Skip to main content

Cellular and Subcellular Mechanisms of Ventricular Mechano-Arrhythmogenesis

  • Chapter
  • First Online:
Cardiac Mechanobiology in Physiology and Disease

Part of the book series: Cardiac and Vascular Biology ((Abbreviated title: Card. vasc. biol.,volume 9))

  • 426 Accesses

Abstract

Intrinsic regulation of cardiac electrical and mechanical activity allows the heart to adjust its function to meet the metabolic demand of the body. This includes the acute feedback of cardiac mechanics to electrics (‘mechano-electric coupling’, MEC), which is achieved primarily through cellular and subcellular elements, including mechano-sensitive ion channels, biophysical signal transmitters and mechano-sensitive biochemical signalling pathways. While MEC is normally involved in fine-tuning of cardiac function, in disease states characterised by perturbations in the cardiac mechanical environment, myocardial mechanics or elements of MEC, it can instead drive arrhythmogenic changes in electrophysiology (‘mechano-arrhythmogenesis’), which can result in sustained ventricular tachyarrhythmias. This chapter briefly reviews essential aspects of MEC, discusses clinical evidence and experimental studies of ventricular mechano-arrhythmogenesis and describes the underlying cellular and subcellular elements involved. It then puts mechano-arrhythmogenesis into a clinical context by focussing on two pathological states that highlight the spatio-temporal dependence of mechano-arrhythmogenesis in the whole heart: one that is characterised by acute, local changes in cardiac electro-mechanics and MEC (acute regional myocardial ischaemia) and one that involves chronic, global changes (hypertension). Overall, an improved understanding of the mechanisms driving ventricular mechano-arrhythmogenesis is critical for the development of anti-arrhythmic therapies targeting MEC, such as modulation of tissue mechanics or alteration of subcellular mechano-sensitive components.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bers DM (2002) Cardiac excitation–contraction coupling. Nature 415:198–205. https://doi.org/10.1038/415198a

    Article  CAS  PubMed  Google Scholar 

  2. Kohl P, Ravens U (2003) Cardiac mechano-electric feedback: past, present, and prospect. Prog Biophysics Mol Biology 82:3–9. https://doi.org/10.1016/s0079-6107(03)00022-1

    Article  Google Scholar 

  3. Kohl P, Sachs F, Franz MR (eds) (2011) Cardiac Mechano-electric coupling and arrhythmias, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  4. Quinn TA, Kohl P, Ravens U (2014) Cardiac mechano-electric coupling research: fifty years of progress and scientific innovation. Prog Biophysics Mol Biology 115:71–75. https://doi.org/10.1016/j.pbiomolbio.2014.06.007

    Article  Google Scholar 

  5. Quinn TA, Kohl P (2021) Cardiac mechano-electric coupling: acute effects of mechanical stimulation on heart rate and rhythm. Physiol Rev 101:37–92. https://doi.org/10.1152/physrev.00036.2019

    Article  CAS  PubMed  Google Scholar 

  6. Ravens U (2003) Mechano-electric feedback and arrhythmias. Prog Biophysics Mol Biology 82:255–266. https://doi.org/10.1016/s0079-6107(03)00026-9

    Article  Google Scholar 

  7. Taggart P, Sutton PMI (1999) Cardiac mechano-electric feedback in man: clinical relevance. Prog Biophysics Mol Biology 71:139–154. https://doi.org/10.1016/s0079-6107(98)00039-x

    Article  CAS  Google Scholar 

  8. Opthof T, Meijborg VMF, Belterman CNW, Coronel R (2015) Synchronization of repolarization by mechano-electrical coupling in the porcine heart. Cardiovasc Res 108:181–187. https://doi.org/10.1093/cvr/cvv140

    Article  CAS  PubMed  Google Scholar 

  9. Quinn TA (2015) Cardiac mechano-electric coupling: a role in regulating normal function of the heart? Cardiovasc Res 108:1–3. https://doi.org/10.1093/cvr/cvv203

    Article  CAS  PubMed  Google Scholar 

  10. Barrabés JA, Garcia-Dorado D, González MA et al (1998) Regional expansion during myocardial ischemia predicts ventricular fibrillation and coronary reocclusion. Am J Physiology-Heart Circ Physiol 274:H1767–H1775. https://doi.org/10.1152/ajpheart.1998.274.5.h1767

    Article  Google Scholar 

  11. Barrabés JA, Garcia-Dorado D, Padilla F et al (2002) Ventricular fibrillation during acute coronary occlusion is related to the dilation of the ischemic region. Basic Res Cardiol 97:445–451. https://doi.org/10.1007/s003950200051

    Article  PubMed  Google Scholar 

  12. Barrabés JA, Inserte J, Agulló L et al (2015) Effects of the selective stretch-activated channel blocker GsMtx4 on stretch-induced changes in refractoriness in isolated rat hearts and on ventricular premature beats and arrhythmias after coronary occlusion in swine. PLoS One 10:e0125753. https://doi.org/10.1371/journal.pone.0125753

    Article  CAS  PubMed  Google Scholar 

  13. Baumeister PA, Lawen T, Rafferty SA et al (2018) Mechanically-induced ventricular arrhythmias during acute regional ischemia. J Mol Cell Cardiol 124:87–88. https://doi.org/10.1016/j.yjmcc.2018.07.021

    Article  Google Scholar 

  14. Coronel R, Wilms-Schopman FJG, deGroot JR (2002) Origin of ischemia-induced phase 1b ventricular arrhythmias in pig hearts. J Am Coll Cardiol 39:166–176. https://doi.org/10.1016/s0735-1097(01)01686-2

    Article  PubMed  Google Scholar 

  15. Sideris DA (1993) High blood pressure and ventricular arrhythmias. Eur Heart J 14:1548–1553. https://doi.org/10.1093/eurheartj/14.11.1548

    Article  CAS  PubMed  Google Scholar 

  16. Siogas K, Pappas S, Graekas G et al (1998) Segmental wall motion abnormalities alter vulnerability to ventricular ectopic beats associated with acute increases in aortic pressure in patients with underlying coronary artery disease. Heart 79:268. https://doi.org/10.1136/hrt.79.3.268

    Article  CAS  PubMed  Google Scholar 

  17. Sutherland GR (2017) Sudden cardiac death: the pro-arrhythmic interaction of an acute loading with an underlying substrate. Eur Heart J 38:2986–2994. https://doi.org/10.1093/eurheartj/ehw449

    Article  CAS  PubMed  Google Scholar 

  18. Quinn TA, Kohl P (2016) Rabbit models of cardiac mechano-electric and mechano-mechanical coupling. Prog Biophysics Mol Biology 121:110–122. https://doi.org/10.1016/j.pbiomolbio.2016.05.003

    Article  Google Scholar 

  19. Quinn TA, Kohl P (2012) Mechano-sensitivity of cardiac pacemaker function: pathophysiological relevance, experimental implications, and conceptual integration with other mechanisms of rhythmicity. Prog Biophysics Mol Biol 110:257–268. https://doi.org/10.1016/j.pbiomolbio.2012.08.008

    Article  CAS  Google Scholar 

  20. MacDonald EA, Quinn TA (2021) What keeps us ticking? Sinoatrial node mechano-sensitivity: the grandfather clock of cardiac rhythm. Biophys Rev 13:707–716. https://doi.org/10.1007/s12551-021-00831-8

    Article  CAS  PubMed  Google Scholar 

  21. Ravelli F (2003) Mechano-electric feedback and atrial fibrillation. Prog Biophysics Mol Biol 82:137–149. https://doi.org/10.1016/s0079-6107(03)00011-7

    Article  Google Scholar 

  22. Pfeiffer ER, Tangney JR, Omens JH, McCulloch AD (2014) Biomechanics of cardiac electromechanical coupling and Mechanoelectric feedback. J Biomech Eng 136:021007. https://doi.org/10.1115/1.4026221

    Article  PubMed  Google Scholar 

  23. Quinn TA, Camelliti P, Rog-Zielinska EA et al (2016) Electrotonic coupling of excitable and nonexcitable cells in the heart revealed by optogenetics. Proc National Acad Sci 113:14852–14857. https://doi.org/10.1073/pnas.1611184114

    Article  CAS  Google Scholar 

  24. Peyronnet R, Nerbonne JM, Kohl P (2016) Cardiac mechano-gated ion channels and arrhythmias. Circ Res 118:311–329. https://doi.org/10.1161/circresaha.115.305043

    Article  CAS  PubMed  Google Scholar 

  25. Baudino TA, Borg TK (2011) The origin of fibroblasts, extracellular matrix, and potential contributions to cardiac mechano-electric coupling. In: Kohl P, Sachs F, Franz MR (eds) Cardiac Mechano-electric coupling and arrhythmias, 2nd edn. Oxford University Press, Oxford, pp 138–142

    Chapter  Google Scholar 

  26. Jakob D, Klesen A, Allegrini B et al (2021) Piezo1 and BKCa channels in human atrial fibroblasts: interplay and remodelling in atrial fibrillation. J Mol Cell Cardiol 158:49–62. https://doi.org/10.1016/j.yjmcc.2021.05.002

    Article  CAS  PubMed  Google Scholar 

  27. Hof T, Chaigne S, Récalde A et al (2019) Transient receptor potential channels in cardiac health and disease. Nat Rev Cardiol 16:344–360. https://doi.org/10.1038/s41569-018-0145-2

    Article  PubMed  Google Scholar 

  28. Kohl P, Nesbitt AD, Cooper PJ, Lei M (2001) Sudden cardiac death by commotio cordis: role of mechano—electric feedback. Cardiovasc Res 50:280–289. https://doi.org/10.1016/s0008-6363(01)00194-8

    Article  CAS  PubMed  Google Scholar 

  29. Maron BJ, Doerer JJ, Haas TS et al (2009) Sudden deaths in young competitive athletes. Circulation 119:1085–1092. https://doi.org/10.1161/circulationaha.108.804617

    Article  PubMed  Google Scholar 

  30. Maron BJ, Estes NAM (2010) Commotio cordis. New Engl J Medicine 362:917–927. https://doi.org/10.1056/nejmra0910111

    Article  CAS  Google Scholar 

  31. Bõhm A, Pintér A, Préda I (2017) Ventricular tachycardia induced by a pacemaker lead. Acta Cardiol 57:23–24. https://doi.org/10.2143/ac.57.1.2005375

    Article  Google Scholar 

  32. Damen J (1985) Ventricular arrhythmias during insertion and removal of pulmonary artery catheters. Chest 88:190–193. https://doi.org/10.1378/chest.88.2.190

    Article  CAS  PubMed  Google Scholar 

  33. Elliott CG, Zimmerman GA, Clemmer TP (1979) Complications of pulmonary artery catheterization in the care of critically iii patients a prospective study. Chest 76:647–652. https://doi.org/10.1378/chest.76.6.647

    Article  CAS  PubMed  Google Scholar 

  34. Fiaccadori E, Gonzi G, Zambrelli P et al (1996) Cardiac arrhythmias during central venous catheter procedures in acute renal failure: a prospective study. J Am Soc Nephrol 7:1079–1084. https://doi.org/10.1681/asn.v771079

    Article  CAS  PubMed  Google Scholar 

  35. Iberti TJ, Benjamin E, Gruppi L, Raskin JM (1985) Ventricular arrhythmias during pulmonary artery catheterization in the intensive care unit prospective study. Am J Medicine 78:451–454. https://doi.org/10.1016/0002-9343(85)90337-7

    Article  CAS  Google Scholar 

  36. Kusminsky RE (2007) Complications of central venous catheterization. J Am Coll Surgeons 204:681–696. https://doi.org/10.1016/j.jamcollsurg.2007.01.039

    Article  Google Scholar 

  37. Lee JC, Epstein LM, Huffer LL et al (2009) ICD lead proarrhythmia cured by lead extraction. Heart Rhythm 6:613–618. https://doi.org/10.1016/j.hrthm.2009.01.039

    Article  PubMed  Google Scholar 

  38. Lee T-Y, Sung C-S, Chu Y-C et al (1996) Incidence and risk factors of guidewire-induced arrhythmia during internal jugular venous catheterization: comparison of marked and plain J-wires. J Clin Anesth 8:348–351. https://doi.org/10.1016/0952-8180(96)00083-9

    Article  CAS  PubMed  Google Scholar 

  39. Lindsay AC, Wong T, Segal O et al (2006) An unusual twist: ventricular tachycardia induced by a loop in a right ventricular pacing wire. Qjm Int J Medicine 99:347–348. https://doi.org/10.1093/qjmed/hcl043

    Article  CAS  Google Scholar 

  40. Michel J, Johnson AD, Bridges WC et al (1950) Arrhythmias during intracardiac catheterization. Circulation 2:240–244. https://doi.org/10.1161/01.cir.2.2.240

    Article  CAS  PubMed  Google Scholar 

  41. Sprung CL, Pozen RG, Rozanski JJ et al (1982) Advanced ventricular arrhythmias during bedside pulmonary artery catheterization. Am J Medicine 72:203–208. https://doi.org/10.1016/0002-9343(82)90811-7

    Article  CAS  Google Scholar 

  42. Stuart R, Shikora S, Akerman P et al (1990) Incidence of arrhythmia with central venous catheter insertion and exchange. Jpen-parenter Enter 14:152–155. https://doi.org/10.1177/0148607190014002152

    Article  CAS  Google Scholar 

  43. Haman L, Parizek P, Vojacek J (2009) Precordial thump efficacy in termination of induced ventricular arrhythmias. Resuscitation 80:14–16. https://doi.org/10.1016/j.resuscitation.2008.07.022

    Article  PubMed  Google Scholar 

  44. Pennington JE, Taylor J, Lown B (1970) Chest thump for reverting ventricular tachycardia. New Engl J Medicine 283:1192–1195. https://doi.org/10.1056/nejm197011262832204

    Article  CAS  Google Scholar 

  45. Levine JH, Guarnieri T, Kadish AH et al (1988) Changes in myocardial repolarization in patients undergoing balloon valvuloplasty for congenital pulmonary stenosis: evidence for contraction-excitation feedback in humans. Circulation 77:70–77. https://doi.org/10.1161/01.cir.77.1.70

    Article  CAS  PubMed  Google Scholar 

  46. Orini M, Taggart P, Bhuva A et al (2021) Direct in-vivo assessment of global and regional mechano-electric feedback in the intact human heart. Heart Rhythm 18:1406. https://doi.org/10.1016/j.hrthm.2021.04.026

    Article  PubMed  Google Scholar 

  47. Taggart P, Sutton P, Lab M et al (1992) Effect of abrupt changes in ventricular loading on repolarization induced by transient aortic occlusion in humans. Am J Physiology-Heart Circ Physiol 263:H816–H823. https://doi.org/10.1152/ajpheart.1992.263.3.h816

    Article  CAS  Google Scholar 

  48. Taggart P, Sutton P, John R et al (1992) Monophasic action potential recordings during acute changes in ventricular loading induced by the Valsalva manoeuvre. Brit Heart J 67:221. https://doi.org/10.1136/hrt.67.3.221

    Article  CAS  PubMed  Google Scholar 

  49. Taggart P, Sutton P (2011) Load dependence of ventricular repolarization. In: Kohl P, Sachs F, Franz MR (eds) Cardiac Mechano-electric coupling and arrhythmias, 2nd edn. Oxford University Press, Oxford, pp 269–273

    Chapter  Google Scholar 

  50. Sideris DA, Kontoyannis DA, Michalis L et al (1987) Acute changes in blood pressure as a cause of cardiac arrhythmias. Eur Heart J 8:45–52. https://doi.org/10.1093/oxfordjournals.eurheartj.a062158

    Article  CAS  PubMed  Google Scholar 

  51. Muller JE, Tofler GH, Stone PH (1989) Circadian variation and triggers of onset of acute cardiovascular disease. Circulation 79:733–743. https://doi.org/10.1161/01.cir.79.4.733

    Article  CAS  PubMed  Google Scholar 

  52. Reiter MJ, Stromberg KD, Whitman TA et al (2013) Influence of intracardiac pressure on spontaneous ventricular arrhythmias in patients with systolic heart failure. Circulation Arrhythmia Electrophysiol 6:272–278. https://doi.org/10.1161/circep.113.000223

    Article  Google Scholar 

  53. Ambrosi P, Habib G, Kreitmann B et al (1995) Valsalva manoeuvre for supraventricular tachycardia in transplanted heart recipient. Lancet 346:713. https://doi.org/10.1016/s0140-6736(95)92331-4

    Article  CAS  PubMed  Google Scholar 

  54. Hwang E-S, Pak H-N (2012) Mid-septal hypertrophy and apical ballooning; potential mechanism of ventricular tachycardia storm in patients with hypertrophic cardiomyopathy. Yonsei Med J 53:221–223. https://doi.org/10.3349/ymj.2012.53.1.221

    Article  PubMed  Google Scholar 

  55. Waxman MB, Wald RW, Finley JP et al (1980) Valsalva termination of ventricular tachycardia. Circulation 62:843–851. https://doi.org/10.1161/01.cir.62.4.843

    Article  CAS  PubMed  Google Scholar 

  56. Perticone F, Ceravolo R, Maio R et al (1993) Mechano-electric feedback and ventricular arrhythmias in heart failure. The possible role of permanent cardiac stimulation in preventing ventricular tachycardia. Cardiol Rome Italy 38:247–252

    CAS  Google Scholar 

  57. Wei JY, Greene HL, Weisfeldt ML (1980) Cough-facilitated conversion of ventricular tachycardia. Am J Cardiol 45:174–176. https://doi.org/10.1016/0002-9149(80)90235-0

    Article  CAS  PubMed  Google Scholar 

  58. Nesbitt AD, Cooper PJ, Kohl P (2001) Rediscovering commotio cordis. Lancet 357:1195–1197. https://doi.org/10.1016/s0140-6736(00)04338-5

    Article  CAS  PubMed  Google Scholar 

  59. Schlomka G (1934) Ergeb Inn Med Kinderheilkd 47:1–91. https://doi.org/10.1007/978-3-642-90672-5_1

    Article  Google Scholar 

  60. Link MS, Wang PJ, Pandian NG et al (1998) An experimental model of sudden death due to low-energy chest-wall impact (commotio cordis). New Engl J Medicine 338:1805–1811. https://doi.org/10.1056/nejm199806183382504

    Article  CAS  Google Scholar 

  61. Link MS, Maron BJ, VanderBrink BA et al (2001) Impact directly over the cardiac silhouette is necessary to produce ventricular fibrillation in an experimental model of commotio cordis. J Am Coll Cardiol 37:649–654. https://doi.org/10.1016/s0735-1097(00)01142-6

    Article  CAS  PubMed  Google Scholar 

  62. Link MS, Maron BJ, Wang PJ et al (2003) Upper and lower limits of vulnerability to sudden arrhythmic death with chest-wall impact (commotio cordis). J Am Coll Cardiol 41:99–104. https://doi.org/10.1016/s0735-1097(02)02669-4

    Article  PubMed  Google Scholar 

  63. Quinn TA, Jin H, Lee P, Kohl P (2017) Mechanically induced ectopy via stretch-activated cation-nonselective channels is caused by local tissue deformation and results in ventricular fibrillation if triggered on the repolarization wave edge (commotio cordis). Circ Arrhythmia Electrophysiol 10:e004777. https://doi.org/10.1161/circep.116.004777

    Article  Google Scholar 

  64. Garny A, Kohl P (2004) Mechanical induction of arrhythmias during ventricular repolarization: modeling cellular mechanisms and their interaction in two dimensions. Ann N Y Acad Sci 1015:133–143. https://doi.org/10.1196/annals.1302.011

    Article  PubMed  Google Scholar 

  65. Li W, Kohl P, Trayanova N (2004) Induction of ventricular arrhythmias following mechanical impact: a simulation study in 3D. J Mol Histol 35:679–686. https://doi.org/10.1007/s10735-004-2666-8

    Article  PubMed  Google Scholar 

  66. Alsheikh-Ali AA, Akelman C, Madias C et al (2008) Endocardial mapping of ventricular fibrillation in commotio cordis. Heart Rhythm 5:1355–1356. https://doi.org/10.1016/j.hrthm.2008.03.009

    Article  PubMed  Google Scholar 

  67. Franz MR, Cima R, Wang D et al (1992) Electrophysiological effects of myocardial stretch and mechanical determinants of stretch-activated arrhythmias. Circulation 86:968–978. https://doi.org/10.1161/01.cir.86.3.968

    Article  CAS  PubMed  Google Scholar 

  68. Bode F, Franz MR, Wilke I et al (2006) Ventricular fibrillation induced by stretch pulse: implications for sudden death due to commotio cordis. J Cardiovasc Electr 17:1011–1017. https://doi.org/10.1111/j.1540-8167.2006.00547.x

    Article  Google Scholar 

  69. Eckardt L, Kirchhof P, Mönnig G et al (2000) Modification of stretch-induced shortening of repolarization by streptomycin in the isolated rabbit heart. J Cardiovasc Pharmacol 36:711–721. https://doi.org/10.1097/00005344-200012000-00005

    Article  CAS  PubMed  Google Scholar 

  70. Zabel M, Koller BS, Sachs F et al (1996) Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels. Cardiovasc Res 32:120–130. https://doi.org/10.1016/s0008-6363(96)00089-2

    Article  CAS  PubMed  Google Scholar 

  71. Franz MR, Burkhoff D, Yue DT et al (1989) Mechanically induced action potential changes and arrhythmia in isolated and in situ canine hearts. Cardiovasc Res 23:213–223. https://doi.org/10.1093/cvr/23.3.213

    Article  CAS  PubMed  Google Scholar 

  72. Hansen DE, Craig CS, Hondeghem LM (1990) Stretch-induced arrhythmias in the isolated canine ventricle. Evidence for the importance of mechanoelectrical feedback. Circulation 81:1094–1105. https://doi.org/10.1161/01.cir.81.3.1094

    Article  CAS  PubMed  Google Scholar 

  73. Huang H, Wei H, Liu P et al (2009) A simple automated stimulator of mechanically induced arrhythmias in the isolated rat heart. Exp Physiol 94:1054–1061. https://doi.org/10.1113/expphysiol.2009.048660

    Article  PubMed  Google Scholar 

  74. Kim DY, White E, Saint DA (2012) Increased mechanically-induced ectopy in the hypertrophied heart. Prog Biophysics Mol Biol 110:331–339. https://doi.org/10.1016/j.pbiomolbio.2012.07.004

    Article  Google Scholar 

  75. Dhein S, Englert C, Riethdorf S et al (2014) Arrhythmogenic effects by local left ventricular stretch: effects of flecainide and streptomycin. N-S Arch Pharmacol 387:763–775. https://doi.org/10.1007/s00210-014-0988-y

    Article  CAS  Google Scholar 

  76. Wei H, Zhang Z-F, Huang H-X, Niu W-Z (2008) [Arrhythmia triggered by stretching rabbit left ventricles and the block effect of streptomycin] Zhongguo Ying Yong Sheng Li Xue Za Zhi Zhongguo Yingyong Shenglixue Zazhi Chin. J Appl Physiol 24:286–289

    CAS  Google Scholar 

  77. Dick DJ, Lab MJ (1998) Mechanical modulation of stretch-induced premature ventricular beats: induction of a mechanoelectric adaptation period. Cardiovasc Res 38:181–191. https://doi.org/10.1016/s0008-6363(97)00314-3

    Article  CAS  PubMed  Google Scholar 

  78. Hansen DE, Borganelli M, Stacy GP Jr et al (1991) Dose-dependent inhibition of stretch-induced arrhythmias by gadolinium in isolated canine ventricles. Evidence for a unique mode of antiarrhythmic action. Circ Res 69:820–831. https://doi.org/10.1161/01.res.69.3.820

    Article  CAS  PubMed  Google Scholar 

  79. Nazir SA, Lab MJ (1996) Mechanoelectric feedback in the atrium of the isolated Guinea-pig heart. Cardiovasc Res 32:112–119

    Article  CAS  PubMed  Google Scholar 

  80. Parker KK, Lavelle JA, Taylor LK et al (2004) Stretch-induced ventricular arrhythmias during acute ischemia and reperfusion. J Appl Physiol 97:377–383. https://doi.org/10.1152/japplphysiol.01235.2001

    Article  PubMed  Google Scholar 

  81. Parker KK, Taylor LK, Atkinson JB et al (2001) The effects of tubulin-binding agents on stretch-induced ventricular arrhythmias. Eur J Pharmacol 417:131–140. https://doi.org/10.1016/s0014-2999(01)00856-1

    Article  CAS  PubMed  Google Scholar 

  82. Reiter MJ, Synhorst DP, Mann DE (1988) Electrophysiological effects of acute ventricular dilatation in the isolated rabbit heart. Circ Res 62:554–562. https://doi.org/10.1161/01.res.62.3.554

    Article  CAS  PubMed  Google Scholar 

  83. Seo K, Inagaki M, Nishimura S et al (2010) Structural heterogeneity in the ventricular wall plays a significant role in the initiation of stretch-induced arrhythmias in perfused rabbit right ventricular tissues and whole heart preparations. Circ Res 106:176–184. https://doi.org/10.1161/circresaha.109.203828

    Article  CAS  PubMed  Google Scholar 

  84. Stacy GP, Jobe RL, Taylor LK et al (1992) Stretch-induced depolarizations as a trigger of arrhythmias in isolated canine left ventricles. Am J Physiology-Heart Circ Physiol 263:H613–H621. https://doi.org/10.1152/ajpheart.1992.263.2.h613

    Article  Google Scholar 

  85. Sideris DA, Chrysos DN, Maliaras GK et al (1988) Effect of acute hypertension on the cardiac rhythm. Experimental observations J Electrocardiol 21:183–191. https://doi.org/10.1016/s0022-0736(88)80015-3

    Article  CAS  PubMed  Google Scholar 

  86. Sideris DA, Toumanidis ST, Kostis EB et al (1989) Arrhythmogenic effect of high blood pressure: some observations on its mechanism. Cardiovasc Res 23:983–992. https://doi.org/10.1093/cvr/23.11.983

    Article  CAS  PubMed  Google Scholar 

  87. Sideris DA, Toumanidis ST, Kostis EB et al (1991) Effect of adrenergic blockade on pressure-related ventricular arrhythmias. Acta Cardiol 46:215–225

    CAS  PubMed  Google Scholar 

  88. Haemers P, Sutherland G, Cikes M et al (2015) Further insights into blood pressure induced premature beats: transient depolarizations are associated with fast myocardial deformation upon pressure decline. Heart Rhythm 12:2305–2315. https://doi.org/10.1016/j.hrthm.2015.06.037

    Article  PubMed  Google Scholar 

  89. Calkins H, Maughan WL, Weisman HF et al (1989) Effect of acute volume load on refractoriness and arrhythmia development in isolated, chronically infarcted canine hearts. Circulation 79:687–697. https://doi.org/10.1161/01.cir.79.3.687

    Article  CAS  PubMed  Google Scholar 

  90. Chen RL, Penny DJ, Greve G et al (2004) Stretch-induced regional mechanoelectric dispersion and arrhythmia in the right ventricle of anesthetized lambs. Am J Physiology Hear Circ Physiol 286:H1008–H1014. https://doi.org/10.1152/ajpheart.00724.2003

    Article  CAS  Google Scholar 

  91. Zabel M, Portnoy S, Franz MR (1996) Effect of sustained load on dispersion of ventricular repolarization and conduction time in the isolated intact rabbit heart. J Cardiovasc Electr 7:9–16. https://doi.org/10.1111/j.1540-8167.1996.tb00455.x

    Article  CAS  Google Scholar 

  92. Belus A, White E (2003) Streptomycin and intracellular calcium modulate the response of single Guinea-pig ventricular myocytes to axial stretch. J Physiol 546:501–509. https://doi.org/10.1113/jphysiol.2002.027573

    Article  CAS  PubMed  Google Scholar 

  93. Benditt DG, Kriett JM, Tobler HG et al (1985) Electrophysiological effects of transient aortic occlusion in intact canine heart. Am J Physiology-Heart Circ Physiol 249:H1017–H1023. https://doi.org/10.1152/ajpheart.1985.249.5.h1017

    Article  CAS  Google Scholar 

  94. Burton FL, Cobbe SM (1998) Effect of sustained stretch on dispersion of ventricular fibrillation intervals in normal rabbit hearts. Cardiovasc Res 39:351–359. https://doi.org/10.1016/s0008-6363(98)00092-3

    Article  CAS  PubMed  Google Scholar 

  95. Calkins H, Levine JH, Kass DA (1991) Electrophysiological effect of varied rate and extent of acute in vivo left ventricular load increase. Cardiovasc Res 25:637–644. https://doi.org/10.1093/cvr/25.8.637

    Article  CAS  PubMed  Google Scholar 

  96. Coulshed DS, Cowan JC (1991) Contraction-excitation feedback in an ejecting whole heart model – dependence of action potential duration on left ventricular diastolic and systolic pressures. Cardiovasc Res 25:343–352. https://doi.org/10.1093/cvr/25.4.343

    Article  CAS  PubMed  Google Scholar 

  97. Coulshed DS, Cowan JC, Drinkhill MJ et al (1992) The effects of ventricular end-diastolic and systolic pressures on action potential and duration in anaesthetized dogs. J Physiol 457:75–91. https://doi.org/10.1113/jphysiol.1992.sp019365

    Article  CAS  PubMed  Google Scholar 

  98. Coulshed DS, Hainsworth R, Cowan JC (1994) The influence of myocardial systolic shortening on action potential duration following changes in left ventricular end-diastolic pressure. J Cardiovasc Electr 5:919–932. https://doi.org/10.1111/j.1540-8167.1994.tb01132.x

    Article  CAS  Google Scholar 

  99. Dean JW, Lab MJ (1989) Effect of changes in load on monophasic action potential and segment length of pig heart in situ. Cardiovasc Res 23:887–887. https://doi.org/10.1093/cvr/23.10.887

    Article  CAS  PubMed  Google Scholar 

  100. Dean JW, Lab MJ (1990) Regional changes in ventricular excitability during load manipulation of the in situ pig heart. J Physiology 429:387–400. https://doi.org/10.1113/jphysiol.1990.sp018263

    Article  CAS  Google Scholar 

  101. Greve G, Lab MJ, Chen R et al (2001) Right ventricular distension alters monophasic action potential duration during pulmonary arterial occlusion in anaesthetised lambs: evidence for arrhythmogenic right ventricular mechanoelectrical feedback. Exp Physiol 86:651–657. https://doi.org/10.1113/eph8602225

    Article  CAS  PubMed  Google Scholar 

  102. Halperin BD, Adler SW, Mann DE et al (1993) Mechanical correlates of contraction-excitation feedback during acute ventricular dilatation. Cardiovasc Res 27:1084–1087. https://doi.org/10.1093/cvr/27.6.1084

    Article  CAS  PubMed  Google Scholar 

  103. Horner SM, Dick DJ, Murphy CF et al (1996) Cycle length dependence of the electrophysiological effects of increased load on the myocardium. Circulation 94:1131–1136. https://doi.org/10.1161/01.cir.94.5.1131

    Article  CAS  PubMed  Google Scholar 

  104. Lab MJ (1980) Transient depolarisation and action potential alterations following mechanical changes in isolated myocardium. Cardiovasc Res 14:624–637. https://doi.org/10.1093/cvr/14.11.624

    Article  CAS  PubMed  Google Scholar 

  105. Lerman BB, Burkhoff D, Yue DT et al (1985) Mechanoelectrical feedback: independent role of preload and contractility in modulation of canine ventricular excitability. J Clin Invest 76:1843–1850. https://doi.org/10.1172/jci112177

    Article  CAS  PubMed  Google Scholar 

  106. Reiter MJ, Zetelaki Z, Kirchhof CJ et al (1994) Interaction of acute ventricular dilatation and d-sotalol during sustained reentrant ventricular tachycardia around a fixed obstacle. Circulation 89:423–431. https://doi.org/10.1161/01.cir.89.1.423

    Article  CAS  PubMed  Google Scholar 

  107. Reiter MJ, Landers M, Zetelaki Z et al (1997) Electrophysiological effects of acute dilatation in the isolated rabbit heart: cycle length–dependent effects on ventricular refractoriness and conduction velocity. Circulation 96:4050–4056. https://doi.org/10.1161/01.cir.96.11.4050

    Article  CAS  PubMed  Google Scholar 

  108. Sung D, Mills RW, Schettler J et al (2003) Ventricular filling slows epicardial conduction and increases action potential duration in an optical mapping study of the isolated rabbit heart. J Cardiovasc Electr 14:739–749. https://doi.org/10.1046/j.1540-8167.2003.03072.x

    Article  Google Scholar 

  109. Wang K, Terrar D, Gavaghan DJ et al (2014) Living cardiac tissue slices: an organotypic pseudo two-dimensional model for cardiac biophysics research. Prog Biophysics Mol Biology 115:314–327. https://doi.org/10.1016/j.pbiomolbio.2014.08.006

    Article  CAS  Google Scholar 

  110. Wang X-X, Cheng L-X, Chen J-Z et al (2003) Dependence of ventricular wall stress-induced refractoriness changes on pacing cycle lengths and its mechanism. Sheng Li Xue Bao Acta Physiologica Sinica 55:336–338

    PubMed  Google Scholar 

  111. Werdich AA, Brzezinski A, Jeyaraj D et al (2012) The zebrafish as a novel animal model to study the molecular mechanisms of mechano-electrical feedback in the heart. Prog Biophysics Mol Biology 110:154–165. https://doi.org/10.1016/j.pbiomolbio.2012.07.006

    Article  CAS  Google Scholar 

  112. Quintanilla JG, Moreno J, Archondo T et al (2015) Increased intraventricular pressures are as harmful as the electrophysiological substrate of heart failure in favoring sustained reentry in the swine heart. Heart Rhythm 12:2172–2183. https://doi.org/10.1016/j.hrthm.2015.05.017

    Article  PubMed  Google Scholar 

  113. Quinn TA (2014) The importance of non-uniformities in mechano-electric coupling for ventricular arrhythmias. J Interv Card Electr 39:25–35. https://doi.org/10.1007/s10840-013-9852-0

    Article  Google Scholar 

  114. Caporizzo MA, Chen CY, Prosser BL (2019) Cardiac microtubules in health and heart disease. Exp Biol Med 244:1255–1272. https://doi.org/10.1177/1535370219868960

    Article  CAS  Google Scholar 

  115. Kerr JP, Robison P, Shi G et al (2015) Detyrosinated microtubules modulate mechanotransduction in heart and skeletal muscle. Nat Commun 6:8526. https://doi.org/10.1038/ncomms9526

    Article  CAS  PubMed  Google Scholar 

  116. Robison P, Prosser BL (2017) Microtubule mechanics in the working myocyte. J Physiol 595:3931–3937. https://doi.org/10.1113/jp273046

    Article  CAS  PubMed  Google Scholar 

  117. Chen-Izu Y, Izu LT (2017) Mechano-chemo-transduction in cardiac myocytes. J Physiol 595:3949–3958. https://doi.org/10.1113/jp273101

    Article  CAS  PubMed  Google Scholar 

  118. Iribe G, Ward CW, Camelliti P et al (2009) Axial stretch of rat single ventricular cardiomyocytes causes an acute and transient increase in Ca2+ spark rate. Circ Res 104:787–795. https://doi.org/10.1161/circresaha.108.193334

    Article  CAS  PubMed  Google Scholar 

  119. Izu LT, Kohl P, Boyden PA et al (2020) Mechano-electric and mechano-chemo-transduction in cardiomyocytes. J Physiol 598:1285–1305. https://doi.org/10.1113/jp276494

    Article  CAS  PubMed  Google Scholar 

  120. Prosser BL, Ward CW, Lederer WJ (2011) X-ROS signaling: rapid mechano-chemo transduction in heart. Science 333:1440–1445. https://doi.org/10.1126/science.1202768

    Article  CAS  PubMed  Google Scholar 

  121. Prosser BL, Ward CW (2014) Mechano-chemo transduction tunes the heartstrings. Sci Signal 7:pe7. https://doi.org/10.1126/scisignal.2005214

    Article  CAS  PubMed  Google Scholar 

  122. Kohl P, Bollensdorff C, Garny A (2006) Effects of mechanosensitive ion channels on ventricular electrophysiology: experimental and theoretical models. Exp Physiol 91:307–321. https://doi.org/10.1113/expphysiol.2005.031062

    Article  PubMed  Google Scholar 

  123. Morris CE (2011) Pacemaker, potassium, calcium, sodium: stretch modulation of the voltage-gated channels. In: Kohl P, Sachs F, Franz MR (eds) Cardiac Mechano-electric coupling and arrhythmias, 2nd edn. Oxford University Press, Oxford, pp 42–49

    Chapter  Google Scholar 

  124. Vandenberg JI, Rees SA, Wright AR et al (1996) Cell swelling and ion transport pathways in cardiac myocytes. Cardiovasc Res 32:85–97. https://doi.org/10.1016/s0008-6363(96)00048-x

    Article  CAS  PubMed  Google Scholar 

  125. Baumgarten CM, Clemo HF (2003) Swelling-activated chloride channels in cardiac physiology and pathophysiology. Prog Biophysics Mol Biology 82:25–42. https://doi.org/10.1016/s0079-6107(03)00003-8

    Article  CAS  Google Scholar 

  126. Craelius W (1993) Stretch-activation of rat cardiac myocytes. Exp Physiol 78:411–423. https://doi.org/10.1113/expphysiol.1993.sp003695

    Article  CAS  PubMed  Google Scholar 

  127. Riemer TL, Tung L (2003) Stretch-induced excitation and action potential changes of single cardiac cells. Prog Biophysics Mol Biology 82:97–110. https://doi.org/10.1016/s0079-6107(03)00008-7

    Article  CAS  Google Scholar 

  128. Gannier F, White E, Lacampagne A et al (1994) Streptomycin reverses a large stretch induced increase in [Ca2+]i in isolated Guinea pig ventricular myocytes. Cardiovasc Res 28:1193–1198. https://doi.org/10.1093/cvr/28.8.1193

    Article  CAS  PubMed  Google Scholar 

  129. Smani T, Dionisio N, López JJ et al (2014) Cytoskeletal and scaffolding proteins as structural and functional determinants of TRP channels. Biochimica Et Biophysica Acta Bba - Biomembr 1838:658–664. https://doi.org/10.1016/j.bbamem.2013.01.009

    Article  CAS  Google Scholar 

  130. Coste B, Mathur J, Schmidt M et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60. https://doi.org/10.1126/science.1193270

    Article  CAS  PubMed  Google Scholar 

  131. Volkers L, Mechioukhi Y, Coste B (2015) Piezo channels: from structure to function. Pflügers Archiv - European J Physiol 467:95–99. https://doi.org/10.1007/s00424-014-1578-z

    Article  CAS  Google Scholar 

  132. Solis AG, Bielecki P, Steach HR et al (2019) Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573:69–74. https://doi.org/10.1038/s41586-019-1485-8

    Article  CAS  PubMed  Google Scholar 

  133. Blythe NM, Muraki K, Ludlow MJ et al (2019) Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion. J Biol Chem 294:17395–17408. https://doi.org/10.1074/jbc.ra119.009167

    Article  CAS  PubMed  Google Scholar 

  134. Cameron BA, Stoyek MR, Bak JJ et al (n.d.) TRPA1 channels are a source of calcium-driven cardiac mechano-arrhythmogenicity. bioRxiv. https://doi.org/10.1101/2020.10.01.321638

  135. Watanabe H, Murakami M, Ohba T et al (2008) TRP channel and cardiovascular disease. Pharmacol Therapeut 118:337–351. https://doi.org/10.1016/j.pharmthera.2008.03.008

    Article  CAS  Google Scholar 

  136. Inoue R, Jian Z, Kawarabayashi Y (2009) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Therapeut 123:371–385. https://doi.org/10.1016/j.pharmthera.2009.05.009

    Article  CAS  Google Scholar 

  137. Nikolaev YA, Cox CD, Ridone P et al (2019) Mammalian TRP ion channels are insensitive to membrane stretch. J Cell Sci 132:jcs238360. https://doi.org/10.1242/jcs.238360

    Article  CAS  PubMed  Google Scholar 

  138. Li W, Kohl P, Trayanova N (2006) Myocardial ischemia lowers precordial thump efficacy: an inquiry into mechanisms using three-dimensional simulations. Heart Rhythm 3:179–186. https://doi.org/10.1016/j.hrthm.2005.10.033

    Article  PubMed  Google Scholar 

  139. Wagoner DRV, Lamorgese M (1994) Ischemia potentiates the mechanosensitive modulation of atrial ATP-sensitive potassium channels. Ann N Y Acad Sci 723:392–395. https://doi.org/10.1111/j.1749-6632.1994.tb36755.x

    Article  PubMed  Google Scholar 

  140. Wagoner DRV (1993) Mechanosensitive gating of atrial ATP-sensitive potassium channels. Circ Res 72:973–983. https://doi.org/10.1161/01.res.72.5.973

    Article  PubMed  Google Scholar 

  141. Rog-Zielinska EA, O’Toole ET, Hoenger A et al (2019) Mitochondrial deformation during the cardiac mechanical cycle. Anatomical Rec 302:146–152. https://doi.org/10.1002/ar.23917

    Article  CAS  Google Scholar 

  142. Belmonte S, Morad M (2008) ‘Pressure–flow‘-triggered intracellular Ca2+ transients in rat cardiac myocytes: possible mechanisms and role of mitochondria. J Physiol 586:1379–1397. https://doi.org/10.1113/jphysiol.2007.149294

    Article  CAS  PubMed  Google Scholar 

  143. Belmonte S, Morad M (2008) Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes. Ann N Y Acad Sci 1123:58–63. https://doi.org/10.1196/annals.1420.007

    Article  CAS  PubMed  Google Scholar 

  144. Miragoli M, Sanchez-Alonso JL, Bhargava A et al (2015) Microtubule-dependent mitochondria alignment regulates calcium release in response to nanomechanical stimulus in heart myocytes. Cell Rep 14:140–151. https://doi.org/10.1016/j.celrep.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  145. Morad M, Javaheri A, Risius T et al (2005) Multimodality of Ca2+ signaling in rat atrial myocytes. Ann N Y Acad Sci 1047:112–121. https://doi.org/10.1196/annals.1341.010

    Article  CAS  PubMed  Google Scholar 

  146. Janke C, Bulinski JC (2011) Post-translational regulation of the microtubule cytoskeleton: mechanisms and functions. Nat Rev Mol Cell Bio 12:773–786. https://doi.org/10.1038/nrm3227

    Article  CAS  Google Scholar 

  147. Portran D, Schaedel L, Xu Z et al (2017) Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol 19:391–398. https://doi.org/10.1038/ncb3481

    Article  CAS  PubMed  Google Scholar 

  148. Hirata H, Tatsumi H, Hayakawa K et al (2015) Non-channel mechanosensors working at focal adhesion-stress fiber complex. Pflügers Archiv - European J Physiol 467:141–155. https://doi.org/10.1007/s00424-014-1558-3

    Article  CAS  Google Scholar 

  149. Israeli-Rosenberg S, Chen C, Li R et al (2015) Caveolin modulates integrin function and mechanical activation in the cardiomyocyte. FASEB J 29:374–384. https://doi.org/10.1096/fj.13-243139

    Article  CAS  PubMed  Google Scholar 

  150. Robison P, Caporizzo MA, Ahmadzadeh H et al (2016) Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352:aaf0659. https://doi.org/10.1126/science.aaf0659

    Article  CAS  PubMed  Google Scholar 

  151. Brangwynne CP, MacKintosh FC, Kumar S et al (2006) Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. J Cell Biol 173:733–741. https://doi.org/10.1083/jcb.200601060

    Article  CAS  PubMed  Google Scholar 

  152. Salomon AK, Okami N, Heffler J et al (2021) Desmin intermediate filaments and tubulin detyrosination stabilize growing microtubules in the cardiomyocyte bioRxiv 2021.05.26.445641. https://doi.org/10.1101/2021.05.26.445641

  153. Belmadani S, Poüs C, Ventura-Clapier R et al (2002) Post-translational modifications of cardiac tubulin during chronic heart failure in the rat. Mol Cell Biochem 237:39–46. https://doi.org/10.1023/a:1016554104209

    Article  CAS  PubMed  Google Scholar 

  154. Xu Z, Schaedel L, Portran D et al (2017) Microtubules acquire resistance from mechanical breakage through intralumenal acetylation. Science 356:328–332. https://doi.org/10.1126/science.aai8764

    Article  CAS  PubMed  Google Scholar 

  155. Coleman AK, Joca HC, Shi G et al (2021) Tubulin acetylation increases cytoskeletal stiffness to regulate mechanotransduction in striated muscle. J Gen Physiol 153:e202012743. https://doi.org/10.1085/jgp.202012743

    Article  CAS  PubMed  Google Scholar 

  156. ter Keurs HEDJ, Boyden PA (2007) Calcium and arrhythmogenesis. Physiol Rev 87:457–506. https://doi.org/10.1152/physrev.00011.2006

    Article  CAS  PubMed  Google Scholar 

  157. Landstrom AP, Dobrev D, Wehrens XHT (2017) Calcium signaling and cardiac arrhythmias. Circ Res 120:1969–1993. https://doi.org/10.1161/circresaha.117.310083

    Article  CAS  PubMed  Google Scholar 

  158. Iribe G, Kohl P (2008) Axial stretch enhances sarcoplasmic reticulum Ca2+ leak and cellular Ca2+ reuptake in Guinea pig ventricular myocytes: experiments and models. Prog Biophysics Mol Biology 97:298–311. https://doi.org/10.1016/j.pbiomolbio.2008.02.012

    Article  CAS  Google Scholar 

  159. Schönleitner P, Schotten U, Antoons G (2017) Mechanosensitivity of microdomain calcium signalling in the heart. Prog Biophysics Mol Biology 130:288–301. https://doi.org/10.1016/j.pbiomolbio.2017.06.013

    Article  CAS  Google Scholar 

  160. Allen DG, Kentish JC (1988) Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol 407:489–503. https://doi.org/10.1113/jphysiol.1988.sp017427

    Article  CAS  PubMed  Google Scholar 

  161. Wakayama Y, Miura M, Stuyvers BD et al (2005) Spatial nonuniformity of excitation–contraction coupling causes arrhythmogenic Ca2+; waves in rat cardiac muscle. Circ Res 96:1266–1273. https://doi.org/10.1161/01.res.0000172544.56818.54

    Article  CAS  PubMed  Google Scholar 

  162. Andersson DA, Gentry C, Moss S et al (2008) Transient receptor potential A1 is a sensory receptor for multiple products of oxidative stress. J Neurosci 28:2485–2494. https://doi.org/10.1523/jneurosci.5369-07.2008

    Article  CAS  PubMed  Google Scholar 

  163. Zurborg S, Yurgionas B, Jira JA et al (2007) Direct activation of the ion channel TRPA1 by Ca2+. Nat Neurosci 10:277–279. https://doi.org/10.1038/nn1843

    Article  CAS  PubMed  Google Scholar 

  164. Iribe G, Jin H, Kaihara K et al (2010) Effects of axial stretch on sarcolemmal BKCa channels in post-hatch chick ventricular myocytes. Exp Physiol 95:699–711. https://doi.org/10.1113/expphysiol.2009.051896

    Article  CAS  PubMed  Google Scholar 

  165. Goldblum RR, McClellan M, White K et al (2021) Oxidative stress pathogenically remodels the cardiac myocyte cytoskeleton via structural alterations to the microtubule lattice. Dev Cell 56:2252. https://doi.org/10.1016/j.devcel.2021.07.004

    Article  CAS  PubMed  Google Scholar 

  166. Cannell MB (2009) Pulling on the heart strings: a new mechanism within Starling’s law of the heart? Circ Res 104:715–716. https://doi.org/10.1161/circresaha.109.195511

    Article  CAS  PubMed  Google Scholar 

  167. Belevych AE, Terentyev D, Viatchenko-Karpinski S et al (2009) Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 84:387–395. https://doi.org/10.1093/cvr/cvp246

    Article  CAS  PubMed  Google Scholar 

  168. Prosser BL, Ward CW, Lederer WJ (2010) Subcellular Ca2+ signaling in the heart: the role of ryanodine receptor sensitivity. J Gen Physiology 136:135–142. https://doi.org/10.1085/jgp.201010406

    Article  CAS  Google Scholar 

  169. Prosser BL, Khairallah RJ, Ziman AP et al (2013) X-ROS signaling in the heart and skeletal muscle: stretch-dependent local ROS regulates [Ca2+]i. J Mol Cell Cardiol 58:172–181. https://doi.org/10.1016/j.yjmcc.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  170. Huke S, Knollmann BC (2010) Increased myofilament Ca2+-sensitivity and arrhythmia susceptibility. J Mol Cell Cardiol 48:824–833. https://doi.org/10.1016/j.yjmcc.2010.01.011

    Article  CAS  PubMed  Google Scholar 

  171. ter Keurs HEDJ, Shinozaki T, Zhang YM et al (2008) Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias. Prog Biophysics Mol Biology 97:312–331. https://doi.org/10.1016/j.pbiomolbio.2008.02.013

    Article  CAS  Google Scholar 

  172. Cameron BA, Kai H, Kaihara K et al (2020) Ischemia enhances the acute stretch-induced increase in calcium spark rate in ventricular myocytes. Front Physiol 11:289. https://doi.org/10.3389/fphys.2020.00289

    Article  PubMed  Google Scholar 

  173. Prosser BL, Ward CW, Lederer WJ (2013) X-ROS signalling is enhanced and graded by cyclic cardiomyocyte stretch. Cardiovasc Res 98:307–314. https://doi.org/10.1093/cvr/cvt066

    Article  CAS  PubMed  Google Scholar 

  174. Solovyova O, Katsnelson LB, Konovalov PV et al (2014) The cardiac muscle duplex as a method to study myocardial heterogeneity. Prog Biophysics Mol Biology 115:115–128. https://doi.org/10.1016/j.pbiomolbio.2014.07.010

    Article  CAS  Google Scholar 

  175. Tyberg JV, Parmley WW, Sonnenblick EH (1969) In-vitro studies of myocardial asynchrony and regional hypoxia. Circ Res 25:569–579. https://doi.org/10.1161/01.res.25.5.569

    Article  CAS  PubMed  Google Scholar 

  176. Carmeliet E (1999) Cardiac ionic currents and acute ischemia: from channels to arrhythmias. Physiol Rev 79:917–1017. https://doi.org/10.1152/physrev.1999.79.3.917

    Article  CAS  PubMed  Google Scholar 

  177. Bollensdorff C, Lab M (2011) Stretch effects on potassium accumulation and alternans in pathological myocardium. In: Kohl P, Sachs F, Franz MR (eds) Cardiac Mechano-electric coupling and arrhythmias, 2nd edn. Oxford University Press, Oxford, pp 173–179

    Chapter  Google Scholar 

  178. Janse MJ, Wit AL (1989) Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 69:1049–1169. https://doi.org/10.1152/physrev.1989.69.4.1049

    Article  CAS  PubMed  Google Scholar 

  179. Gallagher KP, Gerren RA, Choy M et al (1987) Subendocardial segment length shortening at lateral margins of ischemic myocardium in dogs. Am J Physiology-Heart Circ Physiol 253:H826–H837. https://doi.org/10.1152/ajpheart.1987.253.4.h826

    Article  CAS  Google Scholar 

  180. Leuven SLV, Waldman LK, McCulloch AD et al (1994) Gradients of epicardial strain across the perfusion boundary during acute myocardial ischemia. Am J Physiology-Heart Circ Physiol 267:H2348–H2362. https://doi.org/10.1152/ajpheart.1994.267.6.h2348

    Article  Google Scholar 

  181. Prinzen FW, Arts T, Hoeks APG et al (1989) Discrepancies between myocardial blood flow and fiber shortening in the ischemic border zone as assessed with video mapping of epicardial deformation. Pflugers Arch 415:220–229. https://doi.org/10.1007/bf00370596

    Article  CAS  PubMed  Google Scholar 

  182. Sakai K, Watanabe K, Millard RW (1985) Defining the mechanical border zone: a study in the pig heart. Am J Physiology-Heart Circ Physiol 249:H88–H94. https://doi.org/10.1152/ajpheart.1985.249.1.h88

    Article  CAS  Google Scholar 

  183. Theroux P, Franklin D, Ross J et al (1974) Regional myocardial function during acute coronary artery occlusion and its modification by pharmacologic agents in the dog. Circ Res 35:896–908. https://doi.org/10.1161/01.res.35.6.896

    Article  CAS  PubMed  Google Scholar 

  184. Lopaschuk GD, Ussher JR, Folmes CDL et al (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  185. Stanley WC (2001) Changes in cardiac metabolism: a critical step from stable angina to ischaemic cardiomyopathy. Eur Heart J Suppl 3:O2–O7. https://doi.org/10.1016/s1520-765x(01)90147-6

    Article  Google Scholar 

  186. Bittl JA, Weisfeldt ML, Jacobus WE (1985) Creatine kinase of heart mitochondria. The progressive loss of enzyme activity during in vivo ischemia and its correlation to depressed myocardial function. J Biol Chem 260:208–214

    Article  CAS  PubMed  Google Scholar 

  187. Califf RM, Abdelmeguid AE, Kuntz RE et al (1998) Myonecrosis after revascularization procedures. J Am Coll Cardiol 31:241–251. https://doi.org/10.1016/s0735-1097(97)00506-8

    Article  CAS  PubMed  Google Scholar 

  188. Cao F, Zervou S, Lygate CA (2018) The creatine kinase system as a therapeutic target for myocardial ischaemia–reperfusion injury. Biochem Soc T 46:1119–1127. https://doi.org/10.1042/bst20170504

    Article  CAS  Google Scholar 

  189. Lygate CA, Bohl S, ten Hove M et al (2012) Moderate elevation of intracellular creatine by targeting the creatine transporter protects mice from acute myocardial infarction. Cardiovasc Res 96:466–475. https://doi.org/10.1093/cvr/cvs272

    Article  CAS  PubMed  Google Scholar 

  190. Takahashi M, Yokoshiki H, Mitsuyama H et al (2021) SK channel blockade prevents hypoxia-induced ventricular arrhythmias through inhibition of Ca2+/voltage uncoupling in hypertrophied hearts. Am J Physiology-Heart Circ Physiol 320:H1456–H1469. https://doi.org/10.1152/ajpheart.00777.2020

    Article  CAS  Google Scholar 

  191. Lang D, Holzem K, Kang C et al (2015) Arrhythmogenic remodeling of β2 versus β1 adrenergic signaling in the human failing heart. Circ Arrhythmia Electrophysiol 8:409–419. https://doi.org/10.1161/circep.114.002065

    Article  CAS  Google Scholar 

  192. Tang L, Joung B, Ogawa M et al (2012) Intracellular calcium dynamics, shortened action potential duration, and late-phase 3 early afterdepolarization in Langendorff-perfused rabbit ventricles. J Cardiovasc Electr 23:1364–1371. https://doi.org/10.1111/j.1540-8167.2012.02400.x

    Article  Google Scholar 

  193. Michailova A, Lorentz W, McCulloch A (2007) Modeling transmural heterogeneity of KATP current in rabbit ventricular myocytes. Am J Physiol-Cell Ph 293:C542–C557. https://doi.org/10.1152/ajpcell.00148.2006

    Article  CAS  Google Scholar 

  194. Baumeister P, Quinn TA (2016) Altered calcium handling and ventricular arrhythmias in acute ischemia. Clin Medicine Insights Cardiol 10s1:61–69. https://doi.org/10.4137/cmc.s39706

    Article  CAS  Google Scholar 

  195. Coronel R, Fiolet JW, Wilms-Schopman FJ et al (1988) Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77:1125–1138. https://doi.org/10.1161/01.cir.77.5.1125

    Article  CAS  PubMed  Google Scholar 

  196. Coronel R, Wilms-Schopman FJ, Opthof T et al (1991) Injury current and gradients of diastolic stimulation threshold, TQ potential, and extracellular potassium concentration during acute regional ischemia in the isolated perfused pig heart. Circ Res 68:1241–1249. https://doi.org/10.1161/01.res.68.5.1241

    Article  CAS  PubMed  Google Scholar 

  197. de Groot JR, Coronel R (2004) Acute ischemia-induced gap junctional uncoupling and arrhythmogenesis. Cardiovasc Res 62:323–334. https://doi.org/10.1016/j.cardiores.2004.01.033

    Article  CAS  PubMed  Google Scholar 

  198. Dries E, Amoni M, Vandenberk B et al (2020) Altered adrenergic response in myocytes bordering a chronic myocardial infarction underlies in vivo triggered activity and repolarization instability. J Physiology 598:2875–2895. https://doi.org/10.1113/jp278839

    Article  CAS  Google Scholar 

  199. Mills RW, Narayan SM, McCulloch AD (2008) Mechanisms of conduction slowing during myocardial stretch by ventricular volume loading in the rabbit. Am J Physiology-Heart Circ Physiol 295:H1270–H1278. https://doi.org/10.1152/ajpheart.00350.2008

    Article  CAS  Google Scholar 

  200. de Oliveira BL, Pfeiffer ER, Sundnes J et al (2015) Increased cell membrane capacitance is the dominant mechanism of stretch-dependent conduction slowing in the rabbit heart: a computational study. Cell Mol Bioeng 8:237–246. https://doi.org/10.1007/s12195-015-0384-9

    Article  PubMed  Google Scholar 

  201. Kohl P, Cooper PJ, Holloway H (2003) Effects of acute ventricular volume manipulation on in situ cardiomyocyte cell membrane configuration. Prog Biophysics Mol Biology 82:221–227. https://doi.org/10.1016/s0079-6107(03)00024-5

    Article  Google Scholar 

  202. Rog-Zielinska EA, Scardigli M, Peyronnet R et al (2021) Beat-by-beat cardiomyocyte T-tubule deformation drives tubular content exchange. Circ Res 128:203–215. https://doi.org/10.1161/circresaha.120.317266

    Article  CAS  PubMed  Google Scholar 

  203. Cannell M, Cheng H, Lederer W (1995) The control of calcium release in heart muscle. Science 268:1045–1049. https://doi.org/10.1126/science.7754384

    Article  CAS  PubMed  Google Scholar 

  204. Hj H, Hoeher M, Risse JH (1987) Cardiac energetics, basic mechanisms and clinical implications. Basic Res Cardiol 82(Suppl 2):301–310. https://doi.org/10.1007/978-3-662-11289-2_29

    Article  Google Scholar 

  205. Jie X, Gurev V, Trayanova N (2010) Mechanisms of mechanically induced spontaneous arrhythmias in acute regional ischemia. Circ Res 106:185–192. https://doi.org/10.1161/circresaha.109.210864

    Article  CAS  PubMed  Google Scholar 

  206. Limbu S, Hoang-Trong TM, Prosser BL et al (2015) Modeling local X-ROS and calcium signaling in the heart. Biophys J 109:2037–2050. https://doi.org/10.1016/j.bpj.2015.09.031

    Article  CAS  PubMed  Google Scholar 

  207. Ferrari R, Ceconi C, Curello S et al (1985) Oxygen-mediated myocardial damage during ischaemia and reperfusion: role of the cellular defences against oxygen toxicity. J Mol Cell Cardiol 17:937–945. https://doi.org/10.1016/s0022-2828(85)80074-2

    Article  CAS  PubMed  Google Scholar 

  208. Miura M, Taguchi Y, Handoh T et al (2018) Regional increase in ROS within stretched region exacerbates arrhythmias in rat trabeculae with nonuniform contraction. Pflügers Archiv - European J Physiol 470:1349–1357. https://doi.org/10.1007/s00424-018-2152-x

    Article  CAS  Google Scholar 

  209. Meents JE, Fischer MJM, McNaughton PA (2016) Agonist-induced sensitisation of the irritant receptor ion channel TRPA1. J Physiology 594:6643–6660. https://doi.org/10.1113/jp272237

    Article  CAS  Google Scholar 

  210. Tan JHC, Liu W, Saint DA (2004) Differential expression of the mechanosensitive potassium channel TREK-1 in epicardial and endocardial myocytes in rat ventricle. Exp Physiol 89:237–242. https://doi.org/10.1113/expphysiol.2003.027052

    Article  CAS  PubMed  Google Scholar 

  211. Coronel R, Wilms-Schopman FJG, Opthof T et al (2009) Dispersion of repolarization and arrhythmogenesis. Heart Rhythm 6:537–543. https://doi.org/10.1016/j.hrthm.2009.01.013

    Article  PubMed  Google Scholar 

  212. Whelton PK, Carey RM, Aronow WS et al (2018) 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults. Hypertension 71:e13–e115. https://doi.org/10.1161/hyp.0000000000000065

    Article  CAS  PubMed  Google Scholar 

  213. Frohlich ED, Susic D (2012) Pressure overload. Heart Fail Clin 8:21–32. https://doi.org/10.1016/j.hfc.2011.08.005

    Article  PubMed  Google Scholar 

  214. Konstam MA, Kramer DG, Patel AR et al (2011) Left ventricular remodeling in heart failure current concepts in clinical significance and assessment. JACC Cardiovasc Imaging 4:98–108. https://doi.org/10.1016/j.jcmg.2010.10.008

    Article  PubMed  Google Scholar 

  215. Lorell BH, Carabello BA (2000) Left ventricular hypertrophy. Circulation 102:470–479. https://doi.org/10.1161/01.cir.102.4.470

    Article  CAS  PubMed  Google Scholar 

  216. Kahan T, Bergfeldt L (2005) Left ventricular hypertrophy in hypertension: its arrhythmogenic potential. Heart 91:250. https://doi.org/10.1136/hrt.2004.042473

    Article  PubMed  Google Scholar 

  217. McLenachan JM, Henderson E, Morris KI et al (1987) Ventricular arrhythmias in patients with hypertensive left ventricular hypertrophy. New Engl J Medicine 317:787–792. https://doi.org/10.1056/nejm198709243171302

    Article  CAS  Google Scholar 

  218. Rapsomaniki E, Timmis A, George J et al (2014) Blood pressure and incidence of twelve cardiovascular diseases: lifetime risks, healthy life-years lost, and age-specific associations in 1·25 million people. Lancet 383:1899–1911. https://doi.org/10.1016/s0140-6736(14)60685-1

    Article  PubMed  Google Scholar 

  219. Shenasa M, Shenasa H (2017) Hypertension, left ventricular hypertrophy, and sudden cardiac death. Int J Cardiol 237:60–63. https://doi.org/10.1016/j.ijcard.2017.03.002

    Article  PubMed  Google Scholar 

  220. Tereshchenko LG, Soliman EZ, Davis BR et al (2017) Risk stratification of sudden cardiac death in hypertension. J Electrocardiol 50:798–801. https://doi.org/10.1016/j.jelectrocard.2017.08.012

    Article  PubMed  Google Scholar 

  221. Yiu K-H, Tse H-F (2008) Hypertension and cardiac arrhythmias: a review of the epidemiology, pathophysiology and clinical implications. J Hum Hypertens 22:380–388. https://doi.org/10.1038/jhh.2008.10

    Article  PubMed  Google Scholar 

  222. Dunn FG, Pringle SD (1987) Left ventricular hypertrophy and myocardial ischemia in systemic hypertension. Am J Cardiol 60:19–22. https://doi.org/10.1016/0002-9149(87)90454-1

    Article  Google Scholar 

  223. Katz AM (2002) Ernest Henry Starling, his predecessors, and the “Law of the Heart.”. Circulation 106:2986–2992. https://doi.org/10.1161/01.cir.0000040594.96123.55

    Article  PubMed  Google Scholar 

  224. Maliken BD, Molkentin JD (2018) Undeniable evidence that the adult mammalian heart lacks an endogenous regenerative stem cell. Circulation 138:806–808. https://doi.org/10.1161/circulationaha.118.035186

    Article  PubMed  Google Scholar 

  225. Cooper G (2000) Cardiocyte cytoskeleton in hypertrophied myocardium. Heart Fail Rev 5:187–201. https://doi.org/10.1023/a:1009836918377

    Article  PubMed  Google Scholar 

  226. ter Keurs HEDJ (1998) Microtubules in cardiac hypertrophy. Circ Res 82:828–831. https://doi.org/10.1161/01.res.82.7.828

    Article  CAS  PubMed  Google Scholar 

  227. Caporizzo MA, Chen CY, Bedi K et al (2020) Microtubules increase diastolic stiffness in failing human cardiomyocytes and myocardium. Circulation 141:902–915. https://doi.org/10.1161/circulationaha.119.043930

    Article  CAS  PubMed  Google Scholar 

  228. Chen CY, Caporizzo MA, Bedi K et al (2018) Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat Med 24:1225–1233. https://doi.org/10.1038/s41591-018-0046-2

    Article  CAS  PubMed  Google Scholar 

  229. Tagawa H, Wang N, Narishige T et al (1997) Cytoskeletal mechanics in pressure-overload cardiac hypertrophy. Circ Res 80:281–289. https://doi.org/10.1161/01.res.80.2.281

    Article  CAS  PubMed  Google Scholar 

  230. Yamamoto S, Tsutsui H, Takahashi M et al (1998) Role of microtubules in the viscoelastic properties of isolated cardiac muscle. J Mol Cell Cardiol 30:1841–1853. https://doi.org/10.1006/jmcc.1998.0747

    Article  CAS  PubMed  Google Scholar 

  231. Tagawa H, Koide M, Sato H et al (1998) Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ Res 82:751–761. https://doi.org/10.1161/01.res.82.7.751

    Article  CAS  PubMed  Google Scholar 

  232. Nishimura S, Nagai S, Katoh M et al (2006) Microtubules modulate the stiffness of cardiomyocytes against shear stress. Circ Res 98:81–87. https://doi.org/10.1161/01.res.0000197785.51819.e8

    Article  CAS  PubMed  Google Scholar 

  233. Zile MR, Richardson K, Cowles MK et al (1998) Constitutive properties of adult mammalian cardiac muscle cells. Circulation 98:567–579. https://doi.org/10.1161/01.cir.98.6.567

    Article  CAS  PubMed  Google Scholar 

  234. Koide M, Hamawaki M, Narishige T et al (2000) Microtubule depolymerization normalizes in vivo myocardial contractile function in dogs with pressure-overload left ventricular hypertrophy. Circulation 102:1045–1052. https://doi.org/10.1161/01.cir.102.9.1045

    Article  CAS  PubMed  Google Scholar 

  235. Tsutsui H, Ishihara K, Cooper G (1993) Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 260:682–687. https://doi.org/10.1126/science.8097594

    Article  CAS  PubMed  Google Scholar 

  236. Sato H, Nagai T, Kuppuswamy D et al (1997) Microtubule stabilization in pressure overload cardiac hypertrophy. J Cell Biol 139:963–973. https://doi.org/10.1083/jcb.139.4.963

    Article  CAS  PubMed  Google Scholar 

  237. Nishimura RA, Housmans PR, Hatle LK et al (1989) Assessment of diastolic function of the heart: background and current applications of doppler echocardiography. Part i. physiologic and pathophysiologic features. Mayo Clin Proc 64:71–81. https://doi.org/10.1016/s0025-6196(12)65305-1

    Article  CAS  PubMed  Google Scholar 

  238. Nishimura RA, Abel MD, Hatle LK et al (1989) Assessment of diastolic function of the heart: background and current applications of doppler echocardiography. Part ii. Clinical studies. Mayo Clin Proc 64:181–204. https://doi.org/10.1016/s0025-6196(12)65673-0

    Article  CAS  PubMed  Google Scholar 

  239. Kreitzer G, Liao G, Gundersen GG (1999) Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol Biol Cell 10:1105–1118. https://doi.org/10.1091/mbc.10.4.1105

    Article  CAS  PubMed  Google Scholar 

  240. Liao G, Gundersen GG (1998) Kinesin is a candidate for cross-bridging microtubules and intermediate filaments. J Biol Chem 273:9797–9803. https://doi.org/10.1074/jbc.273.16.9797

    Article  CAS  PubMed  Google Scholar 

  241. Cheng G, Takahashi M, Shunmugavel A et al (2010) Basis for MAP4 dephosphorylation-related microtubule network densification in pressure overload cardiac hypertrophy. J Biol Chem 285:38125–38140. https://doi.org/10.1074/jbc.m110.148650

    Article  CAS  PubMed  Google Scholar 

  242. Takahashi M, Shiraishi H, Ishibashi Y et al (2003) Phenotypic consequences of β 1 -tubulin expression and MAP4 decoration of microtubules in adult cardiocytes. Am J Physiology-Heart Circ Physiol 285:H2072–H2083. https://doi.org/10.1152/ajpheart.00396.2003

    Article  CAS  Google Scholar 

  243. Guichard JL, Rogowski M, Agnetti G et al (2017) Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am J Physiology-Heart Circ Physiol 313:H32–H45. https://doi.org/10.1152/ajpheart.00027.2017

    Article  Google Scholar 

  244. Lewis YE, Moskovitz A, Mutlak M et al (2018) Localization of transcripts, translation, and degradation for spatiotemporal sarcomere maintenance. J Mol Cell Cardiol 116:16–28. https://doi.org/10.1016/j.yjmcc.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  245. Scarborough EA, Uchida K, Vogel M et al (2021) Microtubules orchestrate local translation to enable cardiac growth. Nat Commun 12:1547. https://doi.org/10.1038/s41467-021-21685-4

    Article  CAS  PubMed  Google Scholar 

  246. Scholz D, Baicu CF, Tuxworth WJ et al (2008) Microtubule-dependent distribution of mRNA in adult cardiocytes. Am J Physiology-Heart Circ Physiol 294:H1135–H1144. https://doi.org/10.1152/ajpheart.01275.2007

    Article  CAS  Google Scholar 

  247. Goswami C, Hucho T (2008) Submembraneous microtubule cytoskeleton: biochemical and functional interplay of TRP channels with the cytoskeleton. FEBS J 275:4684–4699. https://doi.org/10.1111/j.1742-4658.2008.06617.x

    Article  CAS  PubMed  Google Scholar 

  248. Clemo HF, Stambler BS, Baumgarten CM (1999) Swelling-activated chloride current is persistently activated in ventricular myocytes from dogs with tachycardia-induced congestive heart failure. Circ Res 84:157–165. https://doi.org/10.1161/01.res.84.2.157

    Article  CAS  PubMed  Google Scholar 

  249. Kuroda J, Sadoshima J (2010) NADPH oxidase and cardiac failure. J Cardiovasc Transl 3:314–320. https://doi.org/10.1007/s12265-010-9184-8

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Alexander Quinn .

Editor information

Editors and Affiliations

Ethics declarations

Funding

This work was supported by the Canadian Institutes of Health Research (MOP 342562 to T.A.Q.), the Natural Sciences and Engineering Research Council of Canada (RGPIN-2016-04879 to T.A.Q.) and the Heart and Stroke Foundation of Canada (National New Investigator Award to T.A.Q.). BAC and PK are members of the German Research Foundation Collaborative Research Centre SFB1425 (422681845).

Conflict of Interest

All authors declare they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cameron, B.A., Kohl, P., Quinn, T.A. (2023). Cellular and Subcellular Mechanisms of Ventricular Mechano-Arrhythmogenesis. In: Hecker, M., Duncker, D.J. (eds) Cardiac Mechanobiology in Physiology and Disease. Cardiac and Vascular Biology, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-031-23965-6_11

Download citation

Publish with us

Policies and ethics