Skip to main content

Congenital Heart Disease: Approach to Evaluation, Management, and Physical Activity

  • Chapter
  • First Online:
Sports Cardiology

Abstract

Congenital heart disease (CHD) affects an estimated 0.8–1% of live-births. With advances in diagnostic imaging, medical care, and surgical interventions, more patients with CHD are surviving through childhood and into adulthood with high quality of life and functional capacity. More patients with CHD wish to, or currently, participate in competitive sports. Because of the varied physiology and severity of different forms of CHD, specific knowledge of a patient’s specific disease and pathophysiology is essential. Patients with CHD ultimately require a multidisciplinary, individualized, and shared decision-making approach for evaluation and management, and for recommendations regarding sports participation. This chapter will review the most common forms of structural CHD and congenital coronary artery anomalies, with emphasis on pathophysiology, diagnostic evaluation and management, and recommendations for sport participation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Levine BD, Baggish AL, Kovacs RJ, Link MS, Maron MS, Mitchell JH. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 1: classification of sports: dynamic, static, and impact: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66:2350–5.

    Article  PubMed  Google Scholar 

  2. Feltes TF, Bacha E, Beekman RH, Cheatham JP, Feinstein JA, Gomes AS, Hijazi ZM, Ing FF, de Moor M, Morrow WR, Mullins CE, Taubert KA, Zahn EM. Indications for cardiac catheterization and intervention in pediatric cardiac disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2607–52.

    Article  PubMed  Google Scholar 

  3. Abdulla R-I, Hanrahan A. Atrial septal defect. In: Abdulla R-I, editor. Heart diseases in children Berlin, Germany: Springer Science Business Media, LLC; 2011. p. 91–102.

    Google Scholar 

  4. Van Hare GF, Ackerman MJ, Evangelista J-AK, Kovacs RJ, Myerburg RJ, Shafer KM, Warnes CA, Washington RL. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: Task Force 4: congenital heart disease: a scientific statement from the American Heart Association and American College of Cardiology. J Am Coll Cardiol. 2015;66:2372–84.

    Article  PubMed  Google Scholar 

  5. Rubio AE, Lewin MB. Ventricular septal defects. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult; 2013. p. 713–21.

    Google Scholar 

  6. Cetta F, Truong D, Minich LL, Maleszewski JJ, O’Leary PW, Dearani JA, Burkhart HM. Atrioventricular septal defects. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult; 2013. p. 691–712.

    Google Scholar 

  7. Graham TP Jr, Driscoll DJ, Gersony WM, Newburger JW, Rocchini A, Towbin JA. Task force 2: congenital heart disease. J Am Coll Cardiol. 2005;45:1326–33.

    Article  PubMed  Google Scholar 

  8. Roche SL, Greenway SC, Redington AN. Tetralogy of Fallot with pulmonary stenosis and Tetralogy of Fallot with absent pulmonary valve. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult; 2013. p. 969–89.

    Google Scholar 

  9. Villafane J, Lantin-Hermoso MR, Bhatt AB, Tweddell JS, Geva T, Nathan M, Elliott MJ, Vetter VL, Paridon SM, Kochilas L, Jenkins KJ, Bekkman RH III, Wernovsky G, Towbin JA. D-transposition of the great arteries: hot topics in the current era of the arterial switch operation. J Am Coll Cardiol. 2014;64(5):498–511.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Beekman RA III. Coarctation of the aorta. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult; 2013. p. 1044–60.

    Google Scholar 

  11. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF. 2018 AHA/ACC guideline for the management of adults with congenital heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2019;139:e698–800.

    PubMed  Google Scholar 

  12. McCrindle BW, Williams RV, Mital S, Clark BJ, Russell JL, Klein G, Eisenmann JC. Physical activity levels in children and adolescents are reduced after the Fontan procedure, independent of exercise capacity, and are associated with lower perceived general health. Arch Dis Child. 2007;92:509–14.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shachar GB, Fuhrman BP, Wang Y, Lucas RV, Lock JE. Rest and exercise hemodynamics after the Fontan procedure. Circulation. 1982;65:1043–8.

    Article  CAS  PubMed  Google Scholar 

  14. Bland EF, White PD, Garland J. Congenital anomalies of the coronary arteries: report of an unusual case associated with cardiac hypertrophy. Am Heart J. 1933;8:787–801.

    Article  Google Scholar 

  15. Marwaha B, Idris O, Mahmood M, Gundabolu A, Sohail S, Kanaan T, Singh H. Sudden cardiac arrest in adult due to anomalous origin of left main coronary artery from pulmonary artery. JACC Cardiovasc Interv. 2018;11(24):e203–5.

    Article  PubMed  Google Scholar 

  16. Moodie DS, Fyfe D, Gill CC, Cook SA, Lytle BW, Taylor PC, Fitzgerald R, Sheldon WC. Anomalous origin of the left coronary artery from the pulmonary artery (Bland-White-Garland syndrome) in adult patients: long-term follow-up after surgery. Am Heart J. 1983;106(2):381–8.

    Article  CAS  PubMed  Google Scholar 

  17. Lim DS, Matherne GP. Congenital anomalies of the coronary vessels and the aortic root. In: Allen HD, Shaddy RE, Penny DJ, Feltes TF, Cetta F, editors. Moss and Adams’ heart disease in infants, children, and adolescents: including the fetus and young adult; 2013. p. 746–57.

    Google Scholar 

  18. Cabrera AG, Chen DW, Pignatelli RH, Khan MS, Jeewa A, Mery CM, McKenzie ED, Fraser CD Jr. Outcomes of anomalous left coronary artery from pulmonary artery repair: beyond normal function. Ann Thorac Surg. 2015;99:1342–7.

    Article  PubMed  Google Scholar 

  19. Marwaha B, Idris O, Mahmood M, Gundabolu A, Ali SS, Kanaan T, Singh H. Sudden cardiac arrest in adult due to anomalous aortic origin of left main coronary artery from pulmonary artery. JACC Cardiovasc Interv. 2018;11(24):e203–5.

    Article  PubMed  Google Scholar 

  20. Purut CM, Sabiston DC Jr. Origin of the left coronary artery from the pulmonary artery in older adults. J Thorac Cardiovasc Surg. 1991;102:566–70.

    Article  CAS  PubMed  Google Scholar 

  21. Wesselhoeft H, Fawcett JS, Johnson AL. Anomalous origin of the left coronary artery from the pulmonary trunk: its clinical spectrum, pathology, and pathophysiology, based on a review of 140 cases with seven further cases. Circulation. 1968;38:403–25.

    Article  CAS  PubMed  Google Scholar 

  22. Yau JM, Singh R, Halpern EJ, Fischman D. Anomalous origin of the left coronary artery from the pulmonary artery in adults: a comprehensive review of 151 adult cases and a new diagnosis in a 53-year-old woman. Clin Cardiol. 2011;34:204–10.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Boutsikou M, Shore D, Li W, Rubens M, Pijuan A, Gatzoulis MA, Babu-Narayan SV. Anomalous left coronary artery from the pulmonary artery (ALCAPA) diagnosed in adulthood: varied clinical presentation, therapeutic approach and outcome. Int J Cardiol. 2018;261:49–53.

    Article  CAS  PubMed  Google Scholar 

  24. Ogden JA. Congenital anomalies of the coronary arteries. Am J Cardiol. 1970;25:474–9.

    Article  CAS  PubMed  Google Scholar 

  25. Yao CT, Wang JN, Yeh CN, Huang SC, Yang YR, Wu JM. Isolated anomalous origin of right coronary artery from the main pulmonary artery. J Card Surg. 2005;20:487–9.

    Article  PubMed  Google Scholar 

  26. Lange R, Vogt M, Horer J, Cleuziou J, Menzel A, Holper K, Hess J, Schreiber C. Long term results of repair of anomalous origin of the left coronary artery from the left pulmonary artery. Ann Thorac Surg. 2007;83(4):1463–71.

    Article  PubMed  Google Scholar 

  27. Ben Ali W, Metton O, Roubertie F, Pouard P, Sidi D, Raisky O, Vouhe PR. Anomalous origin of the left coronary artery from the pulmonary artery: late results with special attention to the mitral valve. Eur J Cardiothorac Surg. 2009;36(2):244–8.

    Article  PubMed  Google Scholar 

  28. Imamura M, Dossey AM, Jaquiss RD. Reoperation and mechanical circulatory support after repair of anomalous origin of the left coronary artery from the pulmonary artery: a twenty-year experience. Ann Thorac Surg. 2011;92(1):167–72.

    Article  PubMed  Google Scholar 

  29. Takeuchi S, Imamura H, Katsumoto K, Hayashi I, Katohgi T, Yozu R, Ohkura M, Inoue T. J Thorac Cardiovasc Surg. 1979;78(1):7–11.

    Article  CAS  PubMed  Google Scholar 

  30. Rajbanshi BG, Burkhart HM, Schaff HV, Daly RC, Phillips SD, Dearani JA. Surgical strategies for anomalous origin of coronary artery from pulmonary artery in adults. J Thorac Cardiovasc Surg. 2014;148(1):220–4.

    Article  PubMed  Google Scholar 

  31. Ortiz de Salazar A, Juanena C, Aramendi JI, Castellanos E, Cabrera A, Agosti J. Anomalous origin of the left coronary artery from the pulmonary artery: surgical alternatives depending on the age of the patient. J Cardiovasc Surg (Torino). 1990;31:1801–4.

    Google Scholar 

  32. Paolo A, Antonio VJ, Scott F. Coronary anomalies. Circulation. 2002;105(20):2449–54.

    Article  Google Scholar 

  33. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115(10):1296–305.

    Article  PubMed  Google Scholar 

  34. Angelini P, Vidovich MI, Lawless CE, Elayda MA, Lopez JA, Wolf D, Willerson JT. Preventing sudden cardiac death in athletes: in search of evidence-based, cost-effective screening. Tex Heart Inst J. 2013;40(2):148–55.

    PubMed  PubMed Central  Google Scholar 

  35. Angelini P, Cheong BY, Lenge De Rosen VV, Lopez A, Uribe C, Masso AH, Ali SW, Davis BR, Muthupillai R, Willerson JT. High-risk cardiovascular conditions in sports-related sudden death: prevalence in 5,169 schoolchildren screened via cardiac magnetic resonance. Tex Heart Inst J. 2018;45(4):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003 Sep 11;349(11):1064–75.

    Article  CAS  PubMed  Google Scholar 

  37. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980-2006. Circulation. 2009;119(8):1085–92.

    Article  PubMed  Google Scholar 

  38. Maron BJ, Haas TS, Ahluwalia A, Murphy CJ, Garberich RF. Demographics and epidemiology of sudden deaths in young competitive athletes: from the United States National Registry. Am J Med. 2016;129(11):1170–7.

    Article  PubMed  Google Scholar 

  39. Bagnall RD, Weintraub RG, Ingles J, Duffiou J, Yeates L, Lam L, David AM, Thompson T, Connell V, Wallace J, Naylor C, Crawford J, Love DR, Hallam L, White J, Lawrence C, Lynch M, Morgan N, James P, du Sart D, Puranik R, Langlois N, Vohra J, Winship I, Atherton J, McGaughran J, Skinner JR, Semsarian C. A prospective study of sudden cardiac death among children and young adults. N Engl J Med. 2016;374(25):2441–52.

    Article  PubMed  Google Scholar 

  40. Harmon KG, Asif IM, Klossner D, Drezner JA. Incidence of sudden cardiac death in National Collegiate Athletic Association athletes. Circulation. 2011;123(15):1594–600.

    Article  PubMed  Google Scholar 

  41. Atkins DL, Everson-Stewart S, Sears GK, Daya M, Osmond MH, Warden CR, Berg RA. Resuscitation Outcomes Consortium Investigators. Epidemiology and outcomes from out-of-hospital cardiac arrest in children: the Resuscitation Outcomes Consortium Epistry-Cardiac Arrest. Circulation. 2009;119(11):1484–91.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Landry CH, Allan KS, Connelly KA, Cunningham K, Morrison LJ, Dorian P, Rescu Investigators. Sudden cardiac arrest during participation in competitive sports. N Engl J Med. 2017;377(18):1943–53.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Brothers JA, Whitehead KK, Keller MS, Fogel MA, Paridon SM, Weinberg PM, Harris MA. Cardiac MRI and CT: differentiation of normal ostium and intraseptal course from slitlike ostium and interarterial course in anomalous left coronary artery in children. Am J Roentgenol. 2015;204(1):W104–9.

    Article  Google Scholar 

  44. Doan T, Zea-Vera R, Masand P, Reaves-O’Neal D, Agrawal H, Mery C, Krishnamurthy R, Masand P, Noel C, Qureshi A, Sexon-Tejtel S, Fraser CD Jr, Molossi S. Myocardial ischemia in children with anomalous aortic origin of a coronary artery with intraseptal course. Circ Cardiovasc Interv. 2020;13(3):e008375.

    Article  CAS  PubMed  Google Scholar 

  45. Molossi S, Agrawal H, Mery CM, Krishnamurthy R, Masand P, Sexson-Tejtel SK, Noel CV, Qureshi AM, Jadah SP, McKenzie ED, Fraser CD Jr. Outcomes in anomalous aortic origin of a coronary artery following a prospective standardized approach. Circ Cardiovasc Interv. 2020;13(2):e008445.

    Article  PubMed  Google Scholar 

  46. Murphy DA, Roy DL, Sohal M, Chandler BM. Anomalous origin of left main coronary artery from anterior sinus of Valsalva with myocardial infarction. J Thorac Cardiovasc Surg. 1978;75:282–5.

    Article  CAS  PubMed  Google Scholar 

  47. Mery CM, De León LE, Molossi S, Sexson-Tejtel S, Agrawal H, Krishnamurthy R, Masand P, Qureshi A, McKenzie E, Fraser CD Jr. Outcomes of surgical intervention for anomalous aortic origin of a coronary artery: a large contemporary prospective cohort study. J Thorac Cardiovasc Surg. 2018;155(1):305–19.

    Article  PubMed  Google Scholar 

  48. Cheitlin MD, MacGregor J. Congenital anomalies of coronary arteries: role in the pathogenesis of sudden cardiac death. Herz. 2009;34:268–79.

    Article  PubMed  Google Scholar 

  49. Molossi S, Martínez-Bravo LE, Mery CM. Anomalous aortic origin of a coronary artery. Methodist Debakey Cardiovasc J. 2019;15(2):111–21.

    PubMed  PubMed Central  Google Scholar 

  50. Angelini P, Villason S, Chan AV Jr, Diez JG. Normal and anomalous coronary arteries in humans. In: Angelini P, editor. Coronary artery anomalies. Philadelphia: Lippincott Williams & Wilkins; 1999. p. 27–150.

    Google Scholar 

  51. Angelini P, Uribe C, Monge J, Tobis JM, Elayda MA, Willerson JT. Origin of the right coronary artery from the opposite sinus of Valsalva in adults: characterization by intravascular ultrasonography at baseline and after stent angioplasty. Catheter Cardiovasc Interv. 2015;86:199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Frommelt PC, Berger S, Pelech AN, Bergstrom S, Williamson JG. Prospective identification of anomalous origin of left coronary artery from the right sinus of valsalva using transthoracic echocardiography: importance of color Doppler flow mapping. Pediatr Cardiol. 2001;22(4):327–32.

    Article  CAS  PubMed  Google Scholar 

  53. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35(6):1493–501.

    Article  CAS  PubMed  Google Scholar 

  54. Eckart RE, Scoville SL, Campbell CL, Shry EA, Stajduhar KC, Potter RN, Pearse LA, Virmani R. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141(11):829–34.

    Article  PubMed  Google Scholar 

  55. Lorber R, Srivastava S, Wilder TJ, McIntyre S, DeCampli WM, Williams WG, Frommelt PC, Parness IA, Blackstone EH, Jacobs ML, Mertens L, Brothers JA, Herlong JR, AAOCA Working Group of the Congenital Heart Surgeons Society. Anomalous aortic origin of coronary arteries in the young: echocardiographic evaluation with surgical correlation. JACC Cardiovasc Imaging. 2015;8(11):1239–49.

    Article  PubMed  Google Scholar 

  56. Sachdeva S, Frommelt MA, Mitchell ME, Tweddell JS, Frommelt PC. Surgical unroofing of intramural anomalous aortic origin of a coronary artery in pediatric patients: single-center perspective. J Thorac Cardiovasc Surg. 2018;155(4):1760–8.

    Article  PubMed  Google Scholar 

  57. Molossi S, Sachdeva S. Anomalous coronary arteries: what is known and what remains to be learned? Curr Opin Cardiol. 2020;35(1):42–51.

    Article  PubMed  Google Scholar 

  58. Krishnamurthy R, Masand P, Jadhav S, Zhang W, Molossi S, Sexson K, McKenzie D, Fraser C, Mery C. Diagnostic accuracy of CT angiography (CTA) for critical pathologic features in anomalous aortic origin of the coronary arteries (AAOCA) in children: a comparative study with surgery in a single center. J Am Coll Cardiol. 2015;65(10 Suppl):A1304.

    Article  Google Scholar 

  59. de Jonge GJ, van Ooijen PM, Piers LH, Dikkers R, Tio RA, Willems TP, van den Heuvel AF, Zijlstra F, Oudkerk M. Visualization of anomalous coronary arteries on dual-source computed tomography. Eur Radiol. 2008;18(11):2425–32.

    Article  PubMed  Google Scholar 

  60. Su JT, Chung T, Muthupillai R, Pignatelli RH, Kung GC, Diaz LK, Vick GW 3rd, Kovalchin JP. Usefulness of real-time navigator magnetic resonance imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol. 2005;95(5):679–82.

    Article  PubMed  Google Scholar 

  61. Aljaroudi WA, Flamm SD, Saliba W, Wilkoff BL, Kwon D. Role of CMR imaging in risk stratification for sudden cardiac death. JACC Cardiovasc Imaging. 2013;6(3):392–406.

    Article  PubMed  Google Scholar 

  62. Mainwaring RD, Reddy VM, Reinhartz O, Petrossian E, Punn R, Hanley FL. Surgical repair of anomalous aortic origin of a coronary artery. Eur J Cardiothorac Surg. 2014;46(1):20–6.

    Article  PubMed  Google Scholar 

  63. Molossi S, Agrawal H. Clinical evaluation of anomalous aortic origin of a coronary artery (AAOCA). Congenit Heart Dis. 2017;12(5):607–9.

    Article  PubMed  Google Scholar 

  64. Mainwaring RD, Murphy DJ, Rogers IS, Chan FP, Petrossian E, Palmon M, Hanley FL. Surgical repair of 115 patients with anomalous aortic origin of a coronary artery from a single institution. World J Pediatr Congenit Heart Surg. 2016;7(3):353–9.

    Article  PubMed  Google Scholar 

  65. Agrawal H, Mery C, Day P, Sexson-Tejtel S, Mckenzie E, Fraser C, Qureshi A, Molossi S. Current practices are variable in the evaluation and management of patients with anomalous aortic origin of a coronary artery: results of a survey. Congenit Heart Dis. 2017;12(5):610–4.

    Article  PubMed  Google Scholar 

  66. Mery CM, Lawrence SM, Krishnamurthy R, Sexton-Tejtel SK, Carberry K, McKenzie ED, Fraser C. Anomalous aortic origin of a coronary artery: toward a standardized approach. Semin Thorac Cardiovasc Surg. 2014;26(2):110–22.

    Article  PubMed  Google Scholar 

  67. Angelini P. Novel imaging of coronary artery anomalies to assess their prevalence, the causes of clinical symptoms, and the risk of sudden cardiac death. Circ Cardiovasc Imaging. 2014;7:747–54.

    Article  PubMed  Google Scholar 

  68. Agrawal H, Mery C, Krishnamurthy R, Sexson-Tejtel SK, Noel C, Masand P, Jadhav S, McKenzie E, Qureshi A, Fraser CD Jr, Molossi S. Stress myocardial perfusion imaging in anomalous aortic origin of a coronary artery: Results following a standardized approach. J Am Coll Cardiol. 2017;69(11_S):1616.

    Article  Google Scholar 

  69. Brothers J, Carter C, McBride M, Spray T, Paridon S. Anomalous left coronary artery origin from the opposite sinus of Valsalva: evidence of intermittent ischemia. J Thorac Cardiovasc Surg. 2010;140:e27–9.

    Article  PubMed  Google Scholar 

  70. Brothers JA, McBride MG, Seliem MA, Marino BS, Tomlinson RS, Pampaloni MH, Gaynor JW, Spray TL, Paridon SM. Evaluation of myocardial ischemia after surgical repair of anomalous aortic origin of a coronary artery in a series of pediatric patients. J Am Coll Cardiol. 2007;50(21):2078–82.

    Article  PubMed  Google Scholar 

  71. Pennell DJ, Sechtem UP, Higgins CB, Manning WJ, Pohost GM, Rademakers FE, van Rossum AC, Shaw LJ, Yucel EK, European Society of Cardiology; Society for Cardiovascular Magnetic Resonance. Clinical indications for cardiovascular magnetic resonance (CMR): Consensus Panel report. Eur Heart J. 2004;25(21):1940–65.

    Article  PubMed  Google Scholar 

  72. Noel Cory V, Krishnamurthy R, Silvana M, Moffett B, Mery C, Krishnamurthy R. Cardiac MR stress perfusion with regadenoson or dobutamine in children: single center experience in repaired and unrepaired congenital and acquired heart disease. Circulation. 2016;134(suppl_1):A19899.

    Google Scholar 

  73. Asrress KN, Schuster A, Ali NF, Williams R, Kutty S, Lockie T, Yousuff M, De Silva K, Danford DA, Beerbaum P, Marber M, Plein S, Nagel E, Redwood S. Myocardial hemodynamic response to dobutamine stress compared to physiological exercise during cardiac magnetic resonance imaging. J Cardiovasc Magn Reson. 2013;15(Suppl 1):P16.

    Article  PubMed Central  Google Scholar 

  74. Escaned J, Cortés J, Flores A, Goicolea FA, Alfonso F, Hernandez R, Fernandez-Ortiz A, Sabate M, Banuelos C, Macaya C. Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J Am Coll Cardiol. 2003;42:226–33.

    Article  PubMed  Google Scholar 

  75. Doan T, Molossi S, Sachdeva S, Wilkinson J, Loar R, Weigand J, Schlingmann T, Reaves-O’Neal D, Pednekar A, Masand P, Noel C. Dobutamine stress-cardiac magnetic resonance imaging in children with anomalous aortic origin of a coronary artery and myocardial bridge. Circ Cardiovasc Imaging. 2020: Submitted in press.

    Google Scholar 

  76. Agrawal H, Molossi S, Alam M, Sexon-Tejtel S, Mery C, McKenzie E, Fraser CD Jr, Qureshi A. Anomalous coronary arteries and myocardial bridges: risk stratification in children using novel cardiac catheterization techniques. Pediatr Cardiol. 2017;38(3):624–30.

    Article  PubMed  Google Scholar 

  77. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’t Veer M, Klauss V, Maniharan G, Engstrom T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  78. De Bruyne B, Bartunek J, Sys SU, Pijls NH, Heyndrickx GR, Wijns W. Simultaneous coronary pressure and flow velocity measurements in humans. Feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope index, and fractional flow reserve. Circulation. 1996;94:1842–9.

    Article  PubMed  Google Scholar 

  79. Doan T, Wilkinson J, Agrawal H, Molossi S, Alam M, Mery C, Qureshi A. Instantaneous wave-free ratio (iFR) correlates with fractional flow reserve (FFR) assessment of coronary artery stenoses and myocardial bridges in children. J Invas Cardiol. 2020;13(3):e008375.

    CAS  Google Scholar 

  80. Agrawal H, Noel C, Qureshi A, Masand P, Mery C, Sexson-Tejtel SK, Fraser CD Jr, Molossi S. Impaired myocardial perfusion on stress cardiovascular magnetic resonance imaging correlates with invasive fractional flow reserve in children with anomalous aortic origin of a coronary artery and/or myocardial bridges. Circulation. 2017;136(Suppl_1):A15784.

    Google Scholar 

  81. Brothers JA, Frommelt MA, Jaquiss RDB, Myerburg RJ, Fraser CD Jr, Tweddell JS. Expert consensus guidelines: anomalous aortic origin of a coronary artery. J Thorac Cardiovasc Surg. 2017;153:1440–57.

    Article  PubMed  Google Scholar 

  82. Molossi S, Mery C. The search for the Holy Grail: risk stratification in anomalous aortic origin of a coronary artery. J Thorac Cardiovasc Surg. 2018;155:1758–9.

    Article  PubMed  Google Scholar 

  83. Doan T, Molossi S, Qureshi A, McKenzie E. Intraseptal anomalous coronary artery with myocardial infarction: novel surgical approach. Ann Thorac Surg. 2020;110(4):e271–4.

    Article  PubMed  Google Scholar 

  84. Mainwaring RD, Hanley FL. Surgical treatment of anomalous left main coronary artery with an intraconal course. Congenit Heart Dis. 2019;14(4):504–10.

    Article  PubMed  Google Scholar 

  85. Najm HK, Ahmad M. Transconal unroofing of anomalous left main coronary artery from right sinus with transseptal course. Ann Thorac Surg. 2019;108:e383–6.

    Article  PubMed  Google Scholar 

  86. Romp RL, Herlong JR, Landolfo CK, Sanders SP, Miller CE, Ungerleider RM, Jaggers J. Outcome of unroofing procedure for repair of anomalous aortic origin of left or right coronary artery. Ann Thorac Surg. 2003;76(2):589–95; discussion 595–6.

    Article  PubMed  Google Scholar 

  87. Law T, Dunne B, Stamp N, Ho KM, Andrews D. Surgical results and outcomes after reimplantation for the management of anomalous aortic origin of the right coronary artery. Ann Thorac Surg. 2016;102(1):192–8.

    Article  PubMed  Google Scholar 

  88. Karamichalis JM, Vricella LA, Murphy DJ, Reitz BA. Simplified technique for correction of anomalous origin of left coronary artery from the anterior aortic sinus. Ann Thorac Surg. 2003;76(1):266–7.

    Article  PubMed  Google Scholar 

  89. Rodefeld MD, Culbertson CB, Rosenfeld HM, Hanley FL, Thompson LD. Pulmonary artery translocation: a surgical option for complex anomalous coronary artery anatomy. Ann Thorac Surg. 2001;72(6):2150–2.

    Article  CAS  PubMed  Google Scholar 

  90. Mainwaring RD, Reddy VM, Reinhartz O, Petrossian R, MacDonald M, Nasirov T, Miyake CY, Hanley FL. Anomalous aortic origin of a coronary artery: medium-term results after surgical repair in 50 patients. Ann Thorac Surg. 2011;92(2):691–7.

    Article  PubMed  Google Scholar 

  91. Bonilla-Ramirez C, Binsalamh Z, Masand P, Sachdeva S, Reaves-O’Neal D, Caldarone C, Molossi S. Outcomes in anomalous aortic origin of a coronary artery following surgical reimplantation in a prospective cohort. Circulation. 2019;140(Suppl_1):A11820.

    Google Scholar 

  92. Jegatheeswaran A, Devlin PJ, Williams WG, Brothers JA, Jacobs ML, DeCampli WM, Fleishman CE, Kirklin JK, Mertens L, Mery CM, Molossi S, Caldarone CA, Aghaei N, Lorber RO, McCrindle BW. Outcomes after anomalous aortic origin of a coronary artery repair: A Congenital Heart Surgeons’ Society Study. J Thorac Cardiovasc Surg. 2020; 160(3):757–71.e5. https://doi.org/10.1016/j.jtcvs.2020.01.114. Epub 2020 Apr 13.

  93. Agrawal H, Mery CM, Krishnamurthy R, Molossi S. Anatomic types of anomalous aortic origin of a coronary artery: A pictorial summary. Congen Heart Dis. 2017;104(3):e265–7. https://doi.org/10.1111/chd.12518.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Molossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molossi, S., Agrawal, H. (2021). Congenital Heart Disease: Approach to Evaluation, Management, and Physical Activity. In: Engel, D.J., Phelan, D.M. (eds) Sports Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-69384-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69384-8_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69383-1

  • Online ISBN: 978-3-030-69384-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics