ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Life Cycle Emissions and Cost of Producing Electricity from Coal, Natural Gas, and Wood Pellets in Ontario, Canada

View Author Information
Department of Civil Engineering and School of Public Policy and Governance, University of Toronto, 35 St. George Street Toronto, Ontario M5S 1A4, FPInnovations−FERIC, 580 boul. St-Jean, Pointe-Claire, Quebec H9R 3J9, Ontario Power Generation, 700 University Avenue, Toronto, Ontario M5G 1X6 School of Policy Studies and Dept. of Geography, Queen’s University, 423-138 Union St. Kingston, Ontario K7L 3N6, and National Agriculture and Food Research Organization, 2 Ikenodai, Tsukuba, Ibaraki 305-0901, Japan
* Corresponding author phone: (416) 946-5056; e-mail: [email protected]
†Department of Civil Engineering, University of Toronto.
‡FPInnovations−FERIC.
§Ontario Power Generation.
∥Queen’s University.
⊥National Agriculture and Food Research Organization.
▽School of Public Policy and Governance, University of Toronto.
Cite this: Environ. Sci. Technol. 2010, 44, 1, 538–544
Publication Date (Web):December 4, 2009
https://doi.org/10.1021/es902555a
Copyright © 2009 American Chemical Society

    Article Views

    8400

    Altmetric

    -

    Citations

    157
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    The use of coal is responsible for 1/5 of global greenhouse gas (GHG) emissions. Substitution of coal with biomass fuels is one of a limited set of near-term options to significantly reduce these emissions. We investigate, on a life cycle basis, 100% wood pellet firing and cofiring with coal in two coal generating stations (GS) in Ontario, Canada. GHG and criteria air pollutant emissions are compared with current coal and hypothetical natural gas combined cycle (NGCC) facilities. 100% pellet utilization provides the greatest GHG benefit on a kilowatt-hour basis, reducing emissions by 91% and 78% relative to coal and NGCC systems, respectively. Compared to coal, using 100% pellets reduces NOx emissions by 40−47% and SOx emissions by 76−81%. At $160/metric ton of pellets and $7/GJ natural gas, either cofiring or NGCC provides the most cost-effective GHG mitigation ($70 and $47/metric ton of CO2 equivalent, respectively). The differences in coal price, electricity generation cost, and emissions at the two GS are responsible for the different options being preferred. A sensitivity analysis on fuel costs reveals considerable overlap in results for all options. A lower pellet price ($100/metric ton) results in a mitigation cost of $34/metric ton of CO2 equivalent for 10% cofiring at one of the GS. The study results suggest that biomass utilization in coal GS should be considered for its potential to cost-effectively mitigate GHGs from coal-based electricity in the near term.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Details on electricity generation in Ontario, conversion of coal generating stations to biomass, methods, and additional results and discussion. This information is available free of charge via the Internet at http://pubs.acs.org/.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 157 publications.

    1. Thomas Karl Hannl, Robin Faust, Matthias Kuba, Pavleta Knutsson, Teresa Berdugo Vilches, Martin Seemann, Marcus Öhman. Layer Formation on Feldspar Bed Particles during Indirect Gasification of Wood. 2. Na-Feldspar. Energy & Fuels 2019, 33 (8) , 7333-7346. https://doi.org/10.1021/acs.energyfuels.9b01292
    2. L. Jia, P. Geddis, S. Madrali, and F. Preto . Determination of Emission Factors for Co-firing Biomass and Coal in a Suspension Fired Research Furnace. Energy & Fuels 2016, 30 (9) , 7342-7356. https://doi.org/10.1021/acs.energyfuels.6b01157
    3. Frank Zeman . Reducing the Cost of Ca-Based Direct Air Capture of CO2. Environmental Science & Technology 2014, 48 (19) , 11730-11735. https://doi.org/10.1021/es502887y
    4. Kimberley A. Mullins, Aranya Venkatesh, Amy L. Nagengast, and Matt Kocoloski . Regional Allocation of Biomass to U.S. Energy Demands under a Portfolio of Policy Scenarios. Environmental Science & Technology 2014, 48 (5) , 2561-2568. https://doi.org/10.1021/es405222w
    5. Jason M. Luk , Mohammad Pourbafrani and Bradley A. Saville , Heather L. MacLean . Ethanol or Bioelectricity? Life Cycle Assessment of Lignocellulosic Bioenergy Use in Light-Duty Vehicles. Environmental Science & Technology 2013, 47 (18) , 10676-10684. https://doi.org/10.1021/es4006459
    6. David Sanscartier, Heather L. MacLean, and Bradley Saville . Electricity Production from Anaerobic Digestion of Household Organic Waste in Ontario: Techno-Economic and GHG Emission Analyses. Environmental Science & Technology 2012, 46 (2) , 1233-1242. https://doi.org/10.1021/es2016268
    7. Thomas O. Wilson, Frederick M. McNeal, Sabrina Spatari, David G. Abler, and Paul R. Adler . Densified Biomass Can Cost-Effectively Mitigate Greenhouse Gas Emissions and Address Energy Security in Thermal Applications. Environmental Science & Technology 2012, 46 (2) , 1270-1277. https://doi.org/10.1021/es202752b
    8. Jon McKechnie, Steve Colombo, Jiaxin Chen, Warren Mabee, and Heather L. MacLean . Forest Bioenergy or Forest Carbon? Assessing Trade-Offs in Greenhouse Gas Mitigation with Wood-Based Fuels. Environmental Science & Technology 2011, 45 (2) , 789-795. https://doi.org/10.1021/es1024004
    9. Shanmuganathan Ramasamy and Behdad Moghtaderi. Dielectric Properties of Typical Australian Wood-Based Biomass Materials at Microwave Frequency. Energy & Fuels 2010, 24 (8) , 4534-4548. https://doi.org/10.1021/ef100623e
    10. Yun-Long Zhang, Lan-Cui Liu, Jia-Ning Kang, Song Peng, Zhifu Mi, Hua Liao, Yi-Ming Wei. Economic feasibility assessment of coal-biomass co-firing power generation technology. Energy 2024, 296 , 131092. https://doi.org/10.1016/j.energy.2024.131092
    11. A. D. Misyukova, S. A. Yankovsky, A. K. Berikbolov, N. S. Yankovskaya. Ignition and Combustion of Mixed Fuels Based on Coal and Wood under Different Conditions of Thermal Influence. Solid Fuel Chemistry 2024, 58 (1) , 64-71. https://doi.org/10.3103/S0361521924010051
    12. Xiao Li, Huiyu Jin, Yatfei Chan, Hao Guo, Weichun Ma. Environmental impacts of graphene at industrial production scale and its application in electric heating technology. Resources, Conservation and Recycling 2023, 199 , 107250. https://doi.org/10.1016/j.resconrec.2023.107250
    13. Peyman Alizadeh, Edmund Mupondwa, Lope G. Tabil, Xue Li, Duncan Cree. Life cycle assessment of bioenergy production from wood sawdust. Journal of Cleaner Production 2023, 427 , 138936. https://doi.org/10.1016/j.jclepro.2023.138936
    14. Michael T. Ter-Mikaelian, Jiaxin Chen, Sabrina M. Desjardins, Stephen J. Colombo. Can Wood Pellets from Canada’s Boreal Forest Reduce Net Greenhouse Gas Emissions from Energy Generation in the UK?. Forests 2023, 14 (6) , 1090. https://doi.org/10.3390/f14061090
    15. Sylvester Kosi Mawusi, Prabin Shrestha, Chunyu Xue, Guangqing Liu. A comprehensive review of the production, adoption and sustained use of biomass pellets in Ghana. Heliyon 2023, 9 (6) , e16416. https://doi.org/10.1016/j.heliyon.2023.e16416
    16. Adekunbi B. Adetona, Daya R. Nhuchhen, David B. Layzell. Climate impact of diverting residual biomass to cement production. GCB Bioenergy 2023, 15 (5) , 710-730. https://doi.org/10.1111/gcbb.13047
    17. Adekunbi B. Adetona, David B. Layzell. Diverting residual biomass to energy use: Quantifying the global warming potential of biogenic CO 2 ( GWP bCO2 ). GCB Bioenergy 2023, 15 (5) , 697-709. https://doi.org/10.1111/gcbb.13048
    18. Claudie-Maude Canuel, Evelyne Thiffault, Ayaovi Locoh, Nelson Thiffault. La bioénergie forestière pour lutter contre les changements climatiques : quelles implications dans la transition énergétique du Québec (Canada)?. The Forestry Chronicle 2023, 99 (1) , 11-24. https://doi.org/10.5558/tfc2023-004
    19. Seong Ju Kim, Ji Hong Moon, Sung-Ho Jo, Sung Jin Park, Jae Young Kim, Geon Uk Beak, Sang Hee Yoon, Ho-Jung Ryu, Ho Won Ra, Sang Jun Yoon, Sung-Min Yoon, Jae Goo Lee, Tae-Young Mun. Enhancing oxygen savings and carbon dioxide purity in biomass oxy-circulating fluidized bed combustion with an oxygen carrier. Fuel 2023, 334 , 126612. https://doi.org/10.1016/j.fuel.2022.126612
    20. Claudie-Maude Canuel, Anne Bernard, Nelson Thiffault, Nancy Gélinas, Pierre Drapeau, Evelyne Thiffault, Nicolas Bélanger. Analyse d’une stratégie de production de bois : perspectives d’experts. The Forestry Chronicle 2022, 98 (1) , 19-27. https://doi.org/10.5558/tfc2022-003
    21. Claudie-Maude Canuel, Anne Bernard, Nelson Thiffault, Nancy Gélinas, Pierre Drapeau, Evelyne Thiffault, Nicolas Bélanger. Analysis of a wood production strategy from expert perspectives. The Forestry Chronicle 2022, 98 (1) , 10-18. https://doi.org/10.5558/tfc2022-004
    22. Israt Jahan, Guomin Zhang, Muhammed Bhuiyan, Satheeskumar Navaratnam. Circular Economy of Construction and Demolition Wood Waste—A Theoretical Framework Approach. Sustainability 2022, 14 (17) , 10478. https://doi.org/10.3390/su141710478
    23. Craig M. T. Johnston, Jinggang Guo, Jeffrey P. Prestemon. U.S. and Global Wood Energy Outlook under Alternative Shared Socioeconomic Pathways. Forests 2022, 13 (5) , 786. https://doi.org/10.3390/f13050786
    24. L. Reijnders. Life Cycle Assessment of Greenhouse Gas Emissions. 2022, 313-347. https://doi.org/10.1007/978-3-030-72579-2_2
    25. Maria Magdalena Parascanu, Nestor Sanchez, Fabiola Sandoval-Salas, Carlos Mendez Carreto, Gabriela Soreanu, Luz Sanchez-Silva. Environmental and economic analysis of bioethanol production from sugarcane molasses and agave juice. Environmental Science and Pollution Research 2021, 28 (45) , 64374-64393. https://doi.org/10.1007/s11356-021-15471-4
    26. Johannes Lehmann, Annette Cowie, Caroline A. Masiello, Claudia Kammann, Dominic Woolf, James E. Amonette, Maria L. Cayuela, Marta Camps-Arbestain, Thea Whitman. Biochar in climate change mitigation. Nature Geoscience 2021, 14 (12) , 883-892. https://doi.org/10.1038/s41561-021-00852-8
    27. Sergio Iván Martínez-Guido, Juan Fernando García-Trejo, Claudia Gutiérrez-Antonio, Aurelio Domínguez-González, Fernando Israel Gómez-Castro, José María Ponce-Ortega. The integration of pelletized agricultural residues into electricity grid: Perspectives from the human, environmental and economic aspects. Journal of Cleaner Production 2021, 321 , 128932. https://doi.org/10.1016/j.jclepro.2021.128932
    28. Mahmood Ebadian, Shahab Sokhansanj, David Lee, Alyssa Klein, Lawrence Townley-Smith. Evaluating the Economic Viability of Agricultural Pellets to Supplement the Current Global Wood Pellets Supply for Bioenergy Production. Energies 2021, 14 (8) , 2263. https://doi.org/10.3390/en14082263
    29. L. Reijnders. Life Cycle Assessment of Greenhouse Gas Emissions. 2021, 1-36. https://doi.org/10.1007/978-1-4614-6431-0_2-3
    30. Mario Martín-Gamboa, Pedro Marques, Fausto Freire, Luís Arroja, Ana Cláudia Dias. Life cycle assessment of biomass pellets: A review of methodological choices and results. Renewable and Sustainable Energy Reviews 2020, 133 , 110278. https://doi.org/10.1016/j.rser.2020.110278
    31. Junjie Li, Yonggang Wang, Deping Xu, Kechang Xie. High-resolution analysis of life-cycle carbon emissions from China’s coal-fired power industry: A provincial perspective. International Journal of Greenhouse Gas Control 2020, 100 , 103110. https://doi.org/10.1016/j.ijggc.2020.103110
    32. Jay R Malcolm, Bjart Holtsmark, Paul W Piascik. Forest harvesting and the carbon debt in boreal east-central Canada. Climatic Change 2020, 161 (3) , 433-449. https://doi.org/10.1007/s10584-020-02711-8
    33. Lige Zhang, Sabrina Spatari, Ying Sun. Life cycle assessment of novel heat exchanger for dry cooling of power plants based on encapsulated phase change materials. Applied Energy 2020, 271 , 115227. https://doi.org/10.1016/j.apenergy.2020.115227
    34. M. Perić, D. Antonijević, M. Komatina, B. Bugarski, M. Rakin. Life cycle assessment of wood chips supply chain in Serbia. Renewable Energy 2020, 155 , 1302-1311. https://doi.org/10.1016/j.renene.2020.04.026
    35. Vahid Nabavi, Majid Azizi, Asghar Tarmian, Charles David Ray. Feasibility study on the production and consumption of wood pellets in Iran to meet return-on-investment and greenhouse gas emissions targets. Renewable Energy 2020, 151 , 1-20. https://doi.org/10.1016/j.renene.2019.10.140
    36. Emily Hope, Bruno Gagnon, Vanja Avdić. Assessment of the Impact of Climate Change Policies on the Market for Forest Industrial Residues. Sustainability 2020, 12 (5) , 1787. https://doi.org/10.3390/su12051787
    37. Leila Ahmadi, Miyuru Kannangara, Farid Bensebaa. Cost-effectiveness of small scale biomass supply chain and bioenergy production systems in carbon credit markets: A life cycle perspective. Sustainable Energy Technologies and Assessments 2020, 37 , 100627. https://doi.org/10.1016/j.seta.2019.100627
    38. . References. 2020, 235-245. https://doi.org/10.1016/B978-0-12-819556-7.16001-2
    39. Matteo Cossutta, Viliam Vretenar, Teresa A. Centeno, Peter Kotrusz, Jon McKechnie, Stephen J. Pickering. A comparative life cycle assessment of graphene and activated carbon in a supercapacitor application. Journal of Cleaner Production 2020, 242 , 118468. https://doi.org/10.1016/j.jclepro.2019.118468
    40. Md Farhad Hossain Masum, Puneet Dwivedi, William F. Anderson. Estimating unit production cost, carbon intensity, and carbon abatement cost of electricity generation from bioenergy feedstocks in Georgia, United States. Renewable and Sustainable Energy Reviews 2020, 117 , 109514. https://doi.org/10.1016/j.rser.2019.109514
    41. Remy Rigo-Mariani, Chuan Zhang, Alessandro Romagnoli, Markus Kraft, Keck Voon Ling, Jan Maciejowski. A Combined Cycle Gas Turbine Model for Heat and Power Dispatch Subject to Grid Constraints. IEEE Transactions on Sustainable Energy 2020, 11 (1) , 448-456. https://doi.org/10.1109/TSTE.2019.2894793
    42. Jenifer L. Wightman, Peter B. Woodbury. Maximizing social benefit from finite energy resource allocation. Energy, Sustainability and Society 2019, 9 (1) https://doi.org/10.1186/s13705-019-0208-1
    43. Robert Baťa, Jan Fuka, Petra Lešáková, Jana Heckenbergerová. CO2 Efficiency Break Points for Processes Associated to Wood and Coal Transport and Heating. Energies 2019, 12 (20) , 3864. https://doi.org/10.3390/en12203864
    44. Md. Uzzal Hossain, Chi Sun Poon, Michael Yue Kwong Wong, Aung Khine. Techno-environmental feasibility of wood waste derived fuel for cement production. Journal of Cleaner Production 2019, 230 , 663-671. https://doi.org/10.1016/j.jclepro.2019.05.132
    45. D. Hernández, H. Fernández-Puratich, R. Rebolledo-Leiva, C. Tenreiro, D. Gabriel. Evaluation of sustainable manufacturing of pellets combining wastes from olive oil and forestry industries. Industrial Crops and Products 2019, 134 , 338-346. https://doi.org/10.1016/j.indcrop.2019.04.015
    46. Henning Visser, George Alex Thopil, Alan Brent. Life cycle cost profitability of biomass power plants in South Africa within the international context. Renewable Energy 2019, 139 , 9-21. https://doi.org/10.1016/j.renene.2019.02.080
    47. Vinay Gonela, Dalila Salazar, Jun Zhang, Atif Osmani, Iddrisu Awudu, Barbara Altman. Designing a sustainable stochastic electricity generation network with hybrid production strategies. International Journal of Production Research 2019, 57 (8) , 2304-2326. https://doi.org/10.1080/00207543.2018.1516900
    48. Kui Wang, Yuanyuan Zhang, Gasper Sekelj, Philip K. Hopke. Economic analysis of a field monitored residential wood pellet boiler heating system in New York State. Renewable Energy 2019, 133 , 500-511. https://doi.org/10.1016/j.renene.2018.10.026
    49. Leila Hoseinzade, Thomas A. Adams. Techno-economic and environmental analyses of a novel, sustainable process for production of liquid fuels using helium heat transfer. Applied Energy 2019, 236 , 850-866. https://doi.org/10.1016/j.apenergy.2018.12.006
    50. Paul R. Adler, Megan E. Hums, Frederick M. McNeal, Sabrina Spatari. Evaluation of environmental and cost tradeoffs of producing energy from soybeans for on-farm use. Journal of Cleaner Production 2019, 210 , 1635-1649. https://doi.org/10.1016/j.jclepro.2018.11.019
    51. Agnieszka Żelazna, Artur Kraszkiewicz, Artur Przywara, Grzegorz Łagód, Zbigniew Suchorab, Sebastian Werle, Javier Ballester, Radovan Nosek. Life cycle assessment of production of black locust logs and straw pellets for energy purposes. Environmental Progress & Sustainable Energy 2019, 38 (1) , 163-170. https://doi.org/10.1002/ep.13043
    52. Enze Jin, John W. Sutherland. An integrated sustainability model for a bioenergy system: Forest residues for electricity generation. Biomass and Bioenergy 2018, 119 , 10-21. https://doi.org/10.1016/j.biombioe.2018.09.005
    53. Manar Younis, Sabla Y. Alnouri, Belal J. Abu Tarboush, Mohammad N. Ahmad. Renewable biofuel production from biomass: a review for biomass pelletization, characterization, and thermal conversion techniques. International Journal of Green Energy 2018, 15 (13) , 837-863. https://doi.org/10.1080/15435075.2018.1529581
    54. Azadeh Maroufmashat, Michael Fowler. Policy Considerations for Zero-Emission Vehicle Infrastructure Incentives: Case Study in Canada. World Electric Vehicle Journal 2018, 9 (3) , 38. https://doi.org/10.3390/wevj9030038
    55. Atsushi Yoshimoto, Patrick Asante, Shizu Itaka. Incorporating Carbon and Bioenergy Concerns Into Forest Management. Current Forestry Reports 2018, 4 (3) , 150-160. https://doi.org/10.1007/s40725-018-0080-9
    56. Enrico Marchi, Woodam Chung, Rien Visser, Dalia Abbas, Tomas Nordfjell, Piotr S. Mederski, Andrew McEwan, Michal Brink, Andrea Laschi. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Science of The Total Environment 2018, 634 , 1385-1397. https://doi.org/10.1016/j.scitotenv.2018.04.084
    57. Raghava Kommalapati, Iqbal Hossan, Venkata Botlaguduru, Hongbo Du, Ziaul Huque. Life Cycle Environmental Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area. Sustainability 2018, 10 (7) , 2193. https://doi.org/10.3390/su10072193
    58. Hadi Karimi, Sandra Duni Ekşioğlu, Amin Khademi. Analyzing tax incentives for producing renewable energy by biomass cofiring. IISE Transactions 2018, 50 (4) , 332-344. https://doi.org/10.1080/24725854.2017.1401755
    59. Charlotta Porsö, Torun Hammar, Daniel Nilsson, Per-Anders Hansson. Time-Dependent Climate Impact and Energy Efficiency of Internationally Traded Non-torrefied and Torrefied Wood Pellets from Logging Residues. BioEnergy Research 2018, 11 (1) , 139-151. https://doi.org/10.1007/s12155-017-9884-x
    60. Md. Uzzal Hossain, Chi Sun Poon. Comparative LCA of wood waste management strategies generated from building construction activities. Journal of Cleaner Production 2018, 177 , 387-397. https://doi.org/10.1016/j.jclepro.2017.12.233
    61. Jeanette Whitaker, John L. Field, Carl J. Bernacchi, Carlos E. P. Cerri, Reinhart Ceulemans, Christian A. Davies, Evan H. DeLucia, Iain S. Donnison, Jon P. McCalmont, Keith Paustian, Rebecca L. Rowe, Pete Smith, Patricia Thornley, Niall P. McNamara. Consensus, uncertainties and challenges for perennial bioenergy crops and land use. GCB Bioenergy 2018, 10 (3) , 150-164. https://doi.org/10.1111/gcbb.12488
    62. Brandon Morrison, Jay S. Golden. Southeastern United States wood pellets as a global energy resource: a cradle-to-gate life cycle assessment derived from empirical data. International Journal of Sustainable Energy 2018, 37 (2) , 134-146. https://doi.org/10.1080/14786451.2016.1188816
    63. Zhen Xu, Carolyn E. Smyth, Tony C. Lemprière, Greg J. Rampley, Werner A. Kurz. Climate change mitigation strategies in the forest sector: biophysical impacts and economic implications in British Columbia, Canada. Mitigation and Adaptation Strategies for Global Change 2018, 23 (2) , 257-290. https://doi.org/10.1007/s11027-016-9735-7
    64. Nathan W. Ayer, Goretty Dias. Supplying renewable energy for Canadian cement production: Life cycle assessment of bioenergy from forest harvest residues using mobile fast pyrolysis units. Journal of Cleaner Production 2018, 175 , 237-250. https://doi.org/10.1016/j.jclepro.2017.12.040
    65. Tiziana Susca. Embodied Carbon of Surfaces: Inclusion of Surface Albedo Accounting in Life-Cycle Assessment. 2018, 105-122. https://doi.org/10.1007/978-3-319-72796-7_5
    66. Leila Hoseinzade, Thomas A. Adams. Combining Biomass, Natural Gas, and Carbonless Heat to Produce Liquid Fuels and Electricity. 2018, 1401-1406. https://doi.org/10.1016/B978-0-444-64235-6.50245-X
    67. Qingbin Song, Zhishi Wang, Jinhui Li, Huabo Duan, Danfeng Yu, Gang Liu. Comparative life cycle GHG emissions from local electricity generation using heavy oil, natural gas, and MSW incineration in Macau. Renewable and Sustainable Energy Reviews 2018, 81 , 2450-2459. https://doi.org/10.1016/j.rser.2017.06.051
    68. Nafisa Mahbub, Adetoyese Olajire Oyedun, Amit Kumar, Dorian Oestreich, Ulrich Arnold, Jörg Sauer. A life cycle assessment of oxymethylene ether synthesis from biomass-derived syngas as a diesel additive. Journal of Cleaner Production 2017, 165 , 1249-1262. https://doi.org/10.1016/j.jclepro.2017.07.178
    69. Goretty M. Dias, Nathan W. Ayer, Kumudinie Kariyapperuma, Naresh Thevathasan, Andrew Gordon, Derek Sidders, Gudmundur H. Johannesson. Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada. Applied Energy 2017, 204 , 343-352. https://doi.org/10.1016/j.apenergy.2017.07.051
    70. Nathaniel Springer, Nalladurai Kaliyan, Bridget Bobick, Jason Hill. Seeing the forest for the trees: How much woody biomass can the Midwest United States sustainably produce?. Biomass and Bioenergy 2017, 105 , 266-277. https://doi.org/10.1016/j.biombioe.2017.05.011
    71. Mohammad S. Roni, Sudipta Chowdhury, Saleh Mamun, Mohammad Marufuzzaman, William Lein, Samuel Johnson. Biomass co-firing technology with policies, challenges, and opportunities: A global review. Renewable and Sustainable Energy Reviews 2017, 78 , 1089-1101. https://doi.org/10.1016/j.rser.2017.05.023
    72. Kurt Woytiuk, David Sanscartier, Beyhan Y. Amichev, William Campbell, Ken Van Rees. Life‐cycle assessment of torrefied coppice willow co‐firing with lignite coal in an existing pulverized coal boiler. Biofuels, Bioproducts and Biorefining 2017, 11 (5) , 830-846. https://doi.org/10.1002/bbb.1788
    73. F. Meng, J. McKechnie, T.A. Turner, S.J. Pickering. Energy and environmental assessment and reuse of fluidised bed recycled carbon fibres. Composites Part A: Applied Science and Manufacturing 2017, 100 , 206-214. https://doi.org/10.1016/j.compositesa.2017.05.008
    74. Hui Xian, Gregory Colson, Berna Karali, Michael Wetzstein. Do nonrenewable-energy prices affect renewable-energy volatility? The case of wood pellets. Journal of Forest Economics 2017, 28 , 42-48. https://doi.org/10.1016/j.jfe.2017.05.004
    75. Jeffrey Morris. Recycle, Bury, or Burn Wood Waste Biomass?: LCA Answer Depends on Carbon Accounting, Emissions Controls, Displaced Fuels, and Impact Costs. Journal of Industrial Ecology 2017, 21 (4) , 844-856. https://doi.org/10.1111/jiec.12469
    76. Saeed Ghafghazi, Kyle Lochhead, Anne-Helen Mathey, Nicklas Forsell, Sylvain Leduc, Warren Mabee, Gary Bull. Estimating Mill Residue Surplus in Canada: A Spatial Forest Fiber Cascade Modeling Approach. Forest Products Journal 2017, 67 (3-4) , 205-218. https://doi.org/10.13073/FPJ-D-16-00031
    77. Bin Mei, Michael Wetzstein. Burning wood pellets for US electricity generation? A regime switching analysis. Energy Economics 2017, 65 , 434-441. https://doi.org/10.1016/j.eneco.2017.05.025
    78. Md. Uzzal Hossain, Chi Sun Poon, Irene M.C. Lo, Jack C.P. Cheng. Comparative LCA on using waste materials in the cement industry: A Hong Kong case study. Resources, Conservation and Recycling 2017, 120 , 199-208. https://doi.org/10.1016/j.resconrec.2016.12.012
    79. Brandon Morrison, Jay S. Golden. Life cycle assessment of co-firing coal and wood pellets in the Southeastern United States. Journal of Cleaner Production 2017, 150 , 188-196. https://doi.org/10.1016/j.jclepro.2017.03.026
    80. Y. Yang, J.G. Brammer, D.G. Wright, J.A. Scott, C. Serrano, A.V. Bridgwater. Combined heat and power from the intermediate pyrolysis of biomass materials: performance, economics and environmental impact. Applied Energy 2017, 191 , 639-652. https://doi.org/10.1016/j.apenergy.2017.02.004
    81. Sarah Stutzman, Brandon Weiland, Paul Preckel, Michael Wetzstein. Optimal replacement policies for an uncertain rejuvenated asset. International Journal of Production Economics 2017, 185 , 21-33. https://doi.org/10.1016/j.ijpe.2016.12.018
    82. L. Reijnders. Life Cycle Assessment of Greenhouse Gas Emissions. 2017, 61-91. https://doi.org/10.1007/978-3-319-14409-2_2
    83. Adetoyese Olajire Oyedun, Amit Kumar. An Assessment of the Effects of Biomass Processing Methods on Power Generation. 2017, 153-170. https://doi.org/10.1016/B978-0-12-409548-9.10531-7
    84. Bo Shen, Yafeng Han, Lynn Price, Hongyou Lu, Manzhi Liu. Techno-economic evaluation of strategies for addressing energy and environmental challenges of industrial boilers in China. Energy 2017, 118 , 526-533. https://doi.org/10.1016/j.energy.2016.10.083
    85. Alberto-Jesús Perea-Moreno, Adel Juaidi, Francisco Manzano-Agugliaro. Solar greenhouse dryer system for wood chips improvement as biofuel. Journal of Cleaner Production 2016, 135 , 1233-1241. https://doi.org/10.1016/j.jclepro.2016.07.036
    86. Jon McKechnie, Brad Saville, Heather L. MacLean. Steam-treated wood pellets: Environmental and financial implications relative to fossil fuels and conventional pellets for electricity generation. Applied Energy 2016, 180 , 637-649. https://doi.org/10.1016/j.apenergy.2016.08.024
    87. Yemane W. Weldu, Getachew Assefa. Evaluating the environmental sustainability of biomass-based energy strategy: Using an impact matrix framework. Environmental Impact Assessment Review 2016, 60 , 75-82. https://doi.org/10.1016/j.eiar.2016.05.005
    88. Christian Wolf, Daniel Klein, Gabriele Weber‐Blaschke, Klaus Richter. Systematic Review and Meta‐Analysis of Life Cycle Assessments for Wood Energy Services. Journal of Industrial Ecology 2016, 20 (4) , 743-763. https://doi.org/10.1111/jiec.12321
    89. Matthew Kieffer, Tristan Brown, Robert C. Brown. Flex fuel polygeneration: Integrating renewable natural gas into Fischer–Tropsch synthesis. Applied Energy 2016, 170 , 208-218. https://doi.org/10.1016/j.apenergy.2016.02.115
    90. A. Ewertowska, A. Galán-Martín, G. Guillén-Gosálbez, J. Gavaldá, L. Jiménez. Assessment of the environmental efficiency of the electricity mix of the top European economies via data envelopment analysis. Journal of Cleaner Production 2016, 116 , 13-22. https://doi.org/10.1016/j.jclepro.2015.11.100
    91. Thomas Buchholz, Matthew D. Hurteau, John Gunn, David Saah. A global meta‐analysis of forest bioenergy greenhouse gas emission accounting studies. GCB Bioenergy 2016, 8 (2) , 281-289. https://doi.org/10.1111/gcbb.12245
    92. Md. Uzzal Hossain, Shao-Yuan Leu, Chi Sun Poon. Sustainability analysis of pelletized bio-fuel derived from recycled wood product wastes in Hong Kong. Journal of Cleaner Production 2016, 113 , 400-410. https://doi.org/10.1016/j.jclepro.2015.11.069
    93. Qing Yang, Fei Han, Yingquan Chen, Haiping Yang, Hanping Chen. Greenhouse gas emissions of a biomass-based pyrolysis plant in China. Renewable and Sustainable Energy Reviews 2016, 53 , 1580-1590. https://doi.org/10.1016/j.rser.2015.09.049
    94. N. Mac Dowell, M. Fajardy. On the potential for BECCS efficiency improvement through heat recovery from both post-combustion and oxy-combustion facilities. Faraday Discussions 2016, 192 , 241-250. https://doi.org/10.1039/C6FD00051G
    95. Krish Homagain, Chander Shahi, Nancy Luckai, Mahadev Sharma. Life cycle environmental impact assessment of biochar-based bioenergy production and utilization in Northwestern Ontario, Canada. Journal of Forestry Research 2015, 26 (4) , 799-809. https://doi.org/10.1007/s11676-015-0132-y
    96. David B. Richardson, L.D. Danny Harvey. Optimizing renewable energy, demand response and energy storage to replace conventional fuels in Ontario, Canada. Energy 2015, 93 , 1447-1455. https://doi.org/10.1016/j.energy.2015.10.025
    97. Claudia Cambero, Mariane Hans Alexandre, Taraneh Sowlati. Life cycle greenhouse gas analysis of bioenergy generation alternatives using forest and wood residues in remote locations: A case study in British Columbia, Canada. Resources, Conservation and Recycling 2015, 105 , 59-72. https://doi.org/10.1016/j.resconrec.2015.10.014
    98. S. Njakou Djomo, N. Witters, M. Van Dael, B. Gabrielle, R. Ceulemans. Impact of feedstock, land use change, and soil organic carbon on energy and greenhouse gas performance of biomass cogeneration technologies. Applied Energy 2015, 154 , 122-130. https://doi.org/10.1016/j.apenergy.2015.04.097
    99. Chan-Joong Kim, Jimin Kim, Taehoon Hong, Choongwan Koo, Kwangbok Jeong, Hyo Seon Park. A program-level management system for the life cycle environmental and economic assessment of complex building projects. Environmental Impact Assessment Review 2015, 54 , 9-21. https://doi.org/10.1016/j.eiar.2015.04.005
    100. Changqing Xu, Jinglan Hong, Yixin Ren, Qingsong Wang, Xueliang Yuan. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China. Environmental Science and Pollution Research 2015, 22 (16) , 12384-12395. https://doi.org/10.1007/s11356-015-4539-y
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect