. Serena H. Chen, David R. Bell, Binquan Luan. Understanding interactions between biomolecules and two-dimensional nanomaterials using in silico microscopes. Advanced Drug Delivery Reviews 2022, 186 , 114336. https://doi.org/10.1016/j.addr.2022.114336
    95. Elena Giusto, Ludmila Žárská, Darren Fergal Beirne, Arianna Rossi, Giada Bassi, Andrea Ruffini, Monica Montesi, Diego Montagner, Vaclav Ranc, Silvia Panseri. Graphene Oxide Nanoplatforms to Enhance Cisplatin-Based Drug Delivery in Anticancer Therapy. Nanomaterials 2022, 12 (14) , 2372. https://doi.org/10.3390/nano12142372
    96. Jia-yin Fu, Yu-xian Lai, Si-si Zheng, Jing Wang, You-xiang Wang, Ke-feng Ren, Lu Yu, Guo-sheng Fu, Jian Ji. Mir-22-incorporated polyelectrolyte coating prevents intima hyperplasia after balloon-induced vascular injury. Biomaterials Science 2022, 10 (13) , 3612-3623. https://doi.org/10.1039/D2BM00536K
    97. Nazanin Amiryaghoubi, Marziyeh Fathi, Jaleh Barar, Hossein Omidian, Yadollah Omidi. Recent advances in graphene-based polymer composite scaffolds for bone/cartilage tissue engineering. Journal of Drug Delivery Science and Technology 2022, 72 , 103360. https://doi.org/10.1016/j.jddst.2022.103360
    98. Jun Dai, Zhaojun Chen, Shixuan Wang, Fan Xia, Xiaoding Lou. Erythrocyte membrane-camouflaged nanoparticles as effective and biocompatible platform: Either autologous or allogeneic erythrocyte-derived. Materials Today Bio 2022, 15 , 100279. https://doi.org/10.1016/j.mtbio.2022.100279
    99. Cheng Wang, Xi Chen, Yingying Jiang, Na Li, Ping Zhu, Hong Xu. Facile and green synthesis of reduced graphene oxide/loofah sponge for Streptomyces albulus immobilization and ε-poly-l-lysine production. Bioresource Technology 2022, 349 , 126534. https://doi.org/10.1016/j.biortech.2021.126534
    100. Morgan Domanico, Atsuhiko Fukuto, Lisa M. Tran, Jessica-Miranda Bustamante, Patricia C. Edwards, Kent E. Pinkerton, Sara M. Thomasy, Laura S. Van Winkle. Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium. NanoImpact 2022, 26 , 100404. https://doi.org/10.1016/j.impact.2022.100404
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect