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Abstract

Background: Non-coding regulatory elements (NCREs), such as enhancers, play a crucial role in gene regulation,
and genetic aberrations in NCREs can lead to human disease, including brain disorders. The human brain is a
complex organ that is susceptible to numerous disorders; many of these are caused by genetic changes, but a
multitude remain currently unexplained. Understanding NCREs acting during brain development has the potential
to shed light on previously unrecognized genetic causes of human brain disease. Despite immense community-
wide efforts to understand the role of the non-coding genome and NCREs, annotating functional NCREs remains
challenging.

Methods: Here we performed an integrative computational analysis of virtually all currently available epigenome
data sets related to human fetal brain.

Results: Our in-depth analysis unravels 39,709 differentially active enhancers (DAEs) that show dynamic epigenomic
rearrangement during early stages of human brain development, indicating likely biological function. Many of these
DAEs are linked to clinically relevant genes, and functional validation of selected DAEs in cell models and zebrafish
confirms their role in gene regulation. Compared to enhancers without dynamic epigenomic rearrangement, DAEs
are subjected to higher sequence constraints in humans, have distinct sequence characteristics and are bound by a
distinct transcription factor landscape. DAEs are enriched for GWAS loci for brain-related traits and for genetic
variation found in individuals with neurodevelopmental disorders, including autism.

Conclusion: This compendium of high-confidence enhancers will assist in deciphering the mechanism behind
developmental genetics of human brain and will be relevant to uncover missing heritability in human genetic brain
disorders.
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Background
Non-coding regulatory elements (NCREs), such as en-
hancers, play a pivotal role in gene regulation [1, 2]. En-
hancers ensure correct spatio-temporal gene expression,
and it is increasingly recognized that genetic aberrations
disturbing enhancer function can lead to human disease,
including brain disorders [3–6]. Such non-coding gen-
etic variants are expected to explain a considerable frac-
tion of so-called missing heritability (e.g., the absence of
a genetic diagnosis despite a high genetic clinical suspi-
cion). These developments are pushing genetic diagnos-
tic investigations to shift from whole-exome sequencing
to whole genome sequencing, and the number of poten-
tially pathogenic non-coding variants found in patients
is expected to rise [4]. It is therefore of urgent clinical
interest to understand where functionally relevant non-
coding sequences are located in the human genome, as
this will help to interpret the effects on health and
disease.
Despite tremendous progress over the last decades,

our understanding of the underlying mechanisms of en-
hancer biology remains limited due to challenges in an-
notating functional enhancers genome-wide. Large-scale
community-driven efforts [7–11] and an uncountable
plethora of individual studies have produced a vast
amount of epigenome data sets, such as profiles of his-
tone modifications, chromatin accessibility, and chroma-
tin interactions for different human tissues and cell
types, that can be used to predict putative enhancers at a
large scale. More recently, new technologies such as
massively parallel reporter assays and CRISPR-Cas9-
based screens have entered the stage [12–14], providing
novel means to directly test the functionality of non-
coding regions. In addition, computational prediction al-
gorithms [15, 16], trained on epigenome and experimen-
tal data, are improving the capability to predict
functional sequences and the effects of variants in these
regions.
One of the inherent problems with this increasing

amount of data is the difficulty in keeping track of
individual data sets and the ability to integrate data
from various sources. Usually, individual studies focus
on a limited number of cell types or tissues and com-
pare their findings to a small number of previously
published data sets. Although this is a logical step, it
does not leverage the potential to fine-tune enhancer
predictions which integrating all available enhancer
data could have. This is illustrated by our previous
findings that the overlap between individual enhancer
predictions from several studies tends to be quite
poor [4]. This is likely caused by heterogeneity of
starting biological samples, limitations of current
technologies, and differences in data analysis. Al-
though the first two are difficult to change, analyzing

these data in a similar way could avoid some of the
noise and difference generated by data analysis.
Here we undertook such an integrative effort, focusing

on human brain development (Fig. 1A, Additional file 1:
Fig. S1). We retrieved virtually all previously published
putative enhancers for brain (from PubMed and enhan-
cer databases, n = ~ 1.6 million putative enhancers)
(Additional file 2: Table S1) [9, 11, 21–31], and per-
formed an integrative analysis of relevant available epige-
nome data sets (n = 494) [9, 10, 19, 31–35] (Additional
file 3: Table S2), after reanalyzing the data. Using this
approach, we identify around 200 thousand putative crit-
ical regions (pCRs) in reported brain enhancers, of
which around 40 thousand show dynamic epigenomic
rearrangement during fetal brain development, indicat-
ing switching on and off of regulatory elements during
development. We thus refer to these regions as differen-
tially active enhancers (DAEs). Compared to their non-
variable counterparts (nDAEs), DAEs have a higher level
of sequence constraint, regulate genes that are expressed
during fetal brain development and are associated with
brain developmental processes. DAEs are enriched for
binding sites of brain-relevant transcription factors,
brain-related GWAS loci and are regulating disease-
relevant Online Mendelian Inheritance in Man (OMIM)
genes. We validate a selected number of DAEs using
in vitroin vitro reporter assays and CRISPRi in cell lines,
and reporter assays during zebrafish development. To-
gether, this provides an easily accessible and comprehen-
sive resource of NCREs that are likely functional during
human brain development.

Methods
Data visualization
To visualize enhancers and epigenome data, we used the
UCSC Genome Browser (https://genome.ucsc.edu/). To
generate UCSC Genome Browser Tracks, aligned reads
were converted to bedgraph using genomeCoverageBed,
after which the bedGraphToBigWig tool from the UCSC
Genome Browser was used to create a bigwig file [36,
37]. All enhancer regions, enhancer-gene interactions,
and topologically associating domain (TAD) coordinates
were uploaded directly as bed files. Other plots were
drawn using R packages and Figs. 1, 2, 3, 4, 5, and 6 and
Additional file 1: Figures S1-8 were assembled in Adobe
Illustrator [47]. Additional file 2: Table S1, Additional
file 3: Table S2, Additional file 4: Table S3, Additional
file 5: Table S4, Additional file 6: Table S5, Additional
file 7: Table S6, Additional file 8: Table S7, Additional
file 9: Table S8, Additional file 10: Table S9, Additional
file 11: Table S10, Additional file 12: Table S11, Add-
itional file 13: Table S12, Additional file 14: Table S13
and Additional file 15: Table S14 were exported as text
or Excel files.
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Data collection and processing
Collection of putative brain enhancers
To generate a comprehensive set of putative brain en-
hancers active during fetal brain development, we scruti-
nized PubMed and various enhancer databases (last
assessed: April 2019), including amongst others Enhan-
cerAtlas, the FANTOM5 Project, and the Vista Enhan-
cer database [9, 11, 21–31]. This resulted in 1,595,292
putative enhancers (Additional file 2: Table S1). En-
hancers with identical coordinates were deduplicated
and the unique regions were used to determine putative
critical regions (pCRs), reasoning that overlapping parts
of a putative enhancer obtained from different sources
might point to functional relevant regions of that puta-
tive enhancer. If there is any overlap between coordi-
nates of putative enhancers derived from two or more
databases, the pCRs were defined as maximum overlap-
ping regions present in those databases using the
BEDtools suite (mergeBed, intersectBed, genomeCovera-
geBed, and groupBy sub-commands) (version 2.30.0)
[36]. Putative enhancers that were only present in one of
the input sources were also included in the pCRs
(Fig. 1A, step 1), as it cannot be excluded that these pu-
tative enhancers are biologically relevant. pCRs with
length less than 50 bp and more than 1000 bp were ex-
cluded. To avoid any overlap with gene promoters, en-
hancers located within 2 kb upstream or 1 kb
downstream of a transcriptional start site (TSS)
(Ensembl GRCh37.p13 Release 102) were excluded using
intersectBed. Following this procedure, we identified a
total of 202,462 pCRs which were used for downstream
analyses. Next, we excluded 299 pCRs that were not cov-
ered by sufficient amounts of epigenome data (less than
10 reads in at least two samples (see section on defining
DAEs)), resulting in a final number of 202,163 pCRs
(Additional file 4: Table S3). GREAT web interface was
used (version 4.0.4) (http://great.stanford.edu/public/
html/) [17] to visualize enhancer-TSS distance (with
basal plus extension, proximal 5 kb upstream and 1 kb
downstream, plus distal up to 100 kb, including curated
regulatory domains, and whole genome (GRCh37/hg19)
as background parameters) (Additional file 1: Fig. S2B).

Epigenome data
Epigenome data were collected from the Roadmap Epi-
genomics Consortium, ENCODE, PsychENCODE, and
other studies (Additional file 3: Table S2). Epigenome
data sets used for integration included histone modifica-
tions (H3K27ac, H3K27me3, H3K4me1, H3K4me2,
H3K4me3) and chromatin accessibility (ATAC-seq and
DNase-seq) from different brain regions and different
human developmental stages (Fig. 1A, step 1). To avoid
any possible confounding biases because of the various
pipelines used in different studies, we reanalyzed the raw

FASTQ files using our analysis pipeline (Additional file
1: Fig. S1). First, adaptor contamination was removed
using Trim Galore (version 0.6.5) (https://www.
bioinformatics.babraham.ac.uk/projects/trim_galore/),
and trimmed data were aligned to the GRCh37/hg19 hu-
man genome using Bowtie2 aligner (version 2.4.2) (with
--very-sensitive parameter) [48]. Only properly paired
and uniquely mapped reads, with mapping quality more
than 30 (MAPQ ≥ 30), were kept followed by removing
any possible duplicated reads using Picard’s MarkDupli-
cates (version 4.0.1.1) (http://broadinstitute.github.io/
picard/). These reads were used to define differentially
active enhancers (DAEs).

Defining differentially active enhancers (DAEs)
We assumed that pCRs with high variability in different
epigenome data (dynamic epigenomic rearrangement)
across different developmental stages are more likely to
be functional than other pCRs. To determine this vari-
ability, the number of overlapping reads (for each epige-
nome mark) with pCRs was counted using the
multiBamCov sub-command of BEDtools and a matrix
was generated that included enhancers as rows and epi-
genome features as columns. Epigenome features were
from different brain regions and developmental stages.
In total, 299 pCRs with less than 10 reads were ex-
cluded, leaving 202,163 pCRs for this analysis. Subse-
quently, the raw read count matrix was normalized
using TMM-normalization [49] and the normalized
count matrix was used to define DAEs across different
developmental stages and brain regions of a given epige-
nome data using edgeR (version 3.32.1) [50]. Since there
were different developmental stages (time-point factor)
and brain regions (brain part factor) in each epigenome
data, a design matrix was generated for each factor sep-
arately. A limited number of samples without biological
replicates were grouped together with other samples
based on high correlation (Pearson correlation; r > 0.89).
The DAEs were defined based on each design matrix
using a generalized linear model and quasi-likelihood F-
tests. In order to define the final DAE list, DAEs identi-
fied from at least two epigenome data-specific matrices
were pooled. In total, this resulted in 39,709 DAEs (FDR
adjusted p value < 0.05). The remaining 162,454 pCRs
that did not show variability were considered as nDAEs
(Additional file 4: Table S3).

Identifying chromatin interactions
Enhancer-gene interactions
In order to define enhancer-gene interaction, published
HiC data from 3 human fetal brains, for cortical plate
(CP) and germinal zone (GZ) at gestation weeks 17–18
were used [30]. This data provides 10 kb resolution bins
for gene loop interactions and 40 kb resolution for
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TADs. Pre-calculated significant interactions were inter-
sected with pCRs (DAEs and nDAEs) using intersectBed
to define gene-enhancer interaction for both CP and GZ
separately. Out of the 202,163 pCRs, 41,041 pCRs en-
gaged in 101,366 interactions in CP, and 41,085 pCRs
had 100,521 interactions in GZ. Enhancer-gene interac-
tions locating within the same TAD were considered for
downstream analyses (almost 80% of all interactions
were intra-TAD). We only included protein-coding and
lincRNA genes in our analysis. To determine enhancer-
enhancer interactions in Additional file 1: Fig. S7A, we
also intersected HiC data with pCRs, focusing on inter-
actions between DAEs and both DAEs and nDAEs.
In addition to HiC, we employed other enhancer-gene

interaction predictions including JEME (http://yiplab.cse.
cuhk.edu.hk/jeme/) [51], ENCODE (https://ernstlab.
biolchem.ucla.edu/roadmaplinking/) [52], FOCS (http://
acgt.cs.tau.ac.il/focs/download.html) [53], and GeneHan-
cer (downloaded from UCSC table browser; hg19; up-
dated 2019) [54]. These databases apply statistical
models on different types of omics data to predict
enhancer-gene interactions. We collected fetal brain
enhancer-gene predictions from JEME and ENCODE
and all brain-related enhancer-gene predictions from
FOCS and GeneHancer, as the latter two resources do
not specify fetal-specific interactions. In addition, we
used H3K27ac HiChIP derived chromatin interactions
from several postnatal brain regions [55] cell type-
specific chromatin conformation capture data from
PLAC-seq experiments in postnatal brain tissue [56] and
enhancer-gene interaction predictions generated by the
Activity-by-contact (ABC) model (https://github.com/
broadinstitute/ABC-Enhancer-Gene-Prediction) [57].
We performed the ABC model by fixing the length of
pCRs to 500 bps from the center (250 bps from each
side). The enhancer activity was then determined con-
sidering DNase, and H3K27ac samples, and gene expres-
sion data from fetal brain [10] using default settings of
the “run.neighborhoods.py” function. The ABC score
was calculated by integrating the fetal HiC data and en-
hancer activity defined using the default settings of the
“predict.py” function and adjusting “--hic_type bedpe,”
“--hic_resolution 10000” flags, and ignoring “--cellType”
flag.
Intersections between the pCRs and each of these pre-

dictions were considered as enhancer-gene interaction
(Additional file 6: Table S5). The coordinates of the
HiChIP interactions were lifted over to hg19 before
intersecting with pCRs.

Functional enrichment analysis
Enhancer sequence characteristics analysis
To determine whether different DNA sequence features
distinguish different enhancer groups and whether there

is any association between these features and functional
prediction, we considered the following features: (i) the
non-coding essential regulation (ncER) score (https://
github.com/TelentiLab/ncER_datasets/; updated 06-03-
2019) [38]; (ii) GC content, as determined by the
GCcontent R packages based on BSgenome. Hsapien-
s.UCSC.hg19 (version 1.4.3); (iii) conservation score for
each enhancer, as derived from the gscores R packages
based on phastCons100way.UCSC.hg19 (version 3.7.2)
[39]; (iv) Orion scores [40]; (v) CADD scores [41]; (vi)
Haploinsufficiency scores [43], and (vii) probability of
loss-of-function intolerance (pLI) score [42]. The over-
laps between DNA sequence features and enhancer co-
ordinates were defined using intersectBed. As assessed
enhancers (e.g., pCRs) varied in length between 50 and
1000 bp, and the abovementioned scores were given ei-
ther at the nucleotide level or in certain bins (depending
on the given scores from the individual resources), we
calculated the mean value for each enhancer and used
this in group comparisons. For gene-specific scores (e.g.,
pLI), we plotted the scores of the genes linked to the en-
hancers. Statistical significant differences between
groups were determined using Wilcoxon signed rank
test in R.

Gene expression correlation
To compare gene expression levels of enhancer target
genes between different groups, various transcriptome
data were collected. This included transcriptome data
from different brain regions and developmental stages,
and also various control data from other fetal tissues
from the Roadmap Epigenomics Consortium, ENCODE
project, Allen human brain atlas, and other studies
(Additional file 7: Table S6) [7, 10, 18–20]. Raw data
(FASTQ) was quality controlled and adaptors and other
contaminants were removed using Trim Galore (version
0.6.5), reads were mapped to the GRCh37/hg19 human
genome assembly using STAR aligner (version 2.7) [58],
and gene counts were obtained using htseq-count (ver-
sion 0.12.4) [59]. Gene expression levels were normal-
ized based on fragments per kilobase of transcript per
million mapped reads (FPKM). To correlate enhancers
to gene expression, enhancer-gene interactions were de-
rived from the HiC data or the alternative enhancer-
gene predictions as described above. Gene expression
levels were plotted and statistical comparison was per-
formed, between expression levels of subgroups, using
Wilcoxon signed rank test in R. We also compared
genes linked to DAEs and nDAEs by HiC, to the three
trajectory gene groups from BrainVar [60]. For this, we
first found the overlap between genes interacting with
DAEs/nDAEs using HiC-CP/GZ and each of the three
trajectory groups (e.g., falling, rising, and constant
genes). We then determined the odds ratio between
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DAE and nDAE linked genes for each of the three gene
trajectories, and used Fisher’s exact test to determine
significance.

Gene ontology analysis
For functional enrichment analysis, we used GREAT
[17], Enrichr [61], and Metascape [62]. GREAT was used
via the web interface (version 4.0.4) (http://great.
stanford.edu/public/html/) using the following settings:
basal plus extension, proximal 5 kb upstream and 1 kb
downstream, plus distal up to 100 kb, including curated
regulatory domains, and either whole genome or all
pCRs as background, as indicated in the tabs of Add-
itional file 5: Table S4. The − log 10 p value was used to
rank GREAT enrichment. Enrichr and Metascape were
also used via the web interface (https://maayanlab.cloud/
Enrichr/; https://metascape.org/gp/index.html#/main/
step1), using the default settings and the whole genome
set as background. All outputs of p value, adjusted p
value (q value), and combined score (which is the esti-
mation of significance based on the combination of Fish-
er’s exact test p value and z score deviation from the
expected rank) for Enrichr and of LogP, enrichment, z
score, and log(q value) for Metascape are reported in
Additional file 5: Table S4, Additional file 8: Table S7
and Additional file 10: Table S9.

Transcription factor binding enrichment
We used LOLA [63] using default settings to assess
binding of known transcription factors to DAEs and
nDAEs (Fig. 3). We used motifs from the JASPAR motif
database (using reference genome GRCh37/hg19 and
LOLAJaspar database core), to test the TF enrichment in
DAEs and nDAEs, using all pCRs as background. The
mean rank index (a combination of p value, odds ratio,
from Fisher’s exact test and the raw number of overlap-
ping regions), was used to rank the known motifs. To
display TF enrichment in Fig. 3C and F, we re-scaled the
rank between 0 and 100 using the rescale () R function.
To further identify motifs across the different relative
DAE or nDAE bins and distinguish motifs in the central
versus peripheral parts of the enhancers (Fig. 3G, H), we
split the 100 relative bins into 20 groups of 5 consecu-
tive bins and performed motif enrichment analysis using
HOMER (version 4.11) [64], using function “findMotifs-
Genome.pl” and all pCRs as background. A p value ≤
0.01 was considered to select significantly enriched
motifs.

Transposable element enrichment
The RepeatMask (GRCh37/hg19, updated 20-02-2020)
was downloaded from the UCSC table browser and
joined to the pCRs. To determine enrichment of trans-
posable elements in brain enhancers, we followed a

strategy previously used when investigating active en-
hancers in human embryonic stem cells [65]. The num-
ber of overlaps of each type of repeat (n_overlaps) with
all pCRs (n) was used to calculate the relative frequency
(f_all = n_overlaps/n). Multiplication of the relative fre-
quency with the number of regions (n_test, e.g., DAE,
nDAE) in any tested group yields the expected frequency
(E). This number was compared with the actual ob-
served frequency in the subgroups (f_test = (n_overlap,
test)/n_test = O) to calculate the observed versus
expected ratio (O/E). We considered repeats with O/E <
0.5 as depleted, or O/E > 1 as enriched. For the subse-
quent data interpretation we only focused on transpos-
able elements that were present multiple times (n_
overlap > 15) in all pCRs (Additional file 9: Table S8).

Disease-relevance enrichment
The Online Mendelian inheritance in Man (OMIM)
gene list (updated 28-09-2020) was downloaded using
biomaRt R package [66] from Ensembl GRCh37.p13 Re-
lease 101. The GWAS catalog (GRCh37/hg19, updated
17-03-2021) was downloaded from the UCSC table
browser. The GWAS catalog was manually filtered to
keep brain-related studies and their variants with p value
≤ 9e−08 (Additional file 12: Table S11). Stratified LD
score regression analysis was performed by implement-
ing the full baseline model to calculate enrichment
(https://github.com/bulik/ldsc/wiki [67, 68]. Annotation
and LD score files were created using the “make_
annot.py” and “ldsc.py” functions, respectively. Partition-
ing heritability was performed using the “ldsc.py” script
considering default parameters with “-- h2” flag. We ob-
tained GWAS summary statistics for several brain-
related traits including Alzheimer’s disease [69], anorexia
nervosa [70], anxiety [71], attention deficit hyperactivity
disorder [72], autism spectrum disorder [73], bipolar dis-
order and schizophrenia [74], epilepsy [75], insomnia
[76], intelligence [77], major depressive disorder [78],
neuroticism [79, 80], obsessive compulsive disorder /
Tourette syndrome [81], Parkinson’s disease [82], and
schizophrenia [83] (Additional file 12: Table S11). Z-
scores were used to calculate the p values which were
corrected for multiple hypothesis testing using the
Benjamini-Hochberg method. For CNV analysis, we re-
trieved pre-processed published data from Brandler et al.
(their supplemental Table 9: de_novo_SVs sheet, and
their supplemental Table 7: Primary CR Trans and Rep-
lication CR Trans sheets) [44] and Monlong et al. (cnvs-
PopSV-Epilepsy-198affected-301controls-5 kb.tsv.gz file
in https://figshare.com/s/20dfdedcc4718e465185) [45].
For SNV analysis of the ASD simplex families, we col-
lected de novo variants from supplemental Table 1 of
Zhou et al [46]. Autism genes were collected from the
SFARI Gene database (http://gene.sfari.org/database/
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human-gene) [84]. The overlap between enhancer re-
gions (DAE and nDAE) and each data set was deter-
mined using intersectBed. The odds ratio and p value
between DAE and nDAE was calculated using fisher.test
() R function. The Haldane–Anscombe correction was
used to adjust the odds ratio.

Distribution of features across enhancer bins
To investigate the distribution of enrichment of different
features (ncER score, GC content, phastCons score, and
epigenome data) across enhancers, we divided the en-
hancer regions into 10 bp bins and calculated the relative
scores (the median value for ncER score, GC content,
phastCons score) and the number of reads (for epige-
nome data) for each bin. As the enhancers under investi-
gation differed in size between 50 and 1000 bp, to make
enrichments between enhancers comparable, we re-
scaled each enhancer bin. To this end, we calculated a
relative position between 1 and 100 for each bin of each
enhancer, where 1 is the first bin, and 100 is the last bin
of each individual enhancer. We then plotted the distri-
bution of each feature across all these re-scaled enhancer
bins.

DAE clustering analysis
The matrix of DAEs was used to determine the pattern
of epigenome data through different developmental
stages. To determine the optimal clustering algorithm,
we used clValid R package which simultaneously com-
pares multiple clustering algorithms (hierarchical,
kmeans, model-based, pam, and clara). Based on this,
the pam algorithm (which is similar to k-means but
more robust to noise and outliers) was selected to clus-
ter DAEs using the Spearman distance and ward.D2

method. To define the optimal number of clusters, we
used fviz_nbclust and NbClust R packages which com-
pute different indices by bootstrapping (n = 1000). The
predicted number of clusters was tested using the sil-
houette R package to examine whether the clustering
performed correctly. This approach resulted in 2 clusters
for DAEs and epigenome features at 8–12 PCW, 3 clus-
ters for 13–18 PCW, and 2 clusters for > 18 PCW, for
each of CP and GZ, respectively. For each cluster, we de-
termined the gene expression of protein-coding genes
interacting with the DAEs from each cluster, as obtained
from published RNA-seq data sets. Significant differ-
ences in expression levels between different clusters
were determined using the Wilcoxon signed rank test in
R. Also, target genes linked to each cluster were used for
functional enrichment analysis using Enrichr [61], as de-
scribed under gene ontology analysis (Additional file 10:
Table S9).

Enhancer cell type specificity and their dynamics in adult
brain
To determine cell type specificity of enhancers, we com-
pared DAEs and nDAEs to recently described cell type-
specific regulatory elements from two studies on adult
brain (obtained from Supplementary Data Set 4 (data
lifted over to hg19) of Corces et al. [55] and Supplemen-
tary Table 5 of Nott et al [56]) and a study of fetal brain
(obtained from Supplementary file 4 of Domcke et al.,
specificity scores for top 10000 regions [85]). We used
bedtools to intersect DAEs or nDAEs and different cell
type-specific regulatory elements. For all DAEs and
nDAEs linked to target genes in CP and GZ by HiC, we
compared dynamics of H3K27ac levels in both fetal and
adult samples, using H3K27ac data from Li et al. [86].
Clustering analysis was performed as described under
“DAE clustering analysis” above. Gene ontology analysis
for each defined cluster was performed using Enrichr, as
described above.

Experimental validation
Cell culture
HEK293 LTV cells (Cell Biolabs) were cultured in
DMEM medium (Gibco), supplemented with 10% FBS at
37 °C, 5% CO2. Human neural stem cells (NSCs) (Gibco)
were cultured in NSC medium (KnockOut DMEM-F12
(Gibco), 2 mM L-glutamine (Gibco), 20 ng/ml bFGF
(Peprotech), 20 ng/ml EGF (Peprotech), 2% StemPro
Neural supplement (Gibco), 100 U/ml penicillin and
100 μg/ml streptomycin), as previously described [87].

Enhancer activity in STARR-seq reporter plasmids
For experimental validation in Fig. 1G, we randomly se-
lected 22 DAEs that showed interaction with a target gene
by HiC, and of which the target gene was expressed in
neural stem cells, as indicated from our previously gener-
ated RNA-seq data (GSE137129 [87];). DAEs were ampli-
fied from genomic DNA and cloned into the STARR-seq
plasmid (kind gift of A.Stark) [88] as previously described
[65]. For the additional tested enhancer deletions (Add-
itional file 1: Fig. S4), the obtained STARR-seq plasmids
containing IRF2BPL, CHD2, and MACF1 enhancers were
modified by site-directed mutagenesis to remove regions
with high or low ncER score. The following regions were
deleted: IRF2BPL (chr14: 77422484-77422514); CHD2
(ncER1 chr15: 93363603-93363640, ncER3 chr15:
93363780-93363790); MACF1 (ncER1 chr1: 39598824-
39598844, ncER2 chr1:39598744-39598754). The regions
with low ncER score at the 5′ and 3′ ends (80–100 bp) of
IRF2BPL, CHD2, and MACF1 enhancers were excluded by
Gibson assembly. Primer sequences are provided in Add-
itional file 15: Table S14. HEK293 and NSC were trans-
fected with STARR-seq plasmid containing enhancer
regions using polyethylenimine (PEI, Sigma) or
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Lipofectamine™ Stem Transfection Reagent (Thermo
Scientific) respectively. Spike-in of a pmCherry-N1
plasmid (Clonetech) was used as a transfection control.
Twenty-four hours post transfection cells were col-
lected, stained with Hoechst dye and the enhancer ac-
tivity was measured by FACS analysis (20,000 cells per
sample). GFP-positive cells within the mCherry-positive
population were quantified to assess enhancer activity
compared to an empty STARR-seq vector. Two inde-
pendent transfection experiments were performed, each
in duplicates. Statistical analysis was performed using a
one-way ANOVA test followed by multiple comparison
test (Fisher’s LSD test). Calculations were conducted in
GraphPad Prism (version 8).

dCas9-KRAB-MeCP2 silencing of active enhancers in NSC
We selected DAEs linked to CHD2, CAD, and TRAK1
and designed for each DAE two targeting gRNAs (pri-
mer sequences are given in Additional file 15: Table
S14). gRNAs were cloned into a pgRGFP plasmid
(Addgene #82695, a kind gift of Allan Mullen) [89].
NSCs were co-transfected with dCas9-KRAB-MeCP2
(Addgene #110824, kind gift of Alejandro Chavez and
George Church) [90] and the two gRNAs/DAE and
collected for RNA isolation 48 h post transfection.
Transfection efficiency was estimated by FACS analysis
(78–92% GFP-positive cells detected). RNA was isolated
using TRI reagent (Sigma) followed by cDNA prepar-
ation using iSCRIPT cDNA synthesis kit (Bio-Rad). Fold
change in gene expression (ΔΔct method) was evaluated
by qPCR (iTaq universal SYBR Green Supermix)
(Sigma), performed in CFX96RTS thermal cycler (Bio-
Rad), as previously described [87]. TBP expression was
used as housekeeping normalization control. Statistical
analysis was performed using a one-way ANOVA test
followed by multiple comparison test (Fisher’s LSD test).
Calculations were conducted in GraphPad Prism (ver-
sion 8).

Zebrafish studies
Zebrafish (Danio rerio) were raised and maintained
under standard conditions [91]. Adult and larval fish
were kept on a 14 h/10 h light–dark cycle at 28 °C. Lar-
vae were kept in HEPES-buffered E3 medium. Media
was refreshed daily, and at 24 hpf, 0.003% 1-phenyl 2-
thiourea (PTU) was added to prevent pigmentation. All
zebrafish experiments were performed in compliance
with Dutch animal welfare legislation. Selected DAEs
used in the in vitro experiments were transferred by
Gibson assembly between the AscI and PacI site of a
E1b-GFP-Tol2 enhancer assay plasmid (a kind gift of
Ramon Birnbaum) [92] containing an E1b minimal pro-
moter followed by GFP, using the following transfer
primers: Transfer_fw: 5′-AGATGGGCCCTCGGGTAG

AGCATGCACCGG-3′ and Transfer_rv: 5′-TCGAGA
GATCTTAATGGCCGAATTCGTCGA-3′. Constructs
were injected into zebrafish embryos using standard pro-
cedures, together with Tol2 mRNA to facilitate genomic
integration. At least 50 embryos were injected per con-
struct in at least two different injection experiments.
GFP expression was observed and annotated at 1, 2, and
3 dpf by a fluorescent Leica M165FC stereomicroscope
(Additional file 14: Table S13). Images were analyzed
using ImageJ (FIJI). An enhancer was considered active
when at least 30% of the larvae showed consistent GFP
expression.

Results
Integrative data analysis identifies differentially active
regions during fetal brain development
We started our analysis by collecting relevant fetal brain
epigenome data sets and previously published putative
enhancers (Additional file 2: Table S1, Additional file 3:
Table S2). Epigenome data sets included ChIP-seq for
various histone modifications, DNase- and ATAC-seq
data from various developmental time points and ana-
tomical regions of human fetal brain, generated by
several independent studies, including Roadmap, Psy-
chENCODE, and other publications [9, 10, 19, 31–35,
86]. All primary data were reanalyzed using identical
computational pipelines, and in total we processed 494
data sets. Scrutinizing through previously published lit-
erature on enhancers in brain and neuronal cell types,
we collected 1,595,292 putative brain enhancers (Add-
itional file 2: Table S1). These included enhancers re-
trieved from various enhancer databases, such as VISTA,
FANTOM, and EnhancerAtlas, enhancer predictions
from the PsychENCODE consortium, human accelerated
regions, ultra-conserved regions, and others [9, 11, 21–
31]. We first analyzed the overlap between the different
putative enhancers and found only a small overlap be-
tween enhancer predictions from different studies (Add-
itional file 2: Table S1). We reasoned that if different
enhancer prediction methods used in the individual
studies identified the same enhancers that only differ by
the exact location or length, by merging the overlaps be-
tween different studies we could identify functional rele-
vant parts of enhancers. We thus proceeded to
determine putative critical regions (pCRs), by determin-
ing the unifying overlaps between all putative enhancers
(Fig. 1A, step 1). In this analysis, we kept those putative
enhancers that were only found in a single study,
merged the overlaps between multiple studies and elimi-
nated those regions that were located within 2 kb up-
stream and 1 kb downstream of a transcriptional start
site (TSS) or which had < 10 reads in epigenome data
(see “Methods”). This resulted in 202,163 pCRs, with a
total length of 93Mb, an average size of 460 bps, and
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most pCRs located between 5 and 50 kb away from the
closest gene TSS (Additional file 1: Fig. S2A, B).
We assumed that enhancers that have functional rele-

vant roles during brain development would show dy-
namic changes in the levels of histone modifications and
chromatin accessibility correlating with their function.
To investigate this, we next intersected all pCRs with all
epigenome data sets from different time points of fetal
brain development and calculated the read count for
each pCR region. After TMM-normalization, we per-
formed differential accessibility analysis (for ATAC-seq
and DNase data) and generated differential histone
modification profiles (for H3K27ac, H3K27me3,
H3K4me1, H3K4me2, H3K4me3) using edgeR [50]. This
resulted in 39,709 pCRs that showed a high variability
for these features across developmental time points
(Fig. 1B, Additional file 1: Fig. S2C, Additional file 4:
Table S3, see “Methods”) which we refer to as differen-
tially active enhancers (DAEs). In contrast, the
remaining 162,454 pCRs showed a more constant epige-
nome pattern and we thus refer to them as not-
differentially active enhancers, nDAEs (Fig. 1B, Add-
itional file 1: Fig. S2C, Additional file 4: Table S3).
Gene ontology analysis using GREAT [17] showed that

DAEs were significantly enriched for terms related to
brain development, including processes such as forebrain
neuron fate commitment, dorsal/ventral axon guidance,
and spinal cord development (Fig. 1B, Additional file 5:
Table S4). nDAEs appeared to be enriched for more
general terms, including various chromatin modifica-
tions and receptor-mediated endocytosis (Fig. 1B, Add-
itional file 5: Table S4).
To have a more specific view about the genes regu-

lated by these pCRs, we next linked DAEs and nDAEs to
their target genes, using different resources, which either
link enhancer to gene promoters by direct chromatin

interaction as determined by chromatin conformation
capture techniques (HiC [30], HiChIP [55], PLAC-seq
[56]) or by predicting enhancer-gene interactions using
statistical models and correlation between gene expres-
sion, omics data, and epigenome features (JEME, FOCS,
GeneHancer, ENCODE, Activity-by-contact (ABC)
method) [51–54, 57] (Additional file 6: Table S5). Since
only a limited number of interactions between DAEs or
nDAEs and target genes identified by these different
methods were supported by > 2 of the available re-
sources (Additional file 1: Fig. S3A), and as most interac-
tions and target genes were predicted by the HiC data
(Additional file 1: Fig. S3B), we focused on these HiC
predicted target gene interactions for the remainder of
the analysis. These HiC data were generated from post
conceptional week (PCW) 17–18 human brains [30] and
were available for the germinal zone (GZ) (containing
primarily mitotically active neural progenitors), and the
cortical and subcortical plate (CP) (consisting primarily
of post-mitotic and migrating neurons). Enhancer-
promoter interactions derived from these HiC data do
not exclude the fact that the identified DAEs and nDAEs
interact with or regulate other genes at other develop-
mental time points or in other cell types, for which at
this moment no specific enhancer-promoter predictions
are available.
Taking only those enhancer-promoter interactions that

occurred in the same topological associated domain
(TAD) into account, we found that from all DAEs, 6858
and 6883 for CP and GZ, respectively, interacted with
promoters of protein-coding genes or lincRNAs, of
which the majority of interactions occur with protein-
coding genes. Similarly, 27,004 and 27,161 nDAEs inter-
acted with target genes in CP and GZ, respectively, with
a similar distribution between protein-coding and lincR-
NAs (Additional file 1: Fig. S3C, D).

(See figure on previous page.)
Fig. 1 Integrative analysis of brain enhancers during fetal development. A Various steps taken in the integrative analysis of this study. See text for
details. B Functional enrichment analysis using GREAT [17], for DAEs (upper panel, n = 39,709) and nDAEs (lower panel, n = 162,454), determined
using whole genome as a background. X-axis reports the − Log10 p value as determined by GREAT. C Venn diagram showing the overlap
between DAEs (upper panel) and nDAEs (lower panel) interacting with protein-coding and lincRNA genes in CP (left) and GZ (right). D Venn
diagram showing the overlap between interactions of protein-coding and lincRNA genes with nDAEs (left) and DAEs (right), for protein-coding
and lincRNA genes in CP (upper panel) and GZ (lower panel). E Box plots showing gene expression levels as determined by RNA-seq, for genes
that interact by HiC with DAEs (light gray) or nDAEs (dark gray) in CP (left) and GZ (right), for fetal (red) or adult (blue) brain samples. Boxes are
interquartile range (IQR); line is median; and whiskers extend to 1.5 the IQR. PCW, postconceptional week. FPKM, fragments per kilobase of
transcript per million mapped reads. * p < 0.05; ** p < 0.01; *** p < 0.001; ns, not significant (wilcox.test). Data obtained from: 12 PCW, Yan et al
[18]; 15-17 PCW, De la Torre-Ubieta et al [19]; 17 PCW, Roadmap [10]; 81 years, Roadmap [10]; mean of fetal sources is the mean expression of the
first three fetal samples. F Box plots showing RNA-seq gene expression for genes interacting with 1, 2, 3, 4, or 5 or more DAEs in CP (left) and GZ
(right). Left y-axis shows gene expression (log2 FPKM), right y-axis, and line plot shows the number of genes per DAE group. * p < 0.05; ***p <
0.001; ****p < 0.0001 (wilcox.test). RNA-seq data from Allen human brain atlas [20]. G Bar plot showing the percentage of GFP+ cells in NSCs
(blue) and HEK cells (red), from cell transfection experiments with an enhancer reporter plasmid for 22 tested enhancers and an empty plasmid
control. Plotted is the percentage of GFP+ in cells co-transfected with an mCherry expressing plasmid, to correct for transfection efficiency. Bars
show the average from two independent experiments, with each enhancer tested each in duplicate. Error bars represent standard deviation. *
p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test followed by multiple comparison test (Fisher’s LSD test)
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In total, DAEs interacted with 5946 and 6085 protein-
coding and lincRNA genes in CP and GZ, respectively,
of which 3841 genes were shared between both CP and
GZ (Fig. 1C). The majority of these genes (86%) also had
interactions with nDAEs (Fig. 1D). We next integrated
available gene expression data from fetal and adult brain
(Additional file 7: Table S6) and found that genes that
interacted with a DAE had a significantly higher gene
expression compared to those genes not interacting with
a DAE, at various regions and stages of fetal develop-
ment but not in adult brain (12 PCW: CP genes p
value = 0.002671, GZ genes p value = 5.111e−05; 15–17
PCW: CP genes p value = 0.003251, GZ genes p value =
0.003813; 17 PCW: CP genes p value = 0.002533, GZ
genes p value = 0.001813); 81 years: CP genes p value =
0.1377, GZ genes p value = 0.2641; fetal sources mean:
CP genes p value = 0.0002696, GZ genes p value =
0.00046; DAE fetal sources mean vs DAE 81 years: CP
genes p value = 0.04744, GZ genes p value = 0.01525;
nDAE fetal sources mean vs nDAE 81 years: CP genes p
value = 0.781, GZ genes p value = 0.4904, wilcox.test)
(Fig. 1E, Additional file 1: Fig. S3E). Similar observations
were made when using the alternative, not HiC-based
enhancer-promoter predictions (Additional file 1: Fig.
S3F). In line with earlier findings [93], we find that the
more enhancers a gene is interacting with, the higher
the gene expression is, and this was also true for the
DAEs (Fig. 1F). A recent study determined gene expres-
sion trajectories in the dorsolateral prefrontal cortex
during pre- and postnatal development. This study iden-
tified constant, rising and falling genes, that showed re-
spectively similar, increased or decreased gene
expression levels upon development [60]. In line with
the earlier gene expression findings, we found that the
odds ratio between DAE and nDAE linked genes (as de-
termined by HiC) was significantly higher (odds ratio =
1.183, p value = 0.0008 for GZ; odds ratio = 1.198, p
value = 0.0004 for CP, Fisher’s exact test) for falling
genes, that showed higher gene expression levels in pre-
natal RNA-seq samples (Additional file 1: Fig. S3G,H).
Finally, to validate that DAEs can function as en-

hancers, we selected 22 DAEs linked to genes that are
expressed in human neural stem cells (NSCs), cloned
them in an enhancer reporter plasmid [88] and tested
their enhancer activity in cell transfection experiments.
Upon transfection in NSCs, 18 out of 22 tested se-
quences showed significantly increased percentage of
GFP+ cells compared to control (normalized for trans-
fection efficiency using an mCherry spiked-in control),
confirming enhancer activity (Fig. 1G). Transfecting the
same plasmids in non-neural HEK cells showed less pro-
nounced activity. This indicates that 81.8% of the tested
DAEs had a measurable enhancer activity using this
assay in an in vitro neural cell type. Of note, this does

not exclude activity of those 4 DAEs that do not show
enhancer activity in NSCs, in other cell types during
fetal brain development.
We conclude that an integrative data analysis of virtu-

ally all previously reported brain enhancers identifies a
set of DAEs which are associated with a brain develop-
mental gene ontology, increased gene expression in fetal
brain and display enhancer activity in vitro.

Multi-gene-interacting enhancers regulate genes
implicated in multiple cellular processes and have
distinguishing sequence characteristics
In order to understand the biological function of DAEs
and nDAEs in more detail, we further characterized
these two groups. When determining the number of
genes that each DAE is interacting with, we found that
the majority of DAEs interact with 1 or 2 genes; but, in
addition, a considerable fraction of DAEs also interact
with more than 2 genes (19.7 % for CP, 19.4% for GZ)
(Fig. 2A), and the same was found for nDAEs (Fig. 2B).
When comparing the enrichment of biological processes
for the genes that interact by HiC with these multi-
gene-interacting DAEs using Enrichr, we found that
these genes were enriched for broader developmental
and metabolic processes. However, genes that interact
with DAEs that only regulate single genes were enriched
for more specific brain-related terms, such as “neuron
differentiation” and “neuron migration” (Additional file
8: Table S7). Similar results were obtained using GREAT
and Metascape analysis, where multi-gene-interacting
DAEs for example were enriched in mouse phenotypes
associated with “early lethality,” whereas DAEs associ-
ated with only a single gene were enriched for “regula-
tion of neural precursor cell proliferation” (Additional
file 8: Table S7).
We next asked whether DAEs that regulate single or

multiple genes could have distinguishing DNA sequence
characteristics, which could support their presumed dis-
tinct functional roles. To answer this, we focused on
scores that provide some weight based on the underlying
sequences: non-coding essential regulation (ncER) score
[38], GC content [39], and phastcons score [39]. The
ncER scores were recently established using a machine
learning model [38], taking functional, mutational, and
structural features into account, including sequence con-
straint in the human population, and provides a score
where 0 is non-essential and 1 is putative-essential. We
observe that DAEs that interact with 3 or more genes
have a significantly higher ncER percentile compared to
DAEs that interact with only 1 gene (Fig. 2C). This
might reflect their biological function regulating multiple
genes, resulting in a higher tendency to be constraint. A
similar trend was observed for GC content, where DAEs
interacting with more than one gene had a significantly
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higher GC content, whereas for the phastcons score, an
indicator of multi-species conservation, differences were
not significant (Fig. 2C). Similar observations were made
for nDAEs (Fig. 2D). Higher GC content has also been
observed in more broadly active enhancers in the im-
mune system [94] and might be explained by binding of
broadly active transcription factors (TFs) to GC-rich
motifs [95].

Sequence characteristics distinguish DAEs from nDAEs
Given the differences in gene ontology between DAE
and nDAE linked genes (Fig. 1B) and the differences in
ncER score and CG content between enhancers that
regulate single versus multiple genes (Fig. 2C, D), we
next asked whether there are differences between these
scores in DAEs and nDAEs, and whether any potential
difference would be influenced by gene interactions that
these regulatory elements have. We observed a signifi-
cantly higher ncER percentile, CG content, and phast-
cons score when comparing all DAEs to nDAEs
(Fig. 2E). Interestingly, some of these scores further in-
creased, when only considering those DAEs and nDAEs
that interact with target genes (as determined by HiC).
This increased even further when only considering inter-
acting target genes that are associated with known On-
line Mendelian Inheritance in Man (OMIM)
phenotypes. Similar observations were made when using
the Orion [40] and CADD scores [41] (Fig. 2E) that
similarly take depletion of variation in the human popu-
lation and likelihood of deleteriousness of a given nu-
cleotide based on integration of various annotations into
account, respectively. Again, DAEs scored significantly
higher for Orion and CADD scores than nDAEs, empha-
sizing the potentially biological important role of DAEs
during brain development. Genes that are essential in
humans are generally depleted of loss-of-function alleles,
and this is reflected by a higher probability of loss-of-

function intolerance (pLI) score [42]. When we plotted
the median pLI of genes linked to DAEs, or to nDAEs,
genes linked to DAEs scored significantly higher (Fig. 2F).
Finally, a recent study determined loss-of-function toler-
ance scores for non-coding sequences, by using machine
learning and structural variants from whole genome se-
quencing, including homozygous enhancer deletions
[43]. Using this analysis, we observed that DAEs were
more likely to be intolerant to loss-of-function, whereas
nDAEs were more often tolerant to loss-of-function
(Fig. 2G). Again, when only considering those interac-
tions linked to known target genes, scores further im-
proved, in favor of DAEs.
We and others previously showed that functional en-

hancers can be enriched for transposable elements
(TEs), some of which can be human specific [65, 96–98].
We thus asked whether DAEs and nDAEs showed a
similar TE enrichment, and whether any TEs could dis-
tinguish both groups (Fig. 2H, Additional file 9: Table
S8). nDAEs showed a small enrichment for various
LTR-containing TEs (e.g., LTR75B, LTR60, LTR36).
Compared to nDAEs, DAEs were mainly enriched for
CG-rich repeat sequences, and a number of LTR re-
peats, such as Harlequin-int, HERVS71-int, and HERV
K3-int. Enrichment of the latter LTR repeats was not
seen when only considering gene-interacting DAEs.
The MER130 repeat family was previously shown to be
enriched near critical genes for the development of the
mouse neocortex and suggested to be co-opted for de-
velopmental enhancers of these genes [99]. Interest-
ingly, MER130 repeats were enriched in all DAEs, but
this enrichment was lost when only assessing DAEs that
interact with genes, which made it difficult to further
investigate the role of MER130 in human brain regula-
tion. Compared to our previous findings in human
embryonic stem cells (ESCs) [65], the overall TE en-
richment in enhancers in brain was markedly different,

(See figure on previous page.)
Fig. 2 Distinct sequence characteristics between DAEs and nDAEs. A Line graph showing the number of protein-coding and lincRNA genes (1, 2,
3, 4, or 5 or more) that each DAE is interacting with, and the number of DAEs per category, for CP (red) and GZ (blue). B As A, but here for
nDAEs. C Box plots showing the median ncER percentile (left) [38], GC content score (middle) [39] or phastcons score (right) [39] for DAEs-CP
(red) and DAEs-GZ (blue) that interact with 1, 2, 3, 4, or 5 or more protein-coding and lincRNA genes. Boxes are IQR; line is median; and whiskers
extend to 1.5 the IQR. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not significant (wilcox.test). D As C, but here for nDAEs. E Box plots,
showing from left to right ncER percentile [38], GC content score [39], phastcons score [39], Orion score [40], and CADD score [41], for all DAEs
(light gray) and nDAEs (dark gray), or for those DAEs and nDAEs that are interacting in CP or GZ with protein-coding and lincRNA genes (red) or
genes with a known OMIM phenotype (blue). Boxes are IQR; line is median; and whiskers extend to 1.5 the IQR. * p < 0.05; ** p < 0.01; *** p <
0.001; ns, not significant (wilcox.test). F Box plot showing the pLI score [42] of genes interacting with DAEs (light gray) and nDAEs (dark gray) in
CP or GZ. Boxes are IQR; line is median; and whiskers extend to 1.5 the IQR. *** p < 0.001; (wilcox.test). G Kernel density plot showing the
distribution of loss-of-function tolerance scores for non-coding sequences [43] for all DAEs (light gray), all nDAEs (dark gray), DAEs linked to
protein-coding and lincRNA genes in CP (red), DAEs linked to protein-coding and lincRNA genes in GZ (green), nDAEs linked to protein-coding
and lincRNA genes in CP (orange), and nDAEs linked to protein-coding and lincRNA genes in GZ (yellow). H Bar chart showing the most enriched
transposable elements (TEs) overlapping with from left to right all nDAEs, all DAEs, DAEs interacting with protein-coding and lincRNA genes in
CP, and DAEs interacting with protein-coding genes in GZ. Plotted is a ratio between the observed (O) number of TEs over the expected (E).
Different classes of TE are indicated with different colors as indicated
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with none of the TEs enriched in active enhancers in
ESC showing enrichment at brain enhancers. This
could indicate that different TEs co-opted into the
regulatory landscape acquired different tissue-specific
roles during evolution.
Together this indicates that by investigating unbiased

variability in epigenome marks over putative brain en-
hancers across developmental time points, DAEs and
nDAEs can be identified which are associated with dif-
ferent gene ontologies, show different enrichments, have
different sequence characteristics, and are distinctively
linked to disease-relevant genes.

DAEs and nDAEs are enriched for distinct transcription
factor binding sites
As the merging of pCRs and subsequent variability call-
ing identified DAEs with distinct sequence characteris-
tics, we next wondered whether we could further zoom
in into each of the DAEs, to identify functional relevant
nucleotides. To this end, we again made use of the ncER,
CG, and phastcons scores, assuming that the functional
relevant nucleotides in each DAE might be those that
have higher scores. As the identified DAEs varied in size
between 50 and 1000 bps, we first split up each DAE
into 10 bp bins and assigned the median ncER, CG, and
phastcons scores to each bin. To be able to compare the
score distribution within each bin between all DAEs, we
re-scaled each DAE to a relative bin position from 1 to
100 (see “Methods” for details). Strikingly, the mean of
ncER, CG, and phastcons scores were highest between
bins 40 and 60 (Fig. 3A). To exclude that this was an
artifact from the bin-rescaling, we plotted the mean dis-
tribution for the same scores also for DAEs that had an
identical length and found similar results (Additional file
1: Fig. S4A). We next calculated the number of reads
from all epigenome data sets and plotted the log2 en-
richment over the same relative DAE bin positions. We
found that ATAC-seq, DNase-seq, H3K27ac, H3K4me1,

and H3K4me2 signals (all associated with enhancers)
again were most enriched between bins 40 and 60,
whereas signal for H3K4me3 (of which high levels are
associated with promoters and lower levels are found at
enhancers) and H3K27me3 (associated with repressed
chromatin) showed a broader distribution (Fig. 3B), and
this holds true for all developmental time points
assessed. This suggests that on average, the center of the
DAEs most likely contains the functional relevant se-
quences, and given the increased chromatin accessibility
at those locations, this could indicate binding of func-
tionally relevant TFs in these central regions.
To investigate this further, we first performed TF en-

richment analysis using Locus Overlap Analysis (LOLA)
[63], on both full length DAEs, as well as on only the
central DAE parts between bins 40 and 60 (ncER sub-
set). LOLA performs enrichment analysis based on gen-
omic regions and tests the overlap of the query regions
with a core reference database assembled from public
data, including amongst others ChIP-seq data from
CODEX [100]. We found a similar enrichment of TF
binding sites between full length and central parts of
DAEs (Fig. 3C, Additional file 9: Table S8), and between
all DAEs and those interacting with target genes in CP
and GZ. The most enriched TFs at DAEs according to
LOLA included well-known TFs with essential roles for
brain development. This includes amongst others ETS1,
a widely studied TF with functions in different biological
systems which was previously shown to be necessary for
radial glia formation in vertebrates [101] and FGF-
dependent patterning of anterior-posterior compart-
ments in the central nervous system of Ciona (a marine
invertebrate that is a well-suited model to study cell fate
specification in chordates) [102]; YY1, a crucial TF
which is involved in both gene activation and repression
[103], mediating enhancer-promoter interactions [104]
and of which mutations cause a neurodevelopmental dis-
order [105]; and CTCF, a master regulator of chromatin

(See figure on previous page.)
Fig. 3 DAEs and nDAEs are enriched for distinct transcription factor binding sites. A Line plot showing the distribution of the mean ncER
percentile (left) [38], GC content score (middle) [39], and phastcons score (right) [39] over the relative bin position for all DAEs. B Line plot
showing the log2 enrichment for various epigenome features as indicated, over the relative bin positions for all DAEs. Different colors indicate
different time points of human brain development and different brain regions from which the data were obtained. DFC, dorsal frontal cortex;
CBC, cerebellar cortex; OC, occipital cortex; FC, frontal cortex; CP, cortical plate; GZ, germinal zone; Brain, whole brain. Epigenome data used are
summarized in Additional file 3: Table S2. C Bar chart showing the relative LOLA enrichment of TFs from JASPAR in all DAEs (light gray), in the
central part of all DAEs (ncER subset, orange), in DAEs linked to genes in CP (red) and in DAEs linked to genes in GZ (blue). X-axis displays the
rank score (a combination of p value, odds ratio from Fisher’s exact test, and the raw number of overlapping regions) from LOLA. The rank was
re-scaled between 0 and 100, so that DAEs with a larger TFs enrichment have a higher rank. Also shown is a heatmap showing the RNA-seq
expression levels (Log2 FPKM) of the same TFs across various human fetal tissues. RNA-seq data obtained from ENCODE project [7]. D As in A,
but here for nDAEs. E As in B, but here for nDAEs. Note the difference in y-axis scale for H3K4me3 and H3K27me3 compared to panel B given
the higher enrichment in nDAEs. F As in C, but now for nDAEs. G Line plot showing the distribution of enrichment (− log10 p value as
determined by HOMER analysis) across the relative DAE bins, for the 251 TF motifs that were not equally enriched in all 20 bin groups. The most
enriched TF motifs are indicated. H As G, but now for 218 TFs that were not equally enriched across the 20 bin groups of all nDAEs
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structure, of which de novo mutations cause intellectual
disability [106]. We next repeated the same analysis for
nDAEs (Fig. 3D–F, Additional file 9: Table S8). Similar
to our observations for DAEs, nDAEs had higher ncERs,
CG content, and conservation at the central part, with
those regions being enriched for enhancer associated
histone marks, but showed less variability over time.
When performing TF enrichment analysis using LOLA,
we observed a different and less specific set of TFs
enriched at nDAEs compared to DAEs. Also, enrichment
was lower at those nDAEs that were interacting with tar-
get genes. Again similar enrichment was found in the
central part compared to the whole nDAEs. Enriched
TFs for nDAEs included amongst others FOXL1, a tran-
scriptional repressor that regulates central nervous sys-
tem development [107]; the LIM homeodomain TF
LHX3, that is essential for pituitary and nervous system
development [108, 109]; and FOXA2, which plays a role
in midbrain dopaminergic neurons [110, 111] (Fig. 3F).
Shared TFs enriched both at DAEs and nDAEs included
SP1, loss of which in astrocytes impacts on neurons in
the cortex and hippocampus of mice [112]; MAFB, a
basic leucine zipper TF that plays a role in hindbrain de-
velopment [113–115] and postnatal brain development
[116, 117]; and ZEB1 which is required for neuronal dif-
ferentiation [118, 119].
As LOLA analysis considers a single shared base pair

being sufficient for regions to count as overlapping, this
analysis could not distinguish well between TFs specific-
ally enriched at the central part of DAEs and nDAEs
relative to the flanking regions. We therefore further in-
vestigated which TFs motifs were specifically enriched at
the central parts versus other parts of DAEs and nDAEs,
using motif enrichment analysis with HOMER [64], a
motif discovery algorithm, which identifies regulatory el-
ements that are specifically enriched in the query set
relative to background. We first split the 100 relative
bins into 20 groups of 5 consecutive bins each and de-
termined the significantly enriched TF motifs (p ≤ 0.01)
for each of these 20 bin groups (Additional file 9: Table
S8). Amongst the enriched motifs, we found back,
amongst others, the motifs for the TFs enriched using
the LOLA analysis, validating these findings (Additional
file 9: Table S8). When plotting the number of

significant motifs (p ≤ 0.01) per bin group and the num-
ber of target sequences with those motifs, we found that
bins located in the central part of both DAEs and
nDAEs had both the highest numbers of significant TF
motifs and the highest number of target sequences
(Additional file 1:Fig. S4B,C). As most enriched motifs
were found in multiple bins, and there can be multiple
TF bindings sites of the same TF within the same en-
hancer, we next focused on only those TF motifs which
were not equally enriched in all 20 bin groups (n = 251
for DAEs and n = 218 for nDAEs). For both DAEs and
nDAEs, we again found most motif enrichment in the
central enhancer part, with DAEs being more enriched
than nDAEs (Fig. 3G, H, Additional file 1: Fig. S4D,E).
Amongst the most enriched TF motifs at the center of
DAEs were motifs for the proneural basic helix-loop-
helix transcription factors NEUROG2, ATOH1, and
NEUROD1 that promote neurogenesis [120–122],
OLIG1, a marker of oligodendrocytes [123] that also reg-
ulates the neuron-glial switch during earlier embryonic
development [124, 125], TCF4, that is necessary for
neuronal migration and the correct development of the
cerebral cortex [126] and loss of which is associated with
intellectual disability [127], and NF1 that regulates neur-
onal and glial differentiation and is causative of neuro-
fibromatosis type 1 when mutant [128] (Fig. 3G).
Enriched TF motifs at the central part of nDAEs are in-
volved in more ubiquitous processes and include mainly
activator protein 1 (AP-1), a heterodimer composed of
members of the JUN (including JUNB), FOS (including
FOSL2, FRA1, FRA2), ATF (including ATF3, BAFT),
and MAF family that regulates a wide variety of cellular
processes in response to a wide range of extracellular
cues [129] (Fig. 3H).
Together this indicates that on average the central part

of brain enhancers (both DAE and nDAEs) contains
relevant but partially distinct TF binding sites and might
be enriched for functional relevant sequences, which can
be further fine-mapped using ncER scores and other se-
quence characteristics. To test this directly, we selected
three DAEs, linked to IRF2BPL, CHD2, and MACF1,
that showed activity in reporter assays in NSCs (Fig. 1G)
and deleted 10–30 bp of those regions that had the high-
est ncER scores in those enhancers. Upon transfection of

(See figure on previous page.)
Fig. 4 Clustering of DAEs unravels temporal dynamics of brain gene regulation. A Heatmap displaying all available epigenome features for PCW
8-12, across all DAEs interacting with protein-coding genes in CP (upper heatmap) and GZ (lower heatmap) (AI). K-means clustering analysis of
epigenome features (AII) identifies two clusters, cluster 1 (red) and cluster 2 (green). Level of enrichment is indicated on the y-axis in Log2 TPM.
Box plots (AIII) shows RNA-seq gene expression of protein-coding genes regulated by the DAEs from each cluster (Expression pattern), for
available data from PCW 8, 9, and 12 [20]. Boxes are IQR; line is median; and whiskers extend to 1.5 the IQR. Gene enrichment analysis for the
corresponding genes in each cluster (AIV). X-axis shows the − log 10 (p value) from Enrichr. B As for A, but now for PCW 13–18. C As for A, but
now for PCW > 18
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these mutant DAEs, we observed a significantly reduced
enhancer activity for IRF2BPL and CHD2, but not for
MACF1 (Additional file 1: Fig. S4F). Deleting regions
with a lower ncER score did not affect enhancer activity.
Together, this indicates that integrative analysis, variabil-
ity analysis during development, and sequence character-
istics can identify functional relevant nucleotides in
brain enhancers.

DAEs show temporal epigenome dynamics during human
brain development
To further understand the dynamics of enhancer regula-
tion, we subdivided DAEs interacting with genes in GZ
and CP by performing clustering analysis on all available
epigenome data sets, at different developmental stages
(between 8 and 12 PCW, 13–18 PCW, and > 18 PCW)
(Fig. 4A, Additional file 10: Table S9). At 8–12 PCW, we
found two clusters for both GZ and CP that showed
relatively constant enrichments over time, with the first
cluster (red) showing a higher enrichment for all epige-
nome features available for that developmental stage,
compared to the second cluster (green). No statistically
significant differences in gene expression levels between
genes linked to both clusters were found. Genes associ-
ated with cluster 1 DAEs in CP were enriched for gene
ontology terms related to neuronal differentiation,
whereas cluster 2 was dominated by processes in the
Golgi. Likewise, for GZ, genes associated with cluster 1
seemed to be associated with more specific biological
functions, whereas processes associated with cluster 2
showed more broad involvements (Fig. 4A, Additional
file 10: Table S9).
At 13–18 PCW, three clusters emerged in both GZ

and CP (Fig. 4B, Additional file 10: Table S9).
Whereas cluster 3 (green) showed relatively low levels
of epigenome marks similar to cluster 2 at 8–12
PCW, cluster 1 (red) and cluster 2 (blue) showed
higher epigenome enrichments. Both cluster 1 and 2
had similar levels of H3K27ac, but mainly diverged
from each other on the levels of H3K4me3. Cluster 2
was strongly enriched for processes involved in neural
system development both in CP and GZ. Gene ontol-
ogy of genes associated with cluster 1 (red) which

showed higher H3K4me3 levels, showed enrichment
for insulin-like growth factor receptor signaling and
immune cell-related processes in CP. Insulin-like
growth factors are important for neuronal survival
and neurogenesis [130]. As high levels of H3K4me3
have also been found at enhancers in blood cells
[131], possibly stabilizing their transcription, it is
tempting to speculate that part of this cluster reflects
enhancers active in hematopoietic cells from the de-
veloping vasculature [132] and microglia (brain tissue
macrophages) that are invading the brain at these de-
velopmental time points [133]. In GZ, cluster 1 was
associated with phosphatidylinositol 3-kinase signaling,
which is important for commitment of neural pro-
genitor cells [134, 135].
Finally, at > 18 PCWs, we found two clusters of DAEs,

of which cluster 1 (red) was marked by higher levels of
epigenome marks (Fig. 4C, Additional file 10: Table S9).
In CP, genes associated with this cluster were enriched
for carboxylation processes and insulin-like growth fac-
tor receptor signaling. Genes associated with the second
cluster (green) were again more enriched for broad de-
velopmental processes, including the Golgi system. In
GZ, genes associated with cluster 1 (red) were amongst
others involved in DNA damage repair. Indeed, alter-
ations in this pathway can lead to reduced proliferation
of neural progenitor cells leading to microcephaly [136,
137]. Cluster 2 (green) in GZ was associated with terms
related to neurodevelopment and organ morphogenesis.
Together, this shows that temporal epigenomic re-

arrangement in DAEs is reflected in regulating the ex-
pression level of genes that are important in
developmental and cell type-specific processes.

Cell type specificity of DAEs and nDAEs and their
dynamics in adult brain
To further investigate cell type specificity of DAEs and
nDAEs, we performed two additional analyses. First, we
compared DAEs and nDAEs to recently identified cell
type-specific regulatory elements. A recent study used
scATAC-seq to generate a human cell atlas of fetal chro-
matin accessibility spanning 15 organs, including fetal
brain [85]. When overlapping DAEs and nDAEs to the

(See figure on previous page.)
Fig. 5 Variants in DAEs and nDAEs are associated with human disease. A Bar graph showing the number of DAEs linked to their target genes in
CP and GZ and their most enriched OMIM phenotypes. B Plot showing the top-25 GWAS phenotypes that are enriched in DAEs compared to
nDAEs (log2 odds ratio DAE/nDAE). C Line graph showing the odds ratio, confidence interval, and p value for enrichment of CNVs from an ASD
cohort at DAEs and nDAEs. CNVs data obtained from Brandler et al [44]. * p < 0.05; ** p < 0.01 (Fisher’s exact test). D Genome browser track
showing the regulatory landscape of the GABRD gene. Indicated are a DAE (chr1: 1,840,449-1,840,835) that is interacting with the GABRD
promoter, and a deletion (chr1: 1,840,001-1,845,000) that is found in an epilepsy patient (CNET0068) from Monlong et al. [45].* p < 0.05 (Fisher’s
exact test). E Line graph showing the odds ratio, confidence interval, and p value for enrichment of SNV from an ASD cohort at DAEs and nDAEs.
SNV data obtained from Zhou et al. [46]
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most specific chromatin accessibility peaks per cell type,
we found 7753 DAEs and 7946 nDAEs that overlapped
with these cell type-specific chromatin accessibility
peaks, including those found in several types of neurons
and astrocytes (Additional file 1: Fig. S5A,B). This indi-
cates that our bulk analysis re-identifies cell type-specific
chromatin accessibility peaks which might therefore
present cell type-specific enhancers, and it also shows
that the bulk analysis identifies additional enhancers that
are not captured by the single-cell chromatin accessibil-
ity profiles.
We next investigated how these cell type-specific en-

hancer might behave over time. Two recent studies de-
termined cell type-specific regulatory elements from
postnatal brain with a reasonable overlap between both
studies (Additional file 1: Fig. S5C,D), by either isolating
cell type-specific bulk populations from brain followed
by ATAC-seq and ChIP-seq for H3K27ac and H3K4me3
[56], or by performing scATAC-seq [55]. Comparing the
DAEs and nDAEs to these cell type-specific regulatory
elements showed as expected that only a fraction of
DAEs and nDAEs from the fetal brain analysis showed
an overlap with the cell type-specific regulatory elements
derived from postnatal samples. Amongst those, we
found overlap with cell type-specific regulatory elements
from neurons, oligodendrocytes, astrocytes, and micro-
glia (Additional file 1: Fig. S5E,F). This indicates that
despite determined from an integrative analysis of bulk
samples derived during fetal brain development, a frac-
tion of DAEs and nDAEs can be linked to cell type-
specific regulatory elements which are likely to also have
roles in postnatal brain. In contrast, other DAEs and
nDAEs are likely having fetal-specific functions.
To further investigate the dynamics of DAEs and

nDAEs in adult brain, in the second analysis, we com-
pared H3K27ac levels obtained from both fetal and adult

samples derived from a single study [86] for all DAEs
and nDAEs linked to target genes in GZ and CP by HiC,
and performed clustering and gene ontology analysis
(Additional file 1: Fig. S6, Additional file 10: Table S9).
We found that DAEs that were mainly enriched for
H3K27ac in fetal samples were as expected associated
with gene ontology terms related to fetal brain develop-
ment, including regulation of neuron differentiation.
DAEs which also showed H3K27ac enrichment in adult
samples were associated with more broad physiological
processes.
Together, this shows that part of DAEs and nDAEs

can be linked back to cell type-specific regulatory ele-
ments despite being identified from bulk tissue analysis
and that some DAEs and nDAEs are likely to also func-
tion in postnatal brain.

DAEs regulate disease-relevant genes and are enriched
for disease implicated variants
Given our findings that DAEs are associated with genes
relevant for brain development, we further investigated
which disease-relevant genes are regulated by DAEs. We
first focused on known disease causing genes retrieved
from OMIM. We found that 1556 OMIM genes are reg-
ulated by DAEs (of which 1165 and 1166 from the inter-
actions found in GZ and CP, respectively) (Additional
file 11: Table S10). Most DAEs are linked to genes in-
volved in mental retardation, developmental and epilep-
tic encephalopathy, and neurodevelopmental disorders
(Fig. 5A). This included genes like KMT2C, involved in
Kleefstra syndrome (OMIM #617768), and GRIN2A of
which heterozygous mutations cause epilepsy and speech
delay (OMIM #245570). Next to genes, enhancers can
also interact with other additional enhancers. Interest-
ingly, the more additional enhancers (DAE and/or
nDAE) a DAE was interacting with, the more likely the

(See figure on previous page.)
Fig. 6 CRISPRi and zebrafish experiments validate activity of DAEs regulating genes involved in neurogenetic disorders. A Genome browser tracks
showing enhancers interacting with CHD2 (left), CAD (middle), and TRAK1 (right). Shown are RNA-seq expression profiles, various histone
modifications, and ATAC-seq and DNase profiles for various time points during human fetal brain development, as indicated. The tested DAEs are
indicated by the box. B Representative fluorescent images showing GFP expression of transgenic enhancer reporter assays in zebrafish larvae at 1,
2, and 3 dpf. Tested are the enhancers for CHD2, CAD, and TRAK1 (shown in A), and two additional enhancers for MACF1 and TUBB2A. The five
tested enhancers induced GFP expression in the head of the larvae, amongst others in the forebrain in 61.1%, 81.8%, and 87.9% larvae for CHD2;
88.9%, 85.4%, and 85.7% for CAD; 87.1%, 70%, and 88.5% for TRAK1; 81.5%, 85.7%, and 76.2% for MACF1; and 87.5%, 100%, and 100% for TUBB2A,
respectively at 1, 2, and 3 dpf. Also peripheral neuron-specific GFP expression was found, with 0%, 60.6%, and 21.2% for CHD2; 68.9%, 24.4%, and
51.4% for CAD; 83.6%, 65.5%, and 67.3% for TRAK1; 37%, 50%, and 33.3% for MACF1; and 50%, 83.3%, and 63.3% for TUBB2A, respectively at 1, 2,
and 3 dpf. See also Additional file 14: Table S13. Scale bars represent 500 μm. C Bright-field image of a wild type zebrafish larvae at 3 dpf (lateral
view), with the anatomical sites that were scored for GFP expression indicated. D qRT-PCR showing reduction of CHD2, CAD, and TRAK1
expression in NSCs upon silencing of respective enhancer by dCas9-KRAB-MECP2. Data represent fold change of expression of respective genes
compared to mock transfected cells (KRAB-MECP2 plasmid only, no gRNA plasmid). Two independent transfection experiments were performed,
each in duplicate. All data points and standard deviation are shown. ** p < 0.01; **** p < 0.0001 (one-way ANOVA test followed by multiple
comparison test (Fisher’s LSD test). E qRT-PCR showing reduction of REST expression in NSCs upon silencing of CHD2, CAD, or TRAK1 enhancers
by dCas9-KRAB-MECP2. Data represent fold change of REST expression compared to mock transfected cells (KRAB-MECP2 plasmid only, no gRNA
plasmid). Two independent transfection experiments were performed, each in duplicate. All data points and standard deviation are shown. **
p < 0.01 (one-way ANOVA test followed by multiple comparison test (Fisher’s LSD test)
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target gene of this DAE was an OMIM gene (Additional
file 1: Fig. S7A). This supports recent findings that the
number of enhancers linked to a gene reflects its disease
pathogenicity [138] and confirms enhancer redundancy
for disease-relevant genes [139].
We next leveraged published GWAS loci for brain-

related traits and disorders (Additional file 12: Table
S11). When comparing the odds ratio between DAEs
and nDAEs, we found that DAEs were more often
enriched for various significant GWAS loci, reflecting a
broad variety of both brain developmental processes
(e.g., volumes of different anatomical brain regions) and
neurodevelopmental disorders (e.g., mental development,
autism) (Fig. 5B). Similarly, using LD score regression
analysis we found enrichment of heritability for variants
within DAEs, nDAEs, and pCRs, including for the trait
“intelligence” (Additional file 1: Fig. S7B).
Encouraged by these findings, we next asked whether

copy number variants (CNVs) or single-nucleotide vari-
ants (SNVs) at DAEs could be involved in causing gen-
etic disease. We first leveraged previously published
disease implicated CNVs. Brandler et al. performed
WGS in their discovery cohort of individuals affected by
an autism spectrum disorder (ASD) and unaffected indi-
viduals and reported on 135 de novo CNVs (104 dele-
tions, 29 duplications, and 2 inversions) [44]. Of these,
25 overlapped a DAE in cases, and 8 in controls (odds
ratio = 2.10, p value = 0.144101). When only considering
those CNVs overlapping DAEs linked to target genes,
this became 17 in cases and 1 in control for DAEs linked
to CP genes (odds ratio = 11.83, p = 0.003003) and 15 in
cases and 1 in control for DAEs linked to GZ genes
(odds ratio = 10.14, p value = 0.010423). For nDAEs, 36
CNVs were found in cases and 15 in controls (odds ra-
tio = 1.63, p value = 0.267964). However, as not all these
CNVs exclusively covered non-coding regions, it cannot
be excluded that the observed association is due to dis-
rupted coding genes, rather than involvement of DAEs.
We therefore also assessed rare inherited deletions from
the same study that did not overlap with coding exons
(n = 213 in total, 175 in cases and 38 in controls). From
these, 32 cases had a deletion covering a DAE, compared
to two controls (odds ratio = 4.027972, p value =
0.05119). Although not significant, this might point to
more deletions covering DAEs in ASD individuals but
would require a larger sample size to be confirmed (Fig.
5C, Additional file 13: Table S12).
In another study, Monlong et al. [45] reported on

CNVs in 198 epilepsy patients detected by WGS. They
found an enrichment of rare non-coding CNVs near
known epilepsy genes, with the GABRD gene showing
the strongest and only nominally significant association
with 4 non-coding deletions amongst the epilepsy pa-
tients. Interestingly, a 4999 bp deletion reported in that

study, overlapped with a 386 bp DAE which is located ~
110 kb upstream of GABRD and which interacts with its
promoter (Fig. 5D). Hence, it is possible that deletion of
this DAE affects GABRD expression, which might be im-
plicated in the phenotype of that individual.
Third, we made use of de novo SNVs found in WGS

from 1790 ASD simplex families [46]. We found 932 de
novo variants that overlapped all DAEs in ASD individ-
uals compared to 829 variants overlapping all DAEs in
unaffected individuals (odds ratio = 1.07, p value =
0.157). We next repeated the analysis with only those
DAEs that are interacting with known autism genes
from the SFARI Gene database (n = 1003 genes) [84].
We found 26 cases and 11 controls with de novo vari-
ants in DAEs that interact with autism genes in CP
(odds ratio = 2.249703, p value = 0.021455), whereas for
DAEs interacting with autism genes in GZ, this was 20
cases and 17 controls (odds ratio = 1.11955, p value =
0.745628) (Fig. 5E, Additional file 13: Table S12). Inter-
estingly, for each of the genes CIB2, FBRSL1, PACS2,
KDM4B, and MYT1L, we found 2 individuals with aut-
ism with de novo variants in DAEs interacting with
these genes. These variants are either absent or ex-
tremely rare in a large control cohort of gnomAD [140],
possibly pointing to a role in causing the phenotype, al-
though this will require further validation.
Together this indicates that DAEs are linked to

disease-relevant genes and are enriched for GWAS loci
relevant for brain-related traits and for variants linked to
genetic disorders.

CRISPRi and zebrafish experiments confirm enhancer
activity of DAEs regulating genes involved in epileptic
encephalopathy
To further substantiate our findings, we validated the
biological role of selected enhancers, using in vivo zebra-
fish transgenic reporter assays and CRISPR inhibition in
human NSCs by focusing on enhancers linked to
disease-relevant genes.
CHD2 belongs to the chromodomain helicase DNA-

binding families of chromatin remodeling proteins, and
haploinsufficiency of this gene has been associated with
a developmental and epileptic encephalopathy, present-
ing with early onset intractable seizures, cognitive re-
gression, intellectual disability and ASD behaviors
(OMIM #615369) [141]. Around 80 kb upstream of
CHD2, we found a DAE that interacts with the CHD2
promoter (Fig. 6A). In NSC reporter assays, this region
showed strong enhancer activity, and this was less pro-
nounced in non-neural HEK cells (Fig. 1G). To further
study the biological relevance of this region, we first
tested enhancer activity in vivo using zebrafish transgen-
esis. Out of the 36 analyzed zebrafish larvae, 61.1%
showed GFP expression in the forebrain at 1 day post
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fertilization (dpf), and this increased to 81.8% at 2dpf
and 87.9% at 3dpf, indicating enhancer activity (Fig. 6B,
C). Expression was also found in midbrain and hind-
brain, at a slightly lower extent, in the eyes, in peripheral
neurons, and in the spinal cord (Additional file 14: Table
S13). GFP expression in the developing zebrafish brain
correlated with in situ hybridizations of endogenous
chd2 [142]. To test whether epigenome silencing of this
enhancer would affect CHD2 expression, we performed
CRISPR interference (CRISPRi) by targeting dCas9-
KRAB-MeCP2 to the enhancer region by coexpression
of gRNAs with a GFP fluorescent reporter. Transfection
efficiency in these experiments, based on FACS for GFP,
was 78–92%, and this resulted in around 50% reduction
of CHD2 expression compared to mock cells transfected
solely with dCas9-KRAB-MeCP2 (Fig. 6D). Interestingly,
it was previously shown that silencing of CHD2 leads to
reduced expression of REST [143]. In agreement with
this, cells with reduced CHD2 expression upon CHD2
enhancer silencing showed reduced REST expression
(Fig. 6E). This confirms that CHD2 is under control of
the investigated DAE.
Bi-allelic variants in CAD cause an early infantile epi-

leptic encephalopathy (OMIM #616457) [144] that is
characterized by global developmental delay, loss of
skills, therapy refractory epilepsy, brain atrophy, and dys-
erythropoietic anemia. We found an enhancer located in
the third intron of EMILIN1, around 135 kb upstream of
CAD that interacts with the CAD promoter (Fig. 6A)
and which showed strong enhancer reporter activity in
NSCs and only limited activity in HEK cells (Fig. 1G).
Targeting this region in NSCs by CRISPRi significantly
diminished gene expression of CAD to around 50% com-
pared to mock (Fig. 6D). Similar to CHD2, in vivo re-
porter assays in zebrafish recapitulated in situ
hybridisation results for cad [145]. From the 45 analyzed
larvae, GFP expression was found in the forebrain of
88.9% larvae at 1 dpf, which remained ~ 85% at 2 and 3
dpf. Again, GFP expression was observed also in mid-
brain, hindbrain, eyes, in peripheral neurons, notochord,
and spinal cord (Fig. 6B, Additional file 14: Table S13).
We next focused on an enhancer interacting with

TRAK1, located ~ 65 kb upstream of the TSS (Fig. 6A).
TRAK1 is involved in mitochondrial trafficking, and bi-
allelic loss-of-function variants in TRAK1 are associated
with developmental and epileptic encephalopathy
(OMIM #618201) [146, 147]. Similar to the CHD2 en-
hancer results, the TRAK1 enhancer showed higher re-
porter assay activity in NSCs than in HEK cells
(Fig. 1G). Targeting of dCas9-KRAB-MeCP2 to the
TRAK1 enhancer reduced TRAK1 expression to ~ 25%
residual expression (Fig. 6D). Interestingly, in the VISTA
enhancer browser, another enhancer linked to TRAK1
(hs2359), ~ 18 kb upstream of the TSS, has been

reported which did not show enhancer reporter activity
in E11.5 mouse embryos. When testing the TRAK1 en-
hancer identified here in zebrafish (Fig. 6B), we found
that from 55 larvae, 89.1% showed GFP expression in
the forebrain, as well as in the midbrain (74.5%) and
hindbrain (85.5%). The larvae showed decreasing GFP
expression in neurons outside of the brain over the dif-
ferent time-point (83.6% at 1 dpf, 65.5% at 2 dpf, and
67.3% at 3 dpf) and increasing expression in both so-
mites (89.1%) and heart (58.2%) at 3 dpf, compared to
32.7% and 1.8% at 1 dpf larvae, respectively. Moreover,
this enhancer was active also in the eye, trunk and tail,
notochord, and at 1 dpf, in the spinal cord (Additional
file 14: Table S13).
Finally, next to these three enhancers, we validated 7

additional enhancers linked to the genes LRP1, LRP5,
TUBB2A, ELOVL6, MACF1, C12orf4, and EBP41L1
using zebrafish reporter assays and could confirm en-
hancer activity for all of them with > 60% larvae ex-
pressing GFP (Fig. 6B, Additional file 1: Fig. S8,
Additional file 14: Table S13). These included en-
hancers linked to the disease genes MACF1 (OMIM
#618325) and TUBB2A (OMIM #615763), of which
coding pathogenic mutations cause brain malforma-
tions [148, 149], and C12orf4 (OMIM #618221) of
which bi-allelic variants cause intellectual disability
[150]. Together, this shows that DAEs identified in this
integrative analysis show enhancer activity in vitro and
in vivo and regulate, amongst others, genes linked to
Mendelian disorders.

Discussion
Understanding the role of NCREs in development and
disease still needs a significant effort at multiple levels:
starting from identifying and annotating NCREs to in-
vestigating their target gene(s) and function. In the past
few years, the identification and annotation of NCREs
have gained a lot of attention. However, despite these
developments, due to their sheer number and complex
function, more studies and concerted efforts are needed
to understand the role of NCREs in development and
disease. Here we performed an integrative analysis of vir-
tually all previously described putative enhancers and
epigenome datasets of relevance for human brain
development.
Our analysis has allowed us to first identify the inter-

section between previous studies and identify a list of
putative NCREs. This is an important step as the differ-
ent regions that were identified by previous investiga-
tions often have slightly different coordinates, length,
and quality. Our putative regions are thus the common-
ality between all the different studies that are conducted
hitherto, but at the same time keep the originality in
each of them. To further specify enhancers that might
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have a biological relevance, mapping epigenomic data to
these putative regions allowed us to identify around 40
thousand enhancers that display epigenomic rearrange-
ment during human brain development. These DAEs
have different sequence characteristics compared to
non-variable enhancers, are bound by distinct sets of
TFs, regulate disease-relevant genes, and can harbor
non-coding variants that are associated with human dis-
ease. Furthermore, our integrative analysis identified a
large number of enhancers linked to known disease
genes and expands on the knowledge of regulation of
these genes. For example, CHD2 expression regulation
has so far only been known to be influenced by a highly
conserved long non-coding RNA (lncRNA) referred to
as CHD2 Adjacent Suppressive Regulatory RNA (CHAS-
ERR), which is located in proximity to the CHD2 TSS,
and which represses Chd2 gene expression in cis [151].
It has been hypothesized that targeting CHASERR could
be used to increase expression of CHD2 in haploinsuffi-
cient individuals [151], and it will be interesting to ex-
plore whether targeting the enhancer region of CHD2
that we find and validate here could be exploited as an
alternative target of such a strategy. Similarly, the regula-
tion by enhancers of other disease implicated genes that
we validate here adds to the list of potential targets to
find disease causing non-coding variants that disturb this
regulation.
An interesting finding of our study is that by start-

ing with putative enhancers and variability of epige-
nome features over time during development, we
recover DAEs and nDAEs that can be distinguished
based on sequence characteristics, such as differences
in GC content, the level of sequence constraint, toler-
ance to loss-of-function, and differential profiles of
TF binding. Also, these DAEs and nDAEs seem to be
associated with distinct developmental processes and
result in differences in gene expression levels. It is
tempting to speculate that the distinctive features be-
tween these two types of enhancers can be used to
uncover key nucleotides responsible for those bio-
logical regulatory differences. It seems plausible that
disturbing these functionally causative sequences
could lead to altered physiology resulting in disease.
Our analysis revealing GWAS loci enrichment and
the link of DAEs supports this statement. We suggest
that our results might help interpreting the effects of
SNVs in non-coding sequences, which is at this stage
not a trivial task. Our annotated database of DAE
and nDAE will be instrumental to prioritize SNVs
based on distinct sequence characteristics identified
for these elements as well as to provide cues on po-
tentially disturbed developmental processes based on
differential temporal activity and regulatory targets of
the enhancer in question. This in turn can instruct

functional validation and help deciphering pathogen-
icity of variants. With an increasing number of whole
genome sequencing data available, it is expected that
more, possibly disease implicated, non-coding variants
will be identified, and the need to classify those se-
quences in benign or pathogenic will only further in-
crease. With more computational pathogenicity
prediction tools available, such as the ncER score and
outcomes of integrative analyses such as performed
here that pinpoint likely functional sequences, it
might become possible to further decipher the impact
of these SNVs.

Conclusions
In this study, by using an integrative computational ana-
lysis of virtually all previously described putative en-
hancers and epigenome datasets, we identified a
comprehensive compendium of likely functional en-
hancers that are involved human brain development and
disease. By applying CRISPRi-based silencing and zebra-
fish enhancer reporter assays, we show that these puta-
tive regions possess enhancer characteristics. We foresee
that these enhancer sequences will be instrumental in
identifying disease causing variants which might explain
parts of the missing heritability in the field of clinical
genetics.
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