ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Cytotoxicity Effects of Graphene and Single-Wall Carbon Nanotubes in Neural Phaeochromocytoma-Derived PC12 Cells

View Author Information
Neurochemistry Laboratory, Division of Neurotoxicology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Road, Jefferson, Arkansas 72079
Nanotechnology Center, Applied Science Department, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, Arkansas 72204
* Address correspondence to [email protected], [email protected]
Cite this: ACS Nano 2010, 4, 6, 3181–3186
Publication Date (Web):May 18, 2010
https://doi.org/10.1021/nn1007176
Copyright © 2010 American Chemical Society

    Article Views

    9639

    Altmetric

    -

    Citations

    965
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    Abstract Image

    Graphitic nanomaterials such as graphene layers (G) and single-wall carbon nanotubes (SWCNT) are potential candidates in a large number of biomedical applications. However, little is known about the effects of these nanomaterials on biological systems. Here we show that the shape of these materials is directly related to their induced cellular toxicity. Both G and SWCNT induce cytotoxic effects, and these effects are concentration- and shape-dependent. Interestingly, at low concentrations, G induced stronger metabolic activity than SWCNT, a trend that reversed at higher concentrations. Lactate dehydrogenase levels were found to be significantly higher for SWCNT as compared to the G samples. Moreover, reactive oxygen species were generated in a concentration- and time-dependent manner after exposure to G, indicating an oxidative stress mechanism. Furthermore, time-dependent caspase 3 activation after exposure to G (10 μg/mL) shows evidence of apoptosis. Altogether these studies suggest different biological activities of the graphitic nanomaterials, with the shape playing a primary role.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Cited By

    This article is cited by 965 publications.

    1. Ying Xiang, Yuewu Zhao, Tingting Cheng, Shengkai Sun, Jine Wang, Renjun Pei. Implantable Neural Microelectrodes: How to Reduce Immune Response. ACS Biomaterials Science & Engineering 2024, Article ASAP.
    2. Priya Mandal, Sajal K. Ghosh. Graphene-Based Nanomaterials and Their Interactions with Lipid Membranes. Langmuir 2023, 39 (51) , 18713-18729. https://doi.org/10.1021/acs.langmuir.3c02805
    3. Wenjun Dai, Yidan Chen, Yunxin Xue, Mimi Wan, Chun Mao, Ke Zhang. Progress in the Treatment of Peritoneal Metastatic Cancer and the Application of Therapeutic Nanoagents. ACS Applied Bio Materials 2023, 6 (11) , 4518-4548. https://doi.org/10.1021/acsabm.3c00662
    4. Guldem Utkan, Gorkem Yumusak, Beste Cagdas Tunali, Tarik Ozturk, Mustafa Turk. Production of Reduced Graphene Oxide by Using Three Different Microorganisms and Investigation of Their Cell Interactions. ACS Omega 2023, 8 (34) , 31188-31200. https://doi.org/10.1021/acsomega.3c03213
    5. Şeyma Taşdemir, Zehra Gül Morçimen, Aslı Aybike Doğan, Cansu Görgün, Aylin Şendemir. Surface Area of Graphene Governs Its Neurotoxicity. ACS Biomaterials Science & Engineering 2023, 9 (6) , 3297-3305. https://doi.org/10.1021/acsbiomaterials.3c00104
    6. Nalinee Kanth Kadiyala, Badal Kumar Mandal, L. Vinod Kumar Reddy, Crispin H. W. Barnes, Luis De Los Santos Valladares, Dwaipayan Sen. Efficient One-Pot Solvothermal Synthesis and Characterization of Zirconia Nanoparticle-Decorated Reduced Graphene Oxide Nanocomposites: Evaluation of Their Enhanced Anticancer Activity toward Human Cancer Cell Lines. ACS Omega 2023, 8 (2) , 2406-2420. https://doi.org/10.1021/acsomega.2c06822
    7. André F. Girão, María Concepcion Serrano, António Completo, Paula A. A. P. Marques. Is Graphene Shortening the Path toward Spinal Cord Regeneration?. ACS Nano 2022, 16 (9) , 13430-13467. https://doi.org/10.1021/acsnano.2c04756
    8. Chaonan Mu, Dong Xing, Dongmei Zhang, Chu Gong, Jie Wang, Lingling Zhao, Danyang Li, Xinxing Zhang. Mass Spectrometry and Cryogenic Electron Microscopy Illuminate Molecular-Level Mechanisms of the Oxidative and Structural Damage to Lipid Membranes by Radical-Bearing Graphene Oxide. The Journal of Physical Chemistry Letters 2022, 13 (11) , 2638-2643. https://doi.org/10.1021/acs.jpclett.2c00211
    9. Huan Xu, Mengyuan Shen, Han Shang, Wenxuan Xu, Shenghui Zhang, Hao-Ran Yang, Dongmei Zhou, Minna Hakkarainen. Osteoconductive and Antibacterial Poly(lactic acid) Fibrous Membranes Impregnated with Biobased Nanocarbons for Biodegradable Bone Regenerative Scaffolds. Industrial & Engineering Chemistry Research 2021, 60 (32) , 12021-12031. https://doi.org/10.1021/acs.iecr.1c02165
    10. Alexander Halim, Kai-Yun Qu, Xiao-Feng Zhang, Ning-Ping Huang. Recent Advances in the Application of Two-Dimensional Nanomaterials for Neural Tissue Engineering and Regeneration. ACS Biomaterials Science & Engineering 2021, 7 (8) , 3503-3529. https://doi.org/10.1021/acsbiomaterials.1c00490
    11. Malgorzata Karolina Pierchala, Firoz Babu Kadumudi, Mehdi Mehrali, Tiberiu-Gabriel Zsurzsan, Paul J. Kempen, Marcin Piotr Serdeczny, Jon Spangenberg, Thomas L. Andresen, Alireza Dolatshahi-Pirouz. Soft Electronic Materials with Combinatorial Properties Generated via Mussel-Inspired Chemistry and Halloysite Nanotube Reinforcement. ACS Nano 2021, 15 (6) , 9531-9549. https://doi.org/10.1021/acsnano.0c09204
    12. Yan Li (Associate Editor). Carbon Nanotube Research in Its 30th Year. ACS Nano 2021, 15 (6) , 9197-9200. https://doi.org/10.1021/acsnano.1c04972
    13. Jamie J. Grant, Suresh C. Pillai, Sarah Hehir, Marion McAfee, Ailish Breen. Biomedical Applications of Electrospun Graphene Oxide. ACS Biomaterials Science & Engineering 2021, 7 (4) , 1278-1301. https://doi.org/10.1021/acsbiomaterials.0c01663
    14. Yanxue Liu, Tianjiao Kong, Zixuan Yang, Yawen Zhang, Jiandu Lei, Peng Zhao. Self-Assembled Folic Acid-Targeted Pectin-Multi-Arm Polyethylene Glycol Nanoparticles for Tumor Intracellular Chemotherapy. ACS Omega 2021, 6 (2) , 1223-1234. https://doi.org/10.1021/acsomega.0c04350
    15. Narges Safari, Nasim Golafshan, Mahshid Kharaziha, Mohammad Reza Toroghinejad, Lizette Utomo, Jos Malda, Miguel Castilho. Stable and Antibacterial Magnesium–Graphene Nanocomposite-Based Implants for Bone Repair. ACS Biomaterials Science & Engineering 2020, 6 (11) , 6253-6262. https://doi.org/10.1021/acsbiomaterials.0c00613
    16. Phillip Lu, Alireza Zehtab Yazdi, Xiao Xia Han, Khalsa Al Husaini, Jessica Haime, Naomi Waye, P. Chen. Mechanistic Insights into the Cytotoxicity of Graphene Oxide Derivatives in Mammalian Cells. Chemical Research in Toxicology 2020, 33 (9) , 2247-2260. https://doi.org/10.1021/acs.chemrestox.9b00391
    17. William K. Boyes, Christoph van Thriel. Neurotoxicology of Nanomaterials. Chemical Research in Toxicology 2020, 33 (5) , 1121-1144. https://doi.org/10.1021/acs.chemrestox.0c00050
    18. Hui Zhou, Jianxian Ge, Qingqing Miao, Ran Zhu, Ling Wen, Jianfeng Zeng, Mingyuan Gao. Biodegradable Inorganic Nanoparticles for Cancer Theranostics: Insights into the Degradation Behavior. Bioconjugate Chemistry 2020, 31 (2) , 315-331. https://doi.org/10.1021/acs.bioconjchem.9b00699
    19. Mohamad Hamdi Zainal-Abidin, Maan Hayyan, Gek Cheng Ngoh, Won Fen Wong. Doxorubicin Loading on Functional Graphene as a Promising Nanocarrier Using Ternary Deep Eutectic Solvent Systems. ACS Omega 2020, 5 (3) , 1656-1668. https://doi.org/10.1021/acsomega.9b03709
    20. Tsung-Han Lee, Chen-Tung Yen, Shan-hui Hsu. Preparation of Polyurethane-Graphene Nanocomposite and Evaluation of Neurovascular Regeneration. ACS Biomaterials Science & Engineering 2020, 6 (1) , 597-609. https://doi.org/10.1021/acsbiomaterials.9b01473
    21. Lin Li, Shili Sun, Lingli Tan, Yuanfang Wang, Luyao Wang, Zhirong Zhang, Ling Zhang. Polystyrene Nanoparticles Reduced ROS and Inhibited Ferroptosis by Triggering Lysosome Stress and TFEB Nucleus Translocation in a Size-Dependent Manner. Nano Letters 2019, 19 (11) , 7781-7792. https://doi.org/10.1021/acs.nanolett.9b02795
    22. Adam Bolotsky, Derrick Butler, Chengye Dong, Katy Gerace, Nicholas R. Glavin, Christopher Muratore, Joshua A. Robinson, Aida Ebrahimi. Two-Dimensional Materials in Biosensing and Healthcare: From In Vitro Diagnostics to Optogenetics and Beyond. ACS Nano 2019, 13 (9) , 9781-9810. https://doi.org/10.1021/acsnano.9b03632
    23. Timothy C. Moore, Alexander H. Yang, Olu Ogungbesan, Remco Hartkamp, Christopher R. Iacovella, Qi Zhang, Clare McCabe. Influence of Single-Stranded DNA Coatings on the Interaction between Graphene Nanoflakes and Lipid Bilayers. The Journal of Physical Chemistry B 2019, 123 (36) , 7711-7721. https://doi.org/10.1021/acs.jpcb.9b04042
    24. Nishtha Panwar, Alana Mauluidy Soehartono, Kok Ken Chan, Shuwen Zeng, Gaixia Xu, Junle Qu, Philippe Coquet, Ken-Tye Yong, Xiaoyuan Chen. Nanocarbons for Biology and Medicine: Sensing, Imaging, and Drug Delivery. Chemical Reviews 2019, 119 (16) , 9559-9656. https://doi.org/10.1021/acs.chemrev.9b00099
    25. Kartik Ravishankar, K. M. Shelly, Abathodharanan Narayanan, Raghavachari Dhamodharan. Rapid, Solvent-Free Synthesis of Amorphous, Photoluminescent, Carbon Nanodots from Imidazole and Maleic Anhydride Solids. ACS Sustainable Chemistry & Engineering 2019, 7 (15) , 13206-13216. https://doi.org/10.1021/acssuschemeng.9b02446
    26. Qinjie Weng, Xi Hu, Jiahuan Zheng, Fan Xia, Nan Wang, Hongwei Liao, Ying Liu, Dokyoon Kim, Jianan Liu, Fangyuan Li, Qiaojun He, Bo Yang, Chunying Chen, Taeghwan Hyeon, Daishun Ling. Toxicological Risk Assessments of Iron Oxide Nanocluster- and Gadolinium-Based T1MRI Contrast Agents in Renal Failure Rats. ACS Nano 2019, 13 (6) , 6801-6812. https://doi.org/10.1021/acsnano.9b01511
    27. Qinqin Hu, Hua Li, Lihua Wang, Hongzhou Gu, Chunhai Fan. DNA Nanotechnology-Enabled Drug Delivery Systems. Chemical Reviews 2019, 119 (10) , 6459-6506. https://doi.org/10.1021/acs.chemrev.7b00663
    28. Meng Li, Huaqiong Li, Qiongxi Pan, Chenyuan Gao, Yingying Wang, Shuoshuo Yang, Xingjie Zan, Yifu Guan. Graphene Oxide and Lysozyme Ultrathin Films with Strong Antibacterial and Enhanced Osteogenesis. Langmuir 2019, 35 (20) , 6752-6761. https://doi.org/10.1021/acs.langmuir.9b00035
    29. Juan Wang, Wei Zheng, Liang Chen, Tonghe Zhu, Wei Shen, Cunyi Fan, Hongjun Wang, Xiumei Mo. Enhancement of Schwann Cells Function Using Graphene-Oxide-Modified Nanofiber Scaffolds for Peripheral Nerve Regeneration. ACS Biomaterials Science & Engineering 2019, 5 (5) , 2444-2456. https://doi.org/10.1021/acsbiomaterials.8b01564
    30. Krishnangsu Pradhan, Gaurav Das, Juhee Khan, Varsha Gupta, Surajit Barman, Anindyasundar Adak, Surajit Ghosh. Neuro-Regenerative Choline-Functionalized Injectable Graphene Oxide Hydrogel Repairs Focal Brain Injury. ACS Chemical Neuroscience 2019, 10 (3) , 1535-1543. https://doi.org/10.1021/acschemneuro.8b00514
    31. Fatima Alnasser, Valentina Castagnola, Luca Boselli, Margarita Esquivel-Gaon, Esen Efeoglu, Jennifer McIntyre, Hugh J. Byrne, Kenneth A. Dawson. Graphene Nanoflake Uptake Mediated by Scavenger Receptors. Nano Letters 2019, 19 (2) , 1260-1268. https://doi.org/10.1021/acs.nanolett.8b04820
    32. Enling Tian, Xingzu Wang, Xiao Wang, Yiwei Ren, Yuntao Zhao, Xiaochan An. Preparation and Characterization of Thin-Film Nanocomposite Membrane with High Flux and Antibacterial Performance for Forward Osmosis. Industrial & Engineering Chemistry Research 2019, 58 (2) , 897-907. https://doi.org/10.1021/acs.iecr.8b04476
    33. Hamed Amani, Ebrahim Mostafavi, Hamidreza Arzaghi, Soodabeh Davaran, Abolfazl Akbarzadeh, Omid Akhavan, Hamidreza Pazoki-Toroudi, Thomas J. Webster. Three-Dimensional Graphene Foams: Synthesis, Properties, Biocompatibility, Biodegradability, and Applications in Tissue Engineering. ACS Biomaterials Science & Engineering 2019, 5 (1) , 193-214. https://doi.org/10.1021/acsbiomaterials.8b00658
    34. Filippo Pierini, Paweł Nakielski, Olga Urbanek, Sylwia Pawłowska, Massimiliano Lanzi, Luciano De Sio, Tomasz Aleksander Kowalewski. Polymer-Based Nanomaterials for Photothermal Therapy: From Light-Responsive to Multifunctional Nanoplatforms for Synergistically Combined Technologies. Biomacromolecules 2018, 19 (11) , 4147-4167. https://doi.org/10.1021/acs.biomac.8b01138
    35. Huiru Zhao, Chengdong Zhang, Yaqi Wang, Wei Chen, Pedro J. J. Alvarez. Self-Damaging Aerobic Reduction of Graphene Oxide by Escherichia coli: Role of GO-Mediated Extracellular Superoxide Formation. Environmental Science & Technology 2018, 52 (21) , 12783-12791. https://doi.org/10.1021/acs.est.8b03753
    36. Tingting Zheng, Yu Gao, Xiaoxiao Deng, Huibiao Liu, Jian Liu, Ran Liu, Jingwei Shao, Yuliang Li, Lee Jia. Comparisons between Graphene Oxide and Graphdiyne Oxide in Physicochemistry Biology and Cytotoxicity. ACS Applied Materials & Interfaces 2018, 10 (39) , 32946-32954. https://doi.org/10.1021/acsami.8b06804
    37. Zhan Ban, Qixing Zhou, Anqi Sun, Li Mu, Xiangang Hu. Screening Priority Factors Determining and Predicting the Reproductive Toxicity of Various Nanoparticles. Environmental Science & Technology 2018, 52 (17) , 9666-9676. https://doi.org/10.1021/acs.est.8b02757
    38. Kai Xing, Ruiqing Fan, Fengyou Wang, Huan Nie, Xi Du, Shuang Gai, Ping Wang, Yulin Yang. Dual-Stimulus-Triggered Programmable Drug Release and Luminescent Ratiometric pH Sensing from Chemically Stable Biocompatible Zinc Metal–Organic Framework. ACS Applied Materials & Interfaces 2018, 10 (26) , 22746-22756. https://doi.org/10.1021/acsami.8b06270
    39. Jie Ma, Yao Ma, Fei Yu. A Novel One-Pot Route for Large-Scale Synthesis of Novel Magnetic CNTs/Fe@C Hybrids and Their Applications for Binary Dye Removal. ACS Sustainable Chemistry & Engineering 2018, 6 (7) , 8178-8191. https://doi.org/10.1021/acssuschemeng.7b04668
    40. Dong Li, Mingwu Deng, Ziyou Yu, Wei Liu, Guangdong Zhou, Wei Li, Xiansong Wang, Da-Peng Yang, Wenjie Zhang. Biocompatible and Stable GO-Coated Fe3O4 Nanocomposite: A Robust Drug Delivery Carrier for Simultaneous Tumor MR Imaging and Targeted Therapy. ACS Biomaterials Science & Engineering 2018, 4 (6) , 2143-2154. https://doi.org/10.1021/acsbiomaterials.8b00029
    41. Sandeep Sharma, Badal Kumar Biswal, Divya kumari, Pulkit Bindra, Satish Kumar, Tsering Stobdan, Vijayakumar Shanmugam. Ecofriendly Fruit Switches: Graphene Oxide-Based Wrapper for Programmed Fruit Preservative Delivery To Extend Shelf Life. ACS Applied Materials & Interfaces 2018, 10 (22) , 18478-18488. https://doi.org/10.1021/acsami.8b02048
    42. Jiao Yang Lu, Xin Xing Zhang, Qiu Yan Zhu, Fu Rui Zhang, Wei Tao Huang, Xue Zhi Ding, Li Qiu Xia, Hong Qun Luo, Nian Bing Li. Highly Tunable and Scalable Fabrication of 3D Flexible Graphene Micropatterns for Directing Cell Alignment. ACS Applied Materials & Interfaces 2018, 10 (21) , 17704-17713. https://doi.org/10.1021/acsami.8b04416
    43. Yanxue Liu, Dan Zheng, Yunyun Ma, Juan Dai, Chunxiao Li, Shangzhen Xiao, Kefeng Liu, Jing Liu, Luying Wang, Jiandu Lei, Jing He. Self-Assembled Nanoparticles Platform Based on Pectin-Dihydroartemisinin Conjugates for Codelivery of Anticancer Drugs. ACS Biomaterials Science & Engineering 2018, 4 (5) , 1641-1650. https://doi.org/10.1021/acsbiomaterials.7b00842
    44. Andrew R. Spencer, Asel Primbetova, Abigail N. Koppes, Ryan A. Koppes, Hicham Fenniri, Nasim Annabi. Electroconductive Gelatin Methacryloyl-PEDOT:PSS Composite Hydrogels: Design, Synthesis, and Properties. ACS Biomaterials Science & Engineering 2018, 4 (5) , 1558-1567. https://doi.org/10.1021/acsbiomaterials.8b00135
    45. Marissa L. Puzan, Belete Legesse, Ryan A. Koppes, Hicham Fenniri, Abigail N. Koppes. Bioactive Organic Rosette Nanotubes Support Sensory Neurite Outgrowth. ACS Biomaterials Science & Engineering 2018, 4 (5) , 1630-1640. https://doi.org/10.1021/acsbiomaterials.8b00326
    46. Marina Kryuchkova, Rawil Fakhrullin. Kaolin Alleviates Graphene Oxide Toxicity. Environmental Science & Technology Letters 2018, 5 (5) , 295-300. https://doi.org/10.1021/acs.estlett.8b00135
    47. Titas Kumar Mukhopadhyay, Kalishankar Bhattacharyya, Ayan Datta. Gauging the Nanotoxicity of h2D-C2N toward Single-Stranded DNA: An in Silico Molecular Simulation Approach. ACS Applied Materials & Interfaces 2018, 10 (16) , 13805-13818. https://doi.org/10.1021/acsami.8b00494
    48. Zhen Li, Yonghui Zhang, Chun Chan, Chunyi Zhi, Xiaolin Cheng, Jun Fan. Temperature-Dependent Lipid Extraction from Membranes by Boron Nitride Nanosheets. ACS Nano 2018, 12 (3) , 2764-2772. https://doi.org/10.1021/acsnano.7b09095
    49. Sandra Vranic, Artur Filipe Rodrigues, Maurizio Buggio, Leon Newman, Michael R. H. White, David G. Spiller, Cyrill Bussy, Kostas Kostarelos. Live Imaging of Label-Free Graphene Oxide Reveals Critical Factors Causing Oxidative-Stress-Mediated Cellular Responses. ACS Nano 2018, 12 (2) , 1373-1389. https://doi.org/10.1021/acsnano.7b07734
    50. Ahruem Baek, Yu Mi Baek, Hyung-Mo Kim, Bong-Hyun Jun, and Dong-Eun Kim . Polyethylene Glycol-Engrafted Graphene Oxide as Biocompatible Materials for Peptide Nucleic Acid Delivery into Cells. Bioconjugate Chemistry 2018, 29 (2) , 528-537. https://doi.org/10.1021/acs.bioconjchem.8b00025
    51. Shipeng Dong, Tian Xia, Yu Yang, Sijie Lin, and Liang Mao . Bioaccumulation of 14C-Labeled Graphene in an Aquatic Food Chain through Direct Uptake or Trophic Transfer. Environmental Science & Technology 2018, 52 (2) , 541-549. https://doi.org/10.1021/acs.est.7b04339
    52. Ajith Pattammattel, Paritosh Pande, Deepa Kuttappan, Megan Puglia, Ashis K. Basu, Mary Anne Amalaradjou, and Challa V. Kumar . Controlling the Graphene–Bio Interface: Dispersions in Animal Sera for Enhanced Stability and Reduced Toxicity. Langmuir 2017, 33 (49) , 14184-14194. https://doi.org/10.1021/acs.langmuir.7b02854
    53. Chandran Murugan, Srinivasan Venkatesan, and Soundarapandian Kannan . Cancer Therapeutic Proficiency of Dual-Targeted Mesoporous Silica Nanocomposite Endorses Combination Drug Delivery. ACS Omega 2017, 2 (11) , 7959-7975. https://doi.org/10.1021/acsomega.7b00978
    54. Jie Ma, Yiran Sun, Mingzhen Zhang, Mingxuan Yang, Xiong Gong, Fei Yu, and Jie Zheng . Comparative Study of Graphene Hydrogels and Aerogels Reveals the Important Role of Buried Water in Pollutant Adsorption. Environmental Science & Technology 2017, 51 (21) , 12283-12292. https://doi.org/10.1021/acs.est.7b02227
    55. Janeni Natarajan, Giridhar Madras, and Kaushik Chatterjee . Development of Graphene Oxide-/Galactitol Polyester-Based Biodegradable Composites for Biomedical Applications. ACS Omega 2017, 2 (9) , 5545-5556. https://doi.org/10.1021/acsomega.7b01139
    56. Yanxue Liu, Qi Qi, Xiaomin Li, Jing Liu, Luying Wang, Jing He, and Jiandu Lei . Self-Assembled Pectin-Conjugated Eight-Arm Polyethylene Glycol–Dihydroartemisinin Nanoparticles for Anticancer Combination Therapy. ACS Sustainable Chemistry & Engineering 2017, 5 (9) , 8097-8107. https://doi.org/10.1021/acssuschemeng.7b01715
    57. A. K. M. Rezaul Haque Chowdhury, Bo Tan, and Krishnan Venkatakrishnan . Fibroblast-Cytophilic and HeLa-Cytotoxic Dual Function Carbon Nanoribbon Network Platform. ACS Applied Materials & Interfaces 2017, 9 (23) , 19662-19676. https://doi.org/10.1021/acsami.7b04819
    58. Sahil Kumar Rastogi, Guruprasad Raghavan, Ge Yang, and Tzahi Cohen-Karni . Effect of Graphene on Nonneuronal and Neuronal Cell Viability and Stress. Nano Letters 2017, 17 (5) , 3297-3301. https://doi.org/10.1021/acs.nanolett.7b01215
    59. Kyung Jin Seo, Yi Qiang, Ismail Bilgin, Swastik Kar, Claudio Vinegoni, Ralph Weissleder, and Hui Fang . Transparent Electrophysiology Microelectrodes and Interconnects from Metal Nanomesh. ACS Nano 2017, 11 (4) , 4365-4372. https://doi.org/10.1021/acsnano.7b01995
    60. Kun Lu, Shipeng Dong, Elijah J. Petersen, Junfeng Niu, Xiaofeng Chang, Peng Wang, Sijie Lin, Shixiang Gao, and Liang Mao . Biological Uptake, Distribution, and Depuration of Radio-Labeled Graphene in Adult Zebrafish: Effects of Graphene Size and Natural Organic Matter. ACS Nano 2017, 11 (3) , 2872-2885. https://doi.org/10.1021/acsnano.6b07982
    61. Venkata K. K. Upadhyayula, David E. Meyer, Venkataramana Gadhamshetty, and Nikhil Koratkar . Screening-Level Life Cycle Assessment of Graphene-Poly(ether imide) Coatings Protecting Unalloyed Steel from Severe Atmospheric Corrosion. ACS Sustainable Chemistry & Engineering 2017, 5 (3) , 2656-2667. https://doi.org/10.1021/acssuschemeng.6b03005
    62. Yan Li (Associate Editor). The Quarter-Century Anniversary of Carbon Nanotube Research. ACS Nano 2017, 11 (1) , 1-2. https://doi.org/10.1021/acsnano.7b00232
    63. Sepidar Sayyar, Miina Bjorninen, Suvi Haimi, Susanna Miettinen, Kerry Gilmore, Dirk Grijpma, and Gordon Wallace . UV Cross-Linkable Graphene/Poly(trimethylene Carbonate) Composites for 3D Printing of Electrically Conductive Scaffolds. ACS Applied Materials & Interfaces 2016, 8 (46) , 31916-31925. https://doi.org/10.1021/acsami.6b09962
    64. Lijun Liang, Zhe Kong, Zhengzhong Kang, Hongbo Wang, Li Zhang, and Jia-Wei Shen . Theoretical Evaluation on Potential Cytotoxicity of Graphene Quantum Dots. ACS Biomaterials Science & Engineering 2016, 2 (11) , 1983-1991. https://doi.org/10.1021/acsbiomaterials.6b00390
    65. Wei Liu, Cheng Sun, Chunyang Liao, Lin Cui, Haishan Li, Guangbo Qu, Wenlian Yu, Naining Song, Yuan Cui, Zheng Wang, Wenping Xie, Huiming Chen, and Qunfang Zhou . Graphene Enhances Cellular Proliferation through Activating the Epidermal Growth Factor Receptor. Journal of Agricultural and Food Chemistry 2016, 64 (29) , 5909-5918. https://doi.org/10.1021/acs.jafc.5b05923
    66. Mattia Bramini, Silvio Sacchetti, Andrea Armirotti, Anna Rocchi, Ester Vázquez, Verónica León Castellanos, Tiziano Bandiera, Fabrizia Cesca, and Fabio Benfenati . Graphene Oxide Nanosheets Disrupt Lipid Composition, Ca2+ Homeostasis, and Synaptic Transmission in Primary Cortical Neurons. ACS Nano 2016, 10 (7) , 7154-7171. https://doi.org/10.1021/acsnano.6b03438
    67. Ana M. Díez-Pascual and Angel L. Díez-Vicente . Poly(propylene fumarate)/Polyethylene Glycol-Modified Graphene Oxide Nanocomposites for Tissue Engineering. ACS Applied Materials & Interfaces 2016, 8 (28) , 17902-17914. https://doi.org/10.1021/acsami.6b05635
    68. Zhaojun Jia, Yuying Shi, Pan Xiong, Wenhao Zhou, Yan Cheng, Yufeng Zheng, Tingfei Xi, and Shicheng Wei . From Solution to Biointerface: Graphene Self-Assemblies of Varying Lateral Sizes and Surface Properties for Biofilm Control and Osteodifferentiation. ACS Applied Materials & Interfaces 2016, 8 (27) , 17151-17165. https://doi.org/10.1021/acsami.6b05198
    69. Na Li, Tingting Li, Chao Hu, Xiaomin Lei, Yunpeng Zuo, and Heyou Han . Targeted Near-Infrared Fluorescent Turn-on Nanoprobe for Activatable Imaging and Effective Phototherapy of Cancer Cells. ACS Applied Materials & Interfaces 2016, 8 (24) , 15013-15023. https://doi.org/10.1021/acsami.5b02037
    70. Chuanxiong Nie, Chong Cheng, Lang Ma, Jie Deng, and Changsheng Zhao . Mussel-Inspired Antibacterial and Biocompatible Silver–Carbon Nanotube Composites: Green and Universal Nanointerfacial Functionalization. Langmuir 2016, 32 (23) , 5955-5965. https://doi.org/10.1021/acs.langmuir.6b00708
    71. Rossana Rauti, Neus Lozano, Veronica León, Denis Scaini, Mattia Musto, Ilaria Rago, Francesco P. Ulloa Severino, Alessandra Fabbro, Loredana Casalis, Ester Vázquez, Kostas Kostarelos, Maurizio Prato, and Laura Ballerini . Graphene Oxide Nanosheets Reshape Synaptic Function in Cultured Brain Networks. ACS Nano 2016, 10 (4) , 4459-4471. https://doi.org/10.1021/acsnano.6b00130
    72. Nadiya Dragneva, Oleg Rubel, and Wely B. Floriano . Molecular Dynamics of Fibrinogen Adsorption onto Graphene, but Not onto Poly(ethylene glycol) Surface, Increases Exposure of Recognition Sites That Trigger Immune Response. Journal of Chemical Information and Modeling 2016, 56 (4) , 706-720. https://doi.org/10.1021/acs.jcim.5b00703
    73. L. Valentini and S. Bittolo Bon , S. Signetti , N. M. Pugno . Graphene-Based Bionic Composites with Multifunctional and Repairing Properties. ACS Applied Materials & Interfaces 2016, 8 (12) , 7607-7612. https://doi.org/10.1021/acsami.6b02530
    74. Kashif Rasool, Mohamed Helal, Adnan Ali, Chang E. Ren, Yury Gogotsi, and Khaled A. Mahmoud . Antibacterial Activity of Ti3C2Tx MXene. ACS Nano 2016, 10 (3) , 3674-3684. https://doi.org/10.1021/acsnano.6b00181
    75. Xuefeng Zou, Li Zhang, Zhaojun Wang, and Yang Luo . Mechanisms of the Antimicrobial Activities of Graphene Materials. Journal of the American Chemical Society 2016, 138 (7) , 2064-2077. https://doi.org/10.1021/jacs.5b11411
    76. Jian Liu, Yang Yang, Hany Hassanin, Neeraj Jumbu, Sunan Deng, Qian Zuo, and Kyle Jiang . Graphene–Alumina Nanocomposites with Improved Mechanical Properties for Biomedical Applications. ACS Applied Materials & Interfaces 2016, 8 (4) , 2607-2616. https://doi.org/10.1021/acsami.5b10424
    77. Gyeong Sook Bang, Suhyung Cho, Narae Son, Gi Woong Shim, Byung-Kwan Cho, and Sung-Yool Choi . DNA-Assisted Exfoliation of Tungsten Dichalcogenides and Their Antibacterial Effect. ACS Applied Materials & Interfaces 2016, 8 (3) , 1943-1950. https://doi.org/10.1021/acsami.5b10136
    78. Xitong Liu and Kai Loon Chen . Interactions of Graphene Oxide with Model Cell Membranes: Probing Nanoparticle Attachment and Lipid Bilayer Disruption. Langmuir 2015, 31 (44) , 12076-12086. https://doi.org/10.1021/acs.langmuir.5b02414
    79. Guosong Hong, Shuo Diao, Alexander L. Antaris, and Hongjie Dai . Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chemical Reviews 2015, 115 (19) , 10816-10906. https://doi.org/10.1021/acs.chemrev.5b00008
    80. Hanaa M. Hegab, Ahmed ElMekawy, Thomas G. Barclay, Andrew Michelmore, Linda Zou, Christopher P. Saint, and Milena Ginic-Markovic . Fine-Tuning the Surface of Forward Osmosis Membranes via Grafting Graphene Oxide: Performance Patterns and Biofouling Propensity. ACS Applied Materials & Interfaces 2015, 7 (32) , 18004-18016. https://doi.org/10.1021/acsami.5b04818
    81. Yu Chong, Cuicui Ge, Zaixing Yang, Jose Antonio Garate, Zonglin Gu, Jeffrey K. Weber, Jiajia Liu, and Ruhong Zhou . Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating. ACS Nano 2015, 9 (6) , 5713-5724. https://doi.org/10.1021/nn5066606
    82. Angela Ivask, Nicolas H. Voelcker, Shane A. Seabrook, Maryam Hor, Jason K. Kirby, Michael Fenech, Thomas P. Davis, and Pu Chun Ke . DNA Melting and Genotoxicity Induced by Silver Nanoparticles and Graphene. Chemical Research in Toxicology 2015, 28 (5) , 1023-1035. https://doi.org/10.1021/acs.chemrestox.5b00052
    83. Santiago Romero-Vargas Castrillón, François Perreault, Andreia Fonseca de Faria, and Menachem Elimelech . Interaction of Graphene Oxide with Bacterial Cell Membranes: Insights from Force Spectroscopy. Environmental Science & Technology Letters 2015, 2 (4) , 112-117. https://doi.org/10.1021/acs.estlett.5b00066
    84. Md. Azahar Ali, Pratima R. Solanki, Saurabh Srivastava, Samer Singh, Ved V. Agrawal, Renu John, and Bansi D. Malhotra . Protein Functionalized Carbon Nanotubes-based Smart Lab-on-a-Chip. ACS Applied Materials & Interfaces 2015, 7 (10) , 5837-5846. https://doi.org/10.1021/am509002h
    85. Huating Kong, Lihua Wang, Ying Zhu, Qing Huang, and Chunhai Fan . Culture Medium-Associated Physicochemical Insights on the Cytotoxicity of Carbon Nanomaterials. Chemical Research in Toxicology 2015, 28 (3) , 290-295. https://doi.org/10.1021/tx500477y
    86. Marco Dallavalle, Matteo Calvaresi, Andrea Bottoni, Manuel Melle-Franco, and Francesco Zerbetto . Graphene Can Wreak Havoc with Cell Membranes. ACS Applied Materials & Interfaces 2015, 7 (7) , 4406-4414. https://doi.org/10.1021/am508938u
    87. Sachin Kumar, Shammy Raj, Elayaraja Kolanthai, A.K. Sood, S. Sampath, and Kaushik Chatterjee . Chemical Functionalization of Graphene To Augment Stem Cell Osteogenesis and Inhibit Biofilm Formation on Polymer Composites for Orthopedic Applications. ACS Applied Materials & Interfaces 2015, 7 (5) , 3237-3252. https://doi.org/10.1021/am5079732
    88. Binquan Luan, Tien Huynh, Lin Zhao, and Ruhong Zhou . Potential Toxicity of Graphene to Cell Functions via Disrupting Protein–Protein Interactions. ACS Nano 2015, 9 (1) , 663-669. https://doi.org/10.1021/nn506011j
    89. Zhiyuan Xu, Shaojia Zhu, Mingwei Wang, Yongjun Li, Ping Shi, and Xiaoyu Huang . Delivery of Paclitaxel Using PEGylated Graphene Oxide as a Nanocarrier. ACS Applied Materials & Interfaces 2015, 7 (2) , 1355-1363. https://doi.org/10.1021/am507798d
    90. Zhiyuan Xu, Song Wang, Yongjun Li, Mingwei Wang, Ping Shi, and Xiaoyu Huang . Covalent Functionalization of Graphene Oxide with Biocompatible Poly(ethylene glycol) for Delivery of Paclitaxel. ACS Applied Materials & Interfaces 2014, 6 (19) , 17268-17276. https://doi.org/10.1021/am505308f
    91. Liwei Hui, Ji-Gang Piao, Jeffrey Auletta, Kan Hu, Yanwu Zhu, Tara Meyer, Haitao Liu, and Lihua Yang . Availability of the Basal Planes of Graphene Oxide Determines Whether It Is Antibacterial. ACS Applied Materials & Interfaces 2014, 6 (15) , 13183-13190. https://doi.org/10.1021/am503070z
    92. Quan Hu, Jiancan Yu, Min Liu, Aiping Liu, Zhongshang Dou, and Yu Yang . A Low Cytotoxic Cationic Metal–Organic Framework Carrier for Controllable Drug Release. Journal of Medicinal Chemistry 2014, 57 (13) , 5679-5685. https://doi.org/10.1021/jm5004107
    93. Xiahui Liu, Dongmei Ma, Hao Tang, Liang Tan, Qingji Xie, Youyu Zhang, Ming Ma, and Shouzhuo Yao . Polyamidoamine Dendrimer and Oleic Acid-Functionalized Graphene as Biocompatible and Efficient Gene Delivery Vectors. ACS Applied Materials & Interfaces 2014, 6 (11) , 8173-8183. https://doi.org/10.1021/am500812h
    94. Amedea B. Seabra, Amauri J. Paula, Renata de Lima, Oswaldo L. Alves, and Nelson Durán . Nanotoxicity of Graphene and Graphene Oxide. Chemical Research in Toxicology 2014, 27 (2) , 159-168. https://doi.org/10.1021/tx400385x
    95. Thangavelu Kavitha, Inn-Kyu Kang, and Soo-Young Park . Poly(acrylic acid)-Grafted Graphene Oxide as an Intracellular Protein Carrier. Langmuir 2014, 30 (1) , 402-409. https://doi.org/10.1021/la404337d
    96. Qin Tu, Long Pang, Lingli Wang, Yanrong Zhang, Rui Zhang, and Jinyi Wang . Biomimetic Choline-Like Graphene Oxide Composites for Neurite Sprouting and Outgrowth. ACS Applied Materials & Interfaces 2013, 5 (24) , 13188-13197. https://doi.org/10.1021/am4042004
    97. Xiangke Guo, Shipeng Dong, Elijah J. Petersen, Shixiang Gao, Qingguo Huang, and Liang Mao . Biological Uptake and Depuration of Radio-labeled Graphene by Daphnia magna. Environmental Science & Technology 2013, 47 (21) , 12524-12531. https://doi.org/10.1021/es403230u
    98. Guangbo Qu, Sijin Liu, Shuping Zhang, Lei Wang, Xiaoyan Wang, Bingbing Sun, Nuoya Yin, Xiang Gao, Tian Xia, Jane-Jane Chen, and Gui-Bin Jiang . Graphene Oxide Induces Toll-like Receptor 4 (TLR4)-Dependent Necrosis in Macrophages. ACS Nano 2013, 7 (7) , 5732-5745. https://doi.org/10.1021/nn402330b
    99. Indranil Chowdhury, Matthew C. Duch, Nikhita D. Mansukhani, Mark C. Hersam, and Dermont Bouchard . Colloidal Properties and Stability of Graphene Oxide Nanomaterials in the Aquatic Environment. Environmental Science & Technology 2013, 47 (12) , 6288-6296. https://doi.org/10.1021/es400483k
    100. Hong Ying Mao, Sophie Laurent, Wei Chen, Omid Akhavan, Mohammad Imani, Ali Akbar Ashkarran, and Morteza Mahmoudi . Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine. Chemical Reviews 2013, 113 (5) , 3407-3424. https://doi.org/10.1021/cr300335p
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect