ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels

View Author Information
Department of Civil Engineering, University of Toronto, 35 St. George Street, Toronto, Ontario M5S 1A4, Canada, Ontario Forest Research Institute, 1235 Queen Street East, Sault Ste. Marie, Ontario P6A 2E5, Canada, School of Policy Studies and Deptartment of Geography, Queen’s University, 423-138 Union St. Kingston, Ontario K7L 3N6, Canada, and Department of Chemical Engineering & Applied Chemistry, School of Public Policy and Governance, University of Toronto, Toronto, Ontario M5S 1A4, Canada
* Corresponding author phone: (416) 946-5056, fax: (416) 978-3674, e-mail: [email protected]
†Department of Civil Engineering, University of Toronto.
‡Ontario Forest Research Institute.
§Queen’s University.
∥School of Public Policy and Governance, University of Toronto.
Cite this: Environ. Sci. Technol. 2011, 45, 2, 789–795
Publication Date (Web):December 10, 2010
https://doi.org/10.1021/es1024004
Copyright © 2010 American Chemical Society

    Article Views

    4178

    Altmetric

    -

    Citations

    257
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The potential of forest-based bioenergy to reduce greenhouse gas (GHG) emissions when displacing fossil-based energy must be balanced with forest carbon implications related to biomass harvest. We integrate life cycle assessment (LCA) and forest carbon analysis to assess total GHG emissions of forest bioenergy over time. Application of the method to case studies of wood pellet and ethanol production from forest biomass reveals a substantial reduction in forest carbon due to bioenergy production. For all cases, harvest-related forest carbon reductions and associated GHG emissions initially exceed avoided fossil fuel-related emissions, temporarily increasing overall emissions. In the long term, electricity generation from pellets reduces overall emissions relative to coal, although forest carbon losses delay net GHG mitigation by 16−38 years, depending on biomass source (harvest residues/standing trees). Ethanol produced from standing trees increases overall emissions throughout 100 years of continuous production: ethanol from residues achieves reductions after a 74 year delay. Forest carbon more significantly affects bioenergy emissions when biomass is sourced from standing trees compared to residues and when less GHG-intensive fuels are displaced. In all cases, forest carbon dynamics are significant. Although study results are not generalizable to all forests, we suggest the integrated LCA/forest carbon approach be undertaken for bioenergy studies.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Additional detail on biomass sources, life cycle inventory of bioenergy systems, forest carbon analysis, and additional results and discussion. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 257 publications.

    1. Bahar Riazi, Mukund Karanjikar, Sabrina Spatari. Renewable Rubber and Jet Fuel from Biomass: Evaluation of Greenhouse Gas Emissions and Land Use Trade-offs in Energy and Material Markets. ACS Sustainable Chemistry & Engineering 2018, 6 (11) , 14414-14422. https://doi.org/10.1021/acssuschemeng.8b03098
    2. Olumide Winjobi, Hossein Tavakoli, Bethany Klemetsrud, Robert Handler, Terry Marker, Michael Roberts, David Shonnard. Carbon Footprint Analysis of Gasoline and Diesel from Forest Residues and Algae using Integrated Hydropyrolysis and Hydroconversion Plus Fischer–Tropsch (IH2 Plus cool GTL). ACS Sustainable Chemistry & Engineering 2018, 6 (8) , 10766-10777. https://doi.org/10.1021/acssuschemeng.8b02091
    3. Jiqing Fan, John Gephart, Terry Marker, Daniel Stover, Ben Updike, and David R. Shonnard . Carbon Footprint Analysis of Gasoline and Diesel from Forest Residues and Corn Stover using Integrated Hydropyrolysis and Hydroconversion. ACS Sustainable Chemistry & Engineering 2016, 4 (1) , 284-290. https://doi.org/10.1021/acssuschemeng.5b01173
    4. Yun Yu, John Bartle, Daniel Mendham, and Hongwei Wu . Site Variation in Life Cycle Energy and Carbon Footprints of Mallee Biomass Production in Western Australia. Energy & Fuels 2015, 29 (6) , 3748-3752. https://doi.org/10.1021/acs.energyfuels.5b00618
    5. Jiaxin Chen, Stephen J. Colombo, Michael T. Ter-Mikaelian, and Linda S. Heath . Carbon Profile of the Managed Forest Sector in Canada in the 20th Century: Sink or Source?. Environmental Science & Technology 2014, 48 (16) , 9859-9866. https://doi.org/10.1021/es5005957
    6. Tara W. Hudiburg, Sebastiaan Luyssaert, Peter E. Thornton, and Beverly E. Law . Interactive Effects of Environmental Change and Management Strategies on Regional Forest Carbon Emissions. Environmental Science & Technology 2013, 47 (22) , 13132-13140. https://doi.org/10.1021/es402903u
    7. Philip Nuss, Kevin H. Gardner, and Jenna R. Jambeck . Comparative Life Cycle Assessment (LCA) of Construction and Demolition (C&D) Derived Biomass and U.S. Northeast Forest Residuals Gasification for Electricity Production. Environmental Science & Technology 2013, 47 (7) , 3463-3471. https://doi.org/10.1021/es304312f
    8. Ryan M. Bright, Anders Hammer Strømman, and Glen P. Peters . Radiative Forcing Impacts of Boreal Forest Biofuels: A Scenario Study for Norway in Light of Albedo. Environmental Science & Technology 2011, 45 (17) , 7570-7580. https://doi.org/10.1021/es201746b
    9. Seung-Rok Lee, Gyu-Seong Han. Forest Biomass Utilization for Energy Based on Scientifically Grounded and Orthodox. New & Renewable Energy 2024, 20 (1) , 145-174. https://doi.org/10.7849/ksnre.2024.2034
    10. Aymeric Mondière, Michael S. Corson, Julie Auberger, Daphné Durant, Sylvain Foray, Jean-Francois Glinec, Penny Green, Sandra Novak, Frédéric Signoret, Hayo M.G. van der Werf. Trade-offs between higher productivity and lower environmental impacts for biodiversity-friendly and conventional cattle-oriented systems. Agricultural Systems 2024, 213 , 103798. https://doi.org/10.1016/j.agsy.2023.103798
    11. Samakshi Verma, Y. Lalitha Kameswari, Sonu Kumar. Life Cycle Assessment of Bio-Jet Fuel. 2024, 273-302. https://doi.org/10.1007/978-981-99-8783-2_12
    12. Matti Hyyrynen, Markku Ollikainen, Jyri Seppälä. European forest sinks and climate targets: past trends, main drivers, and future forecasts. European Journal of Forest Research 2023, 142 (5) , 1207-1224. https://doi.org/10.1007/s10342-023-01587-4
    13. A.S. Duden, P.A. Verweij, A.P.C. Faaij, R.C. Abt, M. Junginger, F. van der Hilst. Spatially-explicit assessment of carbon stocks in the landscape in the southern US under different scenarios of industrial wood pellet demand. Journal of Environmental Management 2023, 342 , 118148. https://doi.org/10.1016/j.jenvman.2023.118148
    14. Tim Searchinger, Liqing Peng, Jessica Zionts, Richard Waite. The Global Land Squeeze: Managing the Growing Competition for Land. World Resources Institute 2023, https://doi.org/10.46830/wrirpt.20.00042
    15. Flavio Scrucca, Grazia Barberio, Laura Cutaia, Caterina Rinaldi. A simplified methodology for estimating the Carbon Footprint of heat generation by forest woodchips as a support tool for sustainability assessment in decision-making. Cleaner Environmental Systems 2023, 9 , 100126. https://doi.org/10.1016/j.cesys.2023.100126
    16. James W N Steenberg, Jérôme Laganière, Nathan W Ayer, Peter N Duinker. Life-Cycle Greenhouse Gas Emissions from Forest Bioenergy Production at Combined Heat and Power Projects in Nova Scotia, Canada. Forest Science 2023, 69 (3) , 286-298. https://doi.org/10.1093/forsci/fxac060
    17. Michael T. Ter-Mikaelian, Jiaxin Chen, Sabrina M. Desjardins, Stephen J. Colombo. Can Wood Pellets from Canada’s Boreal Forest Reduce Net Greenhouse Gas Emissions from Energy Generation in the UK?. Forests 2023, 14 (6) , 1090. https://doi.org/10.3390/f14061090
    18. Ye Zheng, Zhenmiao Li, Jinlai Chai. Progress and prospects of international carbon peaking and carbon neutral research –based on bibliometric analysis (1991–2022). Frontiers in Energy Research 2023, 11 https://doi.org/10.3389/fenrg.2023.1121639
    19. Kevin R Fingerman, Jerome Qiriazi, Cassidy L Barrientos, Max Blasdel, Jeffrey M Comnick, Andrew R Harris, Carisse Geronimo, Chih-Wei Hsu, Jeffrey M Kane, Elaine Oneil, Sabrinna Rios-Romero, Luke W Rogers, Mark Severy, Micah C Wright. Climate and air pollution impacts of generating biopower from forest management residues in California. Environmental Research Letters 2023, 18 (3) , 034038. https://doi.org/10.1088/1748-9326/acbd93
    20. Raja Chowdhury, Nidia Caetano, Matthew J. Franchetti, Kotnoor Hariprasad. Life Cycle Based GHG Emissions from Algae Based Bioenergy with a Special Emphasis on Climate Change Indicators and Their Uses in Dynamic LCA: A Review. Sustainability 2023, 15 (3) , 1767. https://doi.org/10.3390/su15031767
    21. Ricardo Musule, Joel Bonales-Revuelta, Tuyeni H. Mwampamba, Rosa M. Gallardo-Alvarez, Omar Masera, Carlos A. García. Life Cycle Assessment of Forest-Derived Solid Biofuels: a Systematic Review of the Literature. BioEnergy Research 2022, 15 (4) , 1711-1732. https://doi.org/10.1007/s12155-021-10346-5
    22. Tianyu Liu, Chang Wen, Changkang Li, Kai Yan, Rui Li, Zhenqi Jing, Bohan Zhang, Jingjing Ma. Integrated water washing and carbonization pretreatment of typical herbaceous and woody biomass: Fuel properties, combustion behaviors, and techno-economic assessments. Renewable Energy 2022, 200 , 218-233. https://doi.org/10.1016/j.renene.2022.09.073
    23. Sarah Rodgers, Fanran Meng, Stephen Poulston, Alex Conradie, Jon McKechnie. Renewable butadiene: A case for hybrid processing via bio- and chemo-catalysis. Journal of Cleaner Production 2022, 364 , 132614. https://doi.org/10.1016/j.jclepro.2022.132614
    24. Shanshan Wang, Jiaxin Chen, Michael T. Ter‐Mikaelian, Annie Levasseur, Hongqiang Yang. From carbon neutral to climate neutral: Dynamic life cycle assessment for wood‐based panels produced in China. Journal of Industrial Ecology 2022, 26 (4) , 1437-1449. https://doi.org/10.1111/jiec.13286
    25. Linghao Mao, Yiling Zhu, Chunhua Ju, Fuguang Bao, Chonghuan Xu. Visualization and Bibliometric Analysis of Carbon Neutrality Research for Global Health. Frontiers in Public Health 2022, 10 https://doi.org/10.3389/fpubh.2022.896161
    26. Jennifer Buss, Nicolas Mansuy, Jérôme Laganière, Daniel Persson. Greenhouse gas mitigation potential of replacing diesel fuel with wood-based bioenergy in an arctic Indigenous community: A pilot study in Fort McPherson, Canada. Biomass and Bioenergy 2022, 159 , 106367. https://doi.org/10.1016/j.biombioe.2022.106367
    27. Caitlin E. Littlefield, Anthony W. D'Amato. Identifying trade‐offs and opportunities for forest carbon and wildlife using a climate change adaptation lens. Conservation Science and Practice 2022, 4 (4) https://doi.org/10.1111/csp2.12631
    28. Jessica Stubenrauch, Beatrice Garske, Felix Ekardt, Katharina Hagemann. European Forest Governance: Status Quo and Optimising Options with Regard to the Paris Climate Target. Sustainability 2022, 14 (7) , 4365. https://doi.org/10.3390/su14074365
    29. Duomin Wang, Yubin Huangfu, Zuoji Dong, Yiqi Dong. Research Hotspots and Evolution Trends of Carbon Neutrality—Visual Analysis of Bibliometrics Based on CiteSpace. Sustainability 2022, 14 (3) , 1078. https://doi.org/10.3390/su14031078
    30. Jessica Stubenrauch, Felix Ekardt, Katharina Hagemann, Beatrice Garske. Governance Analysis – Existing Regulations and Their Effectiveness. 2022, 115-187. https://doi.org/10.1007/978-3-030-99184-5_5
    31. Catherine Azzaro-Pantel, Martial Madoumier, Geneviève Gésan-Guiziou. Development of an ecodesign framework for food manufacturing including process flowsheeting and multiple-criteria decision-making: Application to milk evaporation. Food and Bioproducts Processing 2022, 131 , 40-59. https://doi.org/10.1016/j.fbp.2021.10.003
    32. Anna Duden, Pita Verweij, André Faaij, Robert Abt, Martin Junginger, Floor van der Hilst. Spatially-Explicit Assessment of Carbon Stocks in the Landscape in the Southern Us Under Different Scenarios of Industrial Wood Pellet Demand. SSRN Electronic Journal 2022, 58 https://doi.org/10.2139/ssrn.4166140
    33. Vandit Vijay, Paruchuri M.V. Subbarao, Ram Chandra. An evaluation on energy self–sufficiency model of a rural cluster through utilization of biomass residue resources: A case study in India. Energy and Climate Change 2021, 2 , 100036. https://doi.org/10.1016/j.egycc.2021.100036
    34. Masoud Rezaei, Mohammad Sameti, Fuzhan Nasiri. An enviro-economic optimization of a hybrid energy system from biomass and geothermal resources for low-enthalpy areas. Energy and Climate Change 2021, 2 , 100040. https://doi.org/10.1016/j.egycc.2021.100040
    35. Christina Howard, Caren C. Dymond, Verena C. Griess, Darius Tolkien-Spurr, G. Cornelis van Kooten. Wood product carbon substitution benefits: a critical review of assumptions. Carbon Balance and Management 2021, 16 (1) https://doi.org/10.1186/s13021-021-00171-w
    36. Bhupendra Kumar Singh, Yongseok Kim, Seungdon Kwon, Kyungsu Na. Synthesis of Mesoporous Zeolites and Their Opportunities in Heterogeneous Catalysis. Catalysts 2021, 11 (12) , 1541. https://doi.org/10.3390/catal11121541
    37. Jean-Daniel Bontemps, . Inflation of wood resources in European forests: The footprints of a big-bang. PLOS ONE 2021, 16 (11) , e0259795. https://doi.org/10.1371/journal.pone.0259795
    38. Ghulam Yasin, Shafeeq Ur Rahman, Muhammad Farrakh Nawaz, Ihsan Qadir, Muhammad Zubair, Sadaf Gul, Muhammad Safdar Hussain, Muhammad Zain, Muhammad Athar Khaliq. Estimating carbon stocks and biomass accumulation in three different agroforestry patterns in the semi-arid region of Pakistan. Carbon Management 2021, 12 (6) , 593-602. https://doi.org/10.1080/17583004.2021.1987332
    39. Lorenzo Menichetti, Harri Mäkinen, Johan Stendahl, Göran I. Ågren, Riitta Hyvönen. Modeling persistence of coarse woody debris residuals in boreal forests as an ecological property. Ecosphere 2021, 12 (11) https://doi.org/10.1002/ecs2.3792
    40. Ashan Shooshtarian, Jay A. Anderson, Glen W. Armstrong, Martin K. Luckert. Policies for establishing hybrid poplar plantations on private and public lands in western Canada for bioethanol feedstock: a forest-level financial analysis. Canadian Journal of Forest Research 2021, 51 (11) , 1664-1677. https://doi.org/10.1139/cjfr-2020-0399
    41. Tarit Kumar Baul, Avinanda Chakraborty, Rajasree Nandi, Tapan Kumar Nath, Mohammed Mohiuddin. Phytosociological attributes and ecosystem services of homegardens of Maheshkhali island of Bangladesh. Trees, Forests and People 2021, 5 , 100092. https://doi.org/10.1016/j.tfp.2021.100092
    42. Tarit Kumar Baul, Tajkera Akhter Peuly, Rajasree Nandi, Shiba Kar, Mohammed Mohiuddin. Composition of homestead forests and their contribution to local livelihoods and environment: A study focused on Bandarban hill district, Bangladesh. Trees, Forests and People 2021, 5 , 100117. https://doi.org/10.1016/j.tfp.2021.100117
    43. Alexa J. Dugan, Jeremy W. Lichstein, Al Steele, Juha M. Metsaranta, Steven Bick, David Y. Hollinger. Opportunities for forest sector emissions reductions: a state‐level analysis. Ecological Applications 2021, 31 (5) https://doi.org/10.1002/eap.2327
    44. Pau Brunet-Navarro, Hubert Jochheim, Giuseppe Cardellini, Klaus Richter, Bart Muys. Climate mitigation by energy and material substitution of wood products has an expiry date. Journal of Cleaner Production 2021, 303 , 127026. https://doi.org/10.1016/j.jclepro.2021.127026
    45. Martin Strandgard, Mauricio Acuna, Paul Turner, Luke Mirowski. Use of modelling to compare the impact of roadside drying of Pinus radiata D.Don logs and logging residues on delivered costs using high capacity trucks in Australia. Biomass and Bioenergy 2021, 147 , 106000. https://doi.org/10.1016/j.biombioe.2021.106000
    46. Václav Štícha, Ondřej Nuhlíček, Jaroslav Bubeník, Jan Weger, Jan Macků, Hana Vanická, Václav Bažant. Evapotranspiration—Tool for seasoning wood of hybrid poplar (Populus maximowiczii A. Henry × Populus nigra L. ‘Max 4-5’) and Salix × smithiana Willd. (Salix caprea L. and S. viminalis L.). Industrial Crops and Products 2021, 162 , 113265. https://doi.org/10.1016/j.indcrop.2021.113265
    47. M. Jean Blair, Bruno Gagnon, Andrew Klain, Biljana Kulišić. Contribution of Biomass Supply Chains for Bioenergy to Sustainable Development Goals. Land 2021, 10 (2) , 181. https://doi.org/10.3390/land10020181
    48. Miguel Riviere, Sylvain Caurla. Landscape implications of managing forests for carbon sequestration. Forestry: An International Journal of Forest Research 2021, 94 (1) , 70-85. https://doi.org/10.1093/forestry/cpaa015
    49. Mohammad Younus Bhat, Arfat Ahmad Sofi, R. S. Aswani. Sustainability of Biofuels: The Dynamic Nexus Between CO2 Emissions and Bioenergy Consumption in OECD Countries. 2021, 207-221. https://doi.org/10.1007/978-981-16-0902-2_11
    50. Marieke Head, Michael Magnan, Werner A. Kurz, Annie Levasseur, Robert Beauregard, Manuele Margni. Temporally-differentiated biogenic carbon accounting of wood building product life cycles. SN Applied Sciences 2021, 3 (1) https://doi.org/10.1007/s42452-020-03979-2
    51. Jean-Daniel Bontemps, Anaïs Denardou, Jean-Christophe Hervé, Jean Bir, Jean-Luc Dupouey. Unprecedented pluri-decennial increase in the growing stock of French forests is persistent and dominated by private broadleaved forests. Annals of Forest Science 2020, 77 (4) https://doi.org/10.1007/s13595-020-01003-6
    52. Philippe Leturcq. GHG displacement factors of harvested wood products: the myth of substitution. Scientific Reports 2020, 10 (1) https://doi.org/10.1038/s41598-020-77527-8
    53. Haley M. Gardner, Vaclav Hasik, Abdulaziz Banawi, Maureen Olinzock, Melissa M. Bilec. Whole Building Life Cycle Assessment of a Living Building. Journal of Architectural Engineering 2020, 26 (4) https://doi.org/10.1061/(ASCE)AE.1943-5568.0000436
    54. Claudia Mair-Bauernfeind, Martina Zimek, Miriam Lettner, Franziska Hesser, Rupert J. Baumgartner, Tobias Stern. Comparing the incomparable? A review of methodical aspects in the sustainability assessment of wood in vehicles. The International Journal of Life Cycle Assessment 2020, 25 (11) , 2217-2240. https://doi.org/10.1007/s11367-020-01800-1
    55. Mario Martín-Gamboa, Pedro Marques, Fausto Freire, Luís Arroja, Ana Cláudia Dias. Life cycle assessment of biomass pellets: A review of methodological choices and results. Renewable and Sustainable Energy Reviews 2020, 133 , 110278. https://doi.org/10.1016/j.rser.2020.110278
    56. Anna Repo, Kyle Eyvindson, Panu Halme, Mikko Mönkkönen. Forest bioenergy harvesting changes carbon balance and risks biodiversity in boreal forest landscapes. Canadian Journal of Forest Research 2020, 50 (11) , 1184-1193. https://doi.org/10.1139/cjfr-2019-0284
    57. Andrea Sgarbossa, Martina Boschiero, Francesca Pierobon, Raffaele Cavalli, Michela Zanetti. Comparative Life Cycle Assessment of Bioenergy Production from Different Wood Pellet Supply Chains. Forests 2020, 11 (11) , 1127. https://doi.org/10.3390/f11111127
    58. Poritosh Roy, Animesh Dutta, Jim Gallant. Evaluation of the life cycle of hydrothermally carbonized biomass for energy and horticulture application. Renewable and Sustainable Energy Reviews 2020, 132 , 110046. https://doi.org/10.1016/j.rser.2020.110046
    59. Michael B. Jones, Fabrizio Albanito. Can biomass supply meet the demands of bioenergy with carbon capture and storage (BECCS)?. Global Change Biology 2020, 26 (10) , 5358-5364. https://doi.org/10.1111/gcb.15296
    60. Eirik Ogner Jåstad, Torjus Folsland Bolkesjø, Erik Trømborg, Per Kristian Rørstad. The role of woody biomass for reduction of fossil GHG emissions in the future North European energy sector. Applied Energy 2020, 274 , 115360. https://doi.org/10.1016/j.apenergy.2020.115360
    61. Koldo Saez de Bikuña, Rita Garcia, Ana Cláudia Dias, Fausto Freire. Global warming implications from increased forest biomass utilization for bioenergy in a supply-constrained context. Journal of Environmental Management 2020, 263 , 110292. https://doi.org/10.1016/j.jenvman.2020.110292
    62. Tarit Kumar Baul, Ashraful Alam, Harri Strandman, Jyri Seppälä, Heli Peltola, Antti Kilpeläinen. Radiative forcing of forest biomass production and use under different thinning regimes and initial age structures of a Norway spruce forest landscape. Canadian Journal of Forest Research 2020, 50 (6) , 523-532. https://doi.org/10.1139/cjfr-2019-0286
    63. Adam Gorgolewski, Philip Rudz, Trevor Jones, Nathan Basiliko, John Caspersen. Assessing Coarse Woody Debris Nutrient Dynamics in Managed Northern Hardwood Forests Using a Matrix Transition Model. Ecosystems 2020, 23 (3) , 541-554. https://doi.org/10.1007/s10021-019-00420-7
    64. Eirik Ogner Jåstad, Torjus Folsland Bolkesjø, Per Kristian Rørstad. Modelling effects of policies for increased production of forest-based liquid biofuel in the Nordic countries. Forest Policy and Economics 2020, 113 , 102091. https://doi.org/10.1016/j.forpol.2020.102091
    65. Alice Favero, Adam Daigneault, Brent Sohngen. Forests: Carbon sequestration, biomass energy, or both?. Science Advances 2020, 6 (13) https://doi.org/10.1126/sciadv.aay6792
    66. Emily Hope, Bruno Gagnon, Vanja Avdić. Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues. Sustainability 2020, 12 (5) , 1787. https://doi.org/10.3390/su12051787
    67. Mahdi Mazuchi. Life Cycle Analysis of Lignocellulosic Conversion into Fuels, Energy, and Chemicals. 2020, 313-332. https://doi.org/10.1002/9781119568858.ch14
    68. Weiguo Liu, Zhen Yu, Qiuan Zhu, Xiaolu Zhou, Changhui Peng. Assessment of biomass utilization potential of Caragana korshinskii and its effect on carbon sequestration on the Northern Shaanxi Loess Plateau, China. Land Degradation & Development 2020, 31 (1) , 53-64. https://doi.org/10.1002/ldr.3425
    69. Alessandro Agostini, Jacopo Giuntoli, Luisa Marelli, Stefano Amaducci. Flaws in the interpretation phase of bioenergy LCA fuel the debate and mislead policymakers. The International Journal of Life Cycle Assessment 2020, 25 (1) , 17-35. https://doi.org/10.1007/s11367-019-01654-2
    70. Paterson McKeough. A global strategy for forest utilization: mitigating climate change without unduly constraining utilization. Mitigation and Adaptation Strategies for Global Change 2019, 24 (8) , 1363-1399. https://doi.org/10.1007/s11027-019-09851-y
    71. Rut Serra, Iman Niknia, David Paré, Brian Titus, Bruno Gagnon, Jérôme Laganière. From conventional to renewable natural gas: can we expect GHG savings in the near term?. Biomass and Bioenergy 2019, 131 , 105396. https://doi.org/10.1016/j.biombioe.2019.105396
    72. Krzysztof Adamowicz, Ljiljana Keca. Can changes in forest management contribute to the reduction of CO 2 in the atmosphere? Literature review, discussion and Polish example. Folia Forestalia Polonica 2019, 61 (4) , 299-318. https://doi.org/10.2478/ffp-2019-0029
    73. Gahana Gopal, Manikprabhu Dhanorkar, Sharad Kale, Yogesh B. Patil. Life cycle assessment of anaerobic digestion systems. Management of Environmental Quality: An International Journal 2019, 31 (3) , 683-711. https://doi.org/10.1108/MEQ-10-2018-0178
    74. Gerald Kalt, Andreas Mayer, Michaela C. Theurl, Christian Lauk, Karl‐Heinz Erb, Helmut Haberl. Natural climate solutions versus bioenergy: Can carbon benefits of natural succession compete with bioenergy from short rotation coppice?. GCB Bioenergy 2019, 11 (11) , 1283-1297. https://doi.org/10.1111/gcbb.12626
    75. Michael Norton, Andras Baldi, Vicas Buda, Bruno Carli, Pavel Cudlin, Mike B. Jones, Atte Korhola, Rajmund Michalski, Francisco Novo, Július Oszlányi, Filpe Duarte Santos, Bernhard Schink, John Shepherd, Louise Vet, Lars Walloe, Anders Wijkman. Serious mismatches continue between science and policy in forest bioenergy. GCB Bioenergy 2019, 11 (11) , 1256-1263. https://doi.org/10.1111/gcbb.12643
    76. Woo, Acuna, Cho, Park. Assessment Techniques in Forest Biomass along the Timber Supply Chain. Forests 2019, 10 (11) , 1018. https://doi.org/10.3390/f10111018
    77. Md Farhad H. Masum, Kamalakanta Sahoo, Puneet Dwivedi. Ascertaining the Trajectory of Wood-Based Bioenergy Development in the United States Based on Current Economic, Social, and Environmental Constructs. Annual Review of Resource Economics 2019, 11 (1) , 169-193. https://doi.org/10.1146/annurev-resource-100518-093921
    78. Kevin R Fingerman, Gert‐Jan Nabuurs, Leire Iriarte, Uwe R Fritsche, Igor Staritsky, Lotte Visser, Thuy Mai‐Moulin, Martin Junginger. Opportunities and risks for sustainable biomass export from the south‐eastern United States to Europe. Biofuels, Bioproducts and Biorefining 2019, 13 (2) , 281-292. https://doi.org/10.1002/bbb.1845
    79. Marieke Head, Pierre Bernier, Annie Levasseur, Robert Beauregard, Manuele Margni. Forestry carbon budget models to improve biogenic carbon accounting in life cycle assessment. Journal of Cleaner Production 2019, 213 , 289-299. https://doi.org/10.1016/j.jclepro.2018.12.122
    80. Mirjam Röder, Evelyne Thiffault, Celia Martínez-Alonso, Fanny Senez-Gagnon, Laurence Paradis, Patricia Thornley. Understanding the timing and variation of greenhouse gas emissions of forest bioenergy systems. Biomass and Bioenergy 2019, 121 , 99-114. https://doi.org/10.1016/j.biombioe.2018.12.019
    81. Weiguo Liu, Qiuan Zhu, Xiaolu Zhou, Changhui Peng. Comparative analyses of different biogenic CO2 emission accounting systems in life cycle assessment. Science of The Total Environment 2019, 652 , 1456-1462. https://doi.org/10.1016/j.scitotenv.2018.11.039
    82. Taher Yousefi Amiri, Kamran Ghasemzadeh. Ethanol Economy. 2019, 451-504. https://doi.org/10.1016/B978-0-12-811458-2.00018-3
    83. Nasim Pour. Status of bioenergy with carbon capture and storage—potential and challenges. 2019, 85-107. https://doi.org/10.1016/B978-0-12-816229-3.00005-3
    84. Claude Durocher, Evelyne Thiffault, Alexis Achim, David Auty, Julie Barrette. Untapped volume of surplus forest growth as feedstock for bioenergy. Biomass and Bioenergy 2019, 120 , 376-386. https://doi.org/10.1016/j.biombioe.2018.11.024
    85. Timothy D. Searchinger, Tim Beringer, Bjart Holtsmark, Daniel M. Kammen, Eric F. Lambin, Wolfgang Lucht, Peter Raven, Jean-Pascal van Ypersele. Europe’s renewable energy directive poised to harm global forests. Nature Communications 2018, 9 (1) https://doi.org/10.1038/s41467-018-06175-4
    86. Sgouris Sgouridis. Flying sustainably with forest leftovers. Nature Sustainability 2018, 1 (12) , 735-736. https://doi.org/10.1038/s41893-018-0198-6
    87. Alexa J. Dugan, Richard Birdsey, Vanessa S. Mascorro, Michael Magnan, Carolyn E. Smyth, Marcela Olguin, Werner A. Kurz. A systems approach to assess climate change mitigation options in landscapes of the United States forest sector. Carbon Balance and Management 2018, 13 (1) https://doi.org/10.1186/s13021-018-0100-x
    88. Aude Valade, Sebastiaan Luyssaert, Patrick Vallet, Sylvestre Njakou Djomo, Ingride Jesus Van Der Kellen, Valentin Bellassen. Carbon costs and benefits of France’s biomass energy production targets. Carbon Balance and Management 2018, 13 (1) https://doi.org/10.1186/s13021-018-0113-5
    89. Tuğba Deniz, Alessandro Paletto. Effects of bioenergy production on environmental sustainability: a preliminary study based on expert opinions in Italy and Turkey. Journal of Forestry Research 2018, 29 (6) , 1611-1626. https://doi.org/10.1007/s11676-018-0596-7
    90. Neydeli Ayala-Mendivil, Georgina Sandoval. Bioenergía a partir de residuos forestales y de madera. Madera y Bosques 2018, 24 https://doi.org/10.21829/myb.2018.2401877
    91. A. Dimitriou, P. Roberts, G. A. Ormondroyd. VOC emissions from the combustion of low-grade lignocellulosic waste. International Wood Products Journal 2018, 9 (4) , 151-156. https://doi.org/10.1080/20426445.2018.1525510
    92. Ka-Lai Chan, Chengyu Dong, Man Sing Wong, Lee-Hyung Kim, Shao-Yuan Leu. Plant chemistry associated dynamic modelling to enhance urban vegetation carbon sequestration potential via bioenergy harvesting. Journal of Cleaner Production 2018, 197 , 1084-1094. https://doi.org/10.1016/j.jclepro.2018.06.233
    93. Atsushi Yoshimoto, Patrick Asante, Shizu Itaka. Incorporating Carbon and Bioenergy Concerns Into Forest Management. Current Forestry Reports 2018, 4 (3) , 150-160. https://doi.org/10.1007/s40725-018-0080-9
    94. Victor Keller, Benjamin Lyseng, Jeffrey English, Taco Niet, Kevin Palmer-Wilson, Iman Moazzen, Bryson Robertson, Peter Wild, Andrew Rowe. Coal-to-biomass retrofit in Alberta –value of forest residue bioenergy in the electricity system. Renewable Energy 2018, 125 , 373-383. https://doi.org/10.1016/j.renene.2018.02.128
    95. Nasim Pour, Paul A. Webley, Peter J. Cook. Opportunities for application of BECCS in the Australian power sector. Applied Energy 2018, 224 , 615-635. https://doi.org/10.1016/j.apenergy.2018.04.117
    96. Mathilda Eriksson, Runar Brännlund, Tommy Lundgren. Pricing forest carbon: Implications of asymmetry in climate policy. Journal of Forest Economics 2018, 32 , 84-93. https://doi.org/10.1016/j.jfe.2018.04.003
    97. Sei Jin Kim, Justin S. Baker, Brent L. Sohngen, Michael Shell. Cumulative global forest carbon implications of regional bioenergy expansion policies. Resource and Energy Economics 2018, 53 , 198-219. https://doi.org/10.1016/j.reseneeco.2018.04.003
    98. Matteo Rivoire, Alessandro Casasso, Bruno Piga, Rajandrea Sethi. Assessment of Energetic, Economic and Environmental Performance of Ground-Coupled Heat Pumps. Energies 2018, 11 (8) , 1941. https://doi.org/10.3390/en11081941
    99. Hwi-Min Jung, Ju Yeon Lee, Jung-Hyun Lee, Min-Kyu Oh. Improved production of isobutanol in pervaporation-coupled bioreactor using sugarcane bagasse hydrolysate in engineered Enterobacter aerogenes. Bioresource Technology 2018, 259 , 373-380. https://doi.org/10.1016/j.biortech.2018.03.081
    100. Thomas E. Swarr, Daniele Cespi, James Fava, Philip Nuss. Application of Life Cycle Assessment to Green Chemistry Objectives. 2018, 1-28. https://doi.org/10.1002/9783527628698.hgc113
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect