Skip to main content

Other Cardiomyopathies

  • Chapter
  • First Online:
Sports Cardiology

Abstract

Exercise-induced cardiac remodeling (EICR) refers to the cardiac structural adaptations that develop in response to the hemodynamic demands of intense athletic training. These changes can overlap with similar appearing structural features of cardiomyopathies such as dilated cardiomyopathies (DCM), left ventricular non-compaction (LVNC), arrhythmogenic right ventricular cardiomyopathy (ARVC), and infiltrative cardiomyopathies. The purpose of this chapter is twofold: it details the diagnostic framework, including appropriate imaging techniques, stress testing, and electrocardiographic evaluation, necessary to differentiate each of the aforementioned classes of cardiomyopathies from EICR, and subsequently it reviews current guidelines that address activity restriction and sports participation among individuals with these conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baggish AL, Battle RW, Beckerman JG, et al. Sports cardiology: core curriculum for providing cardiovascular care to competitive athletes and highly active people. J Am Coll Cardiol. 2017;70(15):1902–18. https://doi.org/10.1016/j.jacc.2017.08.055.

    Article  PubMed  Google Scholar 

  2. Huston TP, Puffer JC, Rodney WM. The athletic heart syndrome. N Engl J Med. 1985;313(1):24–32. https://doi.org/10.1056/NEJM198507043130106.

    Article  CAS  PubMed  Google Scholar 

  3. Pluim BM, Zwinderman AH, van der Laarse A, van der Wall EE. The athlete’s heart. A meta-analysis of cardiac structure and function. Circulation. 2000;101(3):336–44. https://doi.org/10.1161/01.cir.101.3.336.

    Article  CAS  PubMed  Google Scholar 

  4. Hauser AM, Dressendorfer RH, Vos M, Hashimoto T, Gordon S, Timmis GC. Symmetric cardiac enlargement in highly trained endurance athletes: a two-dimensional echocardiographic study. Am Heart J. 1985;109(5 Pt 1):1038–44. https://doi.org/10.1016/0002-8703(85)90247-9.

    Article  CAS  PubMed  Google Scholar 

  5. Maron BJ. Structural features of the athlete heart as defined by echocardiography. J Am Coll Cardiol. 1986;7(1):190–203. https://doi.org/10.1016/s0735-1097(86)80282-0.

    Article  CAS  PubMed  Google Scholar 

  6. Pelliccia A, Maron BJ, Spataro A, Proschan MA, Spirito P. The upper limit of physiologic cardiac hypertrophy in highly trained elite athletes. N Engl J Med. 1991;324(5):295–301. https://doi.org/10.1056/NEJM199101313240504.

    Article  CAS  PubMed  Google Scholar 

  7. Maron BJ, Pelliccia A. The heart of trained athletes: cardiac remodeling and the risks of sports, including sudden death. Circulation. 2006;114(15):1633–44. https://doi.org/10.1161/CIRCULATIONAHA.106.613562.

    Article  PubMed  Google Scholar 

  8. Brosnan M, Rakhit D. Differentiating athlete’s heart from cardiomyopathies — the left side. Hear Lung Circ. 2018;27:1052–62. https://doi.org/10.1016/j.hlc.2018.04.297.

    Article  Google Scholar 

  9. Kooreman Z, Giraldeau G, Finocchiaro G, et al. Athletic remodeling in female college athletes, the “Morganroth hypothesis” revisited. Clin J Sport Med. 2018. https://doi.org/10.1097/JSM.0000000000000501.

  10. Beaudry R, Haykowsky MJ, Baggish A, La Gerche A. A modern definition of the athlete’s heart-for research and the clinic. Cardiol Clin. 2016;34(4):507–14. https://doi.org/10.1016/j.ccl.2016.06.001.

    Article  PubMed  Google Scholar 

  11. Spence AL, Naylor LH, Carter HH, et al. A prospective randomised longitudinal MRI study of left ventricular adaptation to endurance and resistance exercise training in humans. J Physiol. 2011;589(Pt 22):5443–52. https://doi.org/10.1113/jphysiol.2011.217125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pelliccia A, Maron BJ, De Luca R, Di Paolo FM, Spataro A, Culasso F. Remodeling of left ventricular hypertrophy in elite athletes after long-term deconditioning. Circulation. 2002;105(8):944–9. https://doi.org/10.1161/hc0802.104534.

    Article  PubMed  Google Scholar 

  13. Caselli S, Maron MS, Urbano-Moral JA, Pandian NG, Maron BJ, Pelliccia A. Differentiating left ventricular hypertrophy in athletes from that in patients with hypertrophic cardiomyopathy. Am J Cardiol. 2014;114(9):1383–9. https://doi.org/10.1016/j.amjcard.2014.07.070.

    Article  PubMed  Google Scholar 

  14. Maron BJ, Pelliccia A, Spirito P. Cardiac disease in young trained athletes. Insights into methods for distinguishing athlete’s heart from structural heart disease, with particular emphasis on hypertrophic cardiomyopathy. Circulation. 1995;91(5):1596–601. https://doi.org/10.1161/01.cir.91.5.1596.

    Article  CAS  PubMed  Google Scholar 

  15. de Gregorio C, Speranza G, Magliarditi A, Pugliatti P, Andò G, Coglitore S. Detraining-related changes in left ventricular wall thickness and longitudinal strain in a young athlete likely to have hypertrophic cardiomyopathy. J Sports Sci Med. 2012;11(3):557–61. https://www.ncbi.nlm.nih.gov/pubmed/24149368.

    PubMed  PubMed Central  Google Scholar 

  16. Weiner RB, Wang F, Berkstresser B, et al. Regression of “gray zone” exercise-induced concentric left ventricular hypertrophy during prescribed detraining. J Am Coll Cardiol. 2012;59(22):1992–4. https://doi.org/10.1016/j.jacc.2012.01.057.

    Article  PubMed  Google Scholar 

  17. Wasfy MM, Weiner RB. Differentiating the athlete’s heart from hypertrophic cardiomyopathy. Curr Opin Cardiol. 2015;30(5):500–5. https://doi.org/10.1097/HCO.0000000000000203.

    Article  PubMed  Google Scholar 

  18. Basavarajaiah S, Boraita A, Whyte G, et al. Ethnic differences in left ventricular remodeling in highly-trained athletes relevance to differentiating physiologic left ventricular hypertrophy from hypertrophic cardiomyopathy. J Am Coll Cardiol. 2008;51(23):2256–62. https://doi.org/10.1016/j.jacc.2007.12.061.

    Article  PubMed  Google Scholar 

  19. Rawlins J, Carre F, Kervio G, et al. Ethnic differences in physiological cardiac adaptation to intense physical exercise in highly trained female athletes. Circulation. 2010;121(9):1078–85. https://doi.org/10.1161/CIRCULATIONAHA.109.917211.

    Article  CAS  PubMed  Google Scholar 

  20. Pelliccia A, Maron MS, Maron BJ. Assessment of left ventricular hypertrophy in a trained athlete: differential diagnosis of physiologic athlete’s heart from pathologic hypertrophy. Prog Cardiovasc Dis. 2012;54(5):387–96. https://doi.org/10.1016/j.pcad.2012.01.003.

    Article  PubMed  Google Scholar 

  21. Maron BJ, Udelson JE, Bonow RO, et al. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation. 2015;132(22):e273–80. https://doi.org/10.1161/CIR.0000000000000239.

    Article  PubMed  Google Scholar 

  22. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119(8):1085–92. https://doi.org/10.1161/CIRCULATIONAHA.108.804617.

    Article  PubMed  Google Scholar 

  23. Pinto YM, Elliott PM, Arbustini E, et al. Proposal for a revised definition of dilated cardiomyopathy, hypokinetic non-dilated cardiomyopathy, and its implications for clinical practice: a position statement of the ESC working group on myocardial and pericardial diseases. Eur Heart J. 2016;37(23):1850–8. https://doi.org/10.1093/eurheartj/ehv727.

    Article  PubMed  Google Scholar 

  24. Merlo M, Cannatà A, Gobbo M, Stolfo D, Elliott PM, Sinagra G. Evolving concepts in dilated cardiomyopathy. Eur J Heart Fail. 2018;20(2):228–39. https://doi.org/10.1002/ejhf.1103.

    Article  PubMed  Google Scholar 

  25. Drezner JA, Ashley E, Baggish AL, et al. Abnormal electrocardiographic findings in athletes: recognising changes suggestive of cardiomyopathy. Br J Sports Med. 2013;47(3):137–52. https://doi.org/10.1136/bjsports-2012-092069.

    Article  PubMed  Google Scholar 

  26. Dec GW, Fuster V. Idiopathic dilated cardiomyopathy. N Engl J Med. 1994;331(23):1564–75. https://doi.org/10.1056/NEJM199412083312307.

    Article  CAS  PubMed  Google Scholar 

  27. Grünig E, Tasman JA, Kücherer H, Franz W, Kübler W, Katus HA. Frequency and phenotypes of familial dilated cardiomyopathy. J Am Coll Cardiol. 1998;31(1):186–94. https://doi.org/10.1016/s0735-1097(97)00434-8.

    Article  PubMed  Google Scholar 

  28. Brosnan M, La Gerche A, Kalman J, et al. Comparison of frequency of significant electrocardiographic abnormalities in endurance versus nonendurance athletes. Am J Cardiol. 2014;113(9):1567–73. https://doi.org/10.1016/j.amjcard.2014.01.438.

    Article  PubMed  Google Scholar 

  29. Sharma S, Drezner JA, Baggish A, et al. International recommendations for electrocardiographic interpretation in athletes. J Am Coll Cardiol. 2017;69(8):1057–75. https://doi.org/10.1016/j.jacc.2017.01.015.

    Article  PubMed  Google Scholar 

  30. Galderisi M, Cardim N, D’Andrea A, et al. The multi-modality cardiac imaging approach to the Athlete’s heart: an expert consensus of the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 2015;16(4):353. https://doi.org/10.1093/ehjci/jeu323.

    Article  PubMed  Google Scholar 

  31. Pelliccia A, Culasso F, Di Paolo FM, Maron BJ. Physiologic left ventricular cavity dilatation in elite athletes. Ann Intern Med. 1999;130(1):23–31. https://doi.org/10.7326/0003-4819-130-1-199901050-00005.

    Article  CAS  PubMed  Google Scholar 

  32. Engel DJ, Schwartz A, Homma S. Athletic cardiac remodeling in US professional basketball players. JAMA Cardiol. 2016;1(1):80–7. https://doi.org/10.1001/jamacardio.2015.0252.

    Article  PubMed  Google Scholar 

  33. Abergel E, Chatellier G, Hagege AA, et al. Serial left ventricular adaptations in world-class professional cyclists: implications for disease screening and follow-up. J Am Coll Cardiol. 2004;44(1):144–9. https://doi.org/10.1016/j.jacc.2004.02.057.

    Article  PubMed  Google Scholar 

  34. Abernethy WB, Choo JK, Hutter AM. Echocardiographic characteristics of professional football players. J Am Coll Cardiol. 2003;41(2):2–6.

    Article  Google Scholar 

  35. D’Andrea A, Cocchia R, Riegler L, et al. Left ventricular myocardial velocities and deformation indexes in top-level athletes. J Am Soc Echocardiogr. 2010;23(12):1281–8. https://doi.org/10.1016/j.echo.2010.09.020.

    Article  PubMed  Google Scholar 

  36. Tarando F, Coisne D, Galli E, et al. Left ventricular non-compaction and idiopathic dilated cardiomyopathy: the significant diagnostic value of longitudinal strain. Int J Cardiovasc Imaging. 2017;33(1):83–95. https://doi.org/10.1007/s10554-016-0980-3.

    Article  PubMed  Google Scholar 

  37. Flannery MD, Beaudry R, Prior D, et al. P1535Global longitudinal strain does not help differentiate between athlete’s heart and pathology in athletes with low LVEF. Eur Heart J. 2017;38(Suppl_1). https://doi.org/10.1093/eurheartj/ehx502.P1535.

  38. La Gerche A, Burns AT, Mooney DJ, et al. Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J. 2012;33(8):998–1006. https://doi.org/10.1093/eurheartj/ehr397.

    Article  CAS  PubMed  Google Scholar 

  39. Tayal U, Newsome S, Buchan R, et al. Phenotype and clinical outcomes of titin cardiomyopathy. J Am Coll Cardiol. 2017;70(18):2264–74. https://doi.org/10.1016/j.jacc.2017.08.063.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mordi I, Carrick D, Bezerra H, Tzemos N. T1 and T2 mapping for early diagnosis of dilated non-ischaemic cardiomyopathy in middle-aged patients and differentiation from normal physiological adaptation. Eur Heart J Cardiovasc Imaging. 2016;17(7):797–803. https://doi.org/10.1093/ehjci/jev216.

    Article  PubMed  Google Scholar 

  41. Ennezat PV, Maréchaux S, Huerre C, et al. Exercise does not enhance the prognostic value of Doppler echocardiography in patients with left ventricular systolic dysfunction and functional mitral regurgitation at rest. Am Heart J. 2008;155(4):752–7. https://doi.org/10.1016/j.ahj.2007.11.022.

    Article  PubMed  Google Scholar 

  42. Claessen G, Schnell F, Bogaert J, et al. Exercise cardiac magnetic resonance to differentiate athlete’s heart from structural heart disease. Eur Heart J Cardiovasc Imaging. 2018;19(9):1062–70. https://doi.org/10.1093/ehjci/jey050.

    Article  PubMed  Google Scholar 

  43. Arbustini E, Favalli V, Narula N, Serio A, Grasso M. Left ventricular noncompaction: a distinct genetic cardiomyopathy? J Am Coll Cardiol. 2016;68(9):949–66. https://doi.org/10.1016/j.jacc.2016.05.096.

    Article  PubMed  Google Scholar 

  44. Chin TK, Perloff JK, Williams RG, Jue K, Mohrmann R. Isolated noncompaction of left ventricular myocardium. A study of eight cases. Circulation. 1990;82(2):507–13. https://doi.org/10.1161/01.cir.82.2.507.

    Article  CAS  PubMed  Google Scholar 

  45. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA. Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart. 2001;86(6):666–71. https://doi.org/10.1136/heart.86.6.666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Petersen SE, Selvanayagam JB, Wiesmann F, et al. Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol. 2005;46(1):101–5. https://doi.org/10.1016/j.jacc.2005.03.045.

    Article  PubMed  Google Scholar 

  47. Stöllberger C, Gerecke B, Finsterer J, Engberding R. Refinement of echocardiographic criteria for left ventricular noncompaction. Int J Cardiol. 2013;165(3):463–7. https://doi.org/10.1016/j.ijcard.2011.08.845.

    Article  PubMed  Google Scholar 

  48. Gati S, Chandra N, Bennett RL, et al. Increased left ventricular trabeculation in highly trained athletes: do we need more stringent criteria for the diagnosis of left ventricular non-compaction in athletes? Heart. 2013;99(6):401–8. https://doi.org/10.1136/heartjnl-2012-303418.

    Article  CAS  PubMed  Google Scholar 

  49. Zemrak F, Ahlman MA, Captur G, et al. The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5-year follow-up: the MESA study. J Am Coll Cardiol. 2014;64(19):1971–80. https://doi.org/10.1016/j.jacc.2014.08.035.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gati S, Sharma S. CardioPulse: the dilemmas in diagnosing left ventricular non-compaction in athletes. Eur Heart J. 2015;36(15):891–3. https://www.ncbi.nlm.nih.gov/pubmed/26052607.

    PubMed  Google Scholar 

  51. Marcus FI, Mckenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy / dysplasia proposed modification of the Task Force criteria. Circulation. 2010;121:1533–41. https://doi.org/10.1161/CIRCULATIONAHA.108.840827.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R. Clinical diagnosis, imaging, and genetics of arrhythmogenic right ventricular cardiomyopathy/dysplasia: JACC State-of-the-Art review. J Am Coll Cardiol. 2018;72(7):784–804. https://doi.org/10.1016/j.jacc.2018.05.065.

    Article  PubMed  Google Scholar 

  53. James CA, Bhonsale A, Tichnell C, et al. Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol. 2013;62(14):1290–7. https://doi.org/10.1016/j.jacc.2013.06.033.

    Article  PubMed  Google Scholar 

  54. Ruwald A-C, Marcus F, Estes NAM 3rd, et al. Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopathy. Eur Heart J. 2015;36(27):1735–43. https://doi.org/10.1093/eurheartj/ehv110.

    Article  PubMed  PubMed Central  Google Scholar 

  55. D’Ascenzi F, Pisicchio C, Caselli S, Di Paolo FM, Spataro A, Pelliccia A. RV Remodeling in Olympic athletes. JACC Cardiovasc Imaging. 2017;10(4):385–93. https://doi.org/10.1016/j.jcmg.2016.03.017.

    Article  PubMed  Google Scholar 

  56. Maron BJ, Maron BA. Revisiting athlete’s heart versus pathologic hypertrophy. JACC Cardiovasc Imaging. 2017;10(4):394–7. https://doi.org/10.1016/j.jcmg.2016.05.011.

    Article  PubMed  Google Scholar 

  57. Weiner RB, Baggish AL. Exercise-induced cardiac remodeling. Prog Cardiovasc Dis. 2012;54(5):380–6. https://doi.org/10.1016/j.pcad.2012.01.006.

    Article  PubMed  Google Scholar 

  58. Kawut SM, Barr RG, Lima JAC, et al. Right ventricular structure is associated with the risk of heart failure and cardiovascular death: the Multi-Ethnic Study of Atherosclerosis (MESA)--right ventricle study. Circulation. 2012;126(14):1681–8. https://doi.org/10.1161/CIRCULATIONAHA.112.095216.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Kim JH, Baggish AL. Differentiating exercise-induced cardiac adaptations from cardiac pathology: the “grey zone” of clinical uncertainty. Can J Cardiol. 2016;32(4):429–37.

    Article  Google Scholar 

  60. Hotta VT, Tendolo SC, Rodrigues ACT, Fernandes F, Nastari L, Mady C. Limitations in the diagnosis of noncompaction cardiomyopathy by echocardiography. Arq Bras Cardiol. 2017;109(5):483–8.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Engel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lander, B., Engel, D.J. (2021). Other Cardiomyopathies. In: Engel, D.J., Phelan, D.M. (eds) Sports Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-030-69384-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-69384-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-69383-1

  • Online ISBN: 978-3-030-69384-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics