Skip to main content

Anomalous Aortic Origin of a Coronary Artery: Clinical and Surgical Perspective

  • Chapter
  • First Online:
Ischemic Heart Disease

Abstract

Anomalous aortic origin of a coronary artery predisposes pediatric patients to myocardial ischemia. This rare condition is a leading cause of sudden cardiac death. General pediatricians face challenges when diagnosing this anomaly, and they should pay particular attention to the recurrence of exercise-related syncope without prodromal symptoms, chest pain, and dyspnea. An accurate transthoracic echocardiogram with Doppler color flow mapping is the best method to use to identify anomalous origin. In this chapter, we describe this rare congenital abnormality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAOCA:

Anomalous aortic origin of a coronary artery

CA:

Coronary artery

SCD:

Sudden cardiac death

ALCA:

Anomalous left coronary artery

ARCA:

Anomalous right coronary artery

LM:

Left main

TTE:

Transthoracic echocardiography

CTA:

Computed tomography angiography

cMRI:

Cardiac magnetic resonance imaging

sNPI:

Stress nuclear perfusion imaging

FFR:

Fractional flow reserve

sCMR:

Stress cardiac magnetic resonance

IVUS:

Intravascular ultrasound

EST:

Exercise stress test

TAR:

Transection and reimplantation

References

  1. Cheezum MK, Liberthson RR, Shah NR, Villines TC, O’Gara PT, Landzberg MJ, Blankstein R. Anomalous aortic origin of a coronary artery from the inappropriate sinus of Valsalva. J Am Coll Cardiol. 2017;69(12):1592–608.

    Article  PubMed  Google Scholar 

  2. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119:1085–92.

    Article  PubMed  Google Scholar 

  3. Maron BJ. Sudden death in young athletes. N Engl J Med. 2003;349:1064–75.

    Article  CAS  PubMed  Google Scholar 

  4. Harmon KG, Drezner JA, Maleszewski JJ, et al. Pathogeneses of sudden cardiac death in national collegiate athletic association athletes. Circ Arrhythm Electrophysiol. 2014;7:198–204.

    Article  PubMed  Google Scholar 

  5. Angelini P, Cheong BY, Lenge De Rosen VV, Lopez A, Uribe C, Masso AH, Ali SW, Davis BR, Muthupillai R, Willerson JT. High-risk cardiovascular conditions in sports-related sudden death: prevalence in 5,169 schoolchildren screened via cardiac magnetic resonance. Tex Heart Inst J.

    Google Scholar 

  6. Davis JA, Cecchin F, Jones TK, Portman MA. Major coronary artery anomalies in a pediatric population: incidence and clinical importance. J Am Coll Cardiol. 2001;37:593–7.

    Article  CAS  PubMed  Google Scholar 

  7. Pelliccia A, Spataro A, Maron BJ. Prospective echocardiographic screening for coronary artery anomalies in 1,360 elite competitive athletes. Am J Cardiol. 1993;72:978–9.

    Article  CAS  PubMed  Google Scholar 

  8. Molossi S, Sachdeva S. Anomalous coronary arteries: what is known and what still remains to be learned? Curr Opin Cardiol. 2020;35:42–51.

    Article  PubMed  Google Scholar 

  9. Basso C, Maron BJ, Corrado D, Thiene G. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493–501.

    Article  CAS  PubMed  Google Scholar 

  10. Eckart RE, Scoville SL, Campbell CL, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141:829–34.

    Article  PubMed  Google Scholar 

  11. Molossi S, Agrawal H, Mery CM, Krishnamurthy R, Masand P, Tejtel SKS, Noel CV, Qureshi AM, Jadhav SP, McKenzie ED, Fraser CD Jr. Outcomes in anomalous aortic origin of a coronary artery following a prospective standardized approach. Circ Cardiovasc Interv. 2020;eb;13(2):e008445.

    Article  Google Scholar 

  12. Maron Barry J, Doerer Joseph J, Haas Tammy S, et al. Sudden deaths in young competitive athletes. Circulation. 2009;119:1085–92.

    Article  CAS  PubMed  Google Scholar 

  13. Angelini P. Coronary artery anomalies: an entity in search of an identity. Circulation. 2007;115:1296–305.

    Article  PubMed  Google Scholar 

  14. Molossi S, Martı’nez-Bravo LE, Mery CM. Anomalous aortic origin of a coronary artery. Methodist Debakey Cardiovasc J. 2019;15:111.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Johnson JN, Bonnichsen CR, Julsrud PR, Burkhart HM, Hagler DJ. Single coronary artery giving rise to an intraseptal left coronary artery in a patient presenting with neurocardiogenic syncope. Cardiol Young. 2011;21(5):572–6.

    Article  PubMed  Google Scholar 

  16. Mogensen UM, Grande P, Kober L, Kofoed KF. Anomalous origin of the left main coronary artery from the right sinus of Valsalva with a septal course: an explanation to disabling angina? Int J Cardiol. 2011;151:e74–6.

    Article  PubMed  Google Scholar 

  17. Glusko T, Seifert R, Brown F, Vigilance D, Irarte B, Teytelboym OM. Transeptal course of anomalous left main coronary artery originating from single right coronary orifice presenting as unstable angina. Radiol Case Rep. 2018;13:549–54.

    Article  Google Scholar 

  18. Mainwaring RD, Hanley FL. Surgical treatment of anomalous left main coronary artery with an intraconal course. Congenit Heart Dis. 2019;00:1–7.

    Google Scholar 

  19. Basso C, Maron BJ, Corrado D, et al. Clinical profile of congenital coronary artery anomalies with origin from the wrong aortic sinus leading to sudden death in young competitive athletes. J Am Coll Cardiol. 2000;35:1493–501.

    Article  CAS  PubMed  Google Scholar 

  20. Gaudin R, Raisky O, Vouhé PR. Anomalous aortic origin of coronary arteries: 'anatomical' surgical repair. Multimed Man Cardiothorac Surg. 2014;

    Google Scholar 

  21. Escaned J, Cortés J, Flores A, et al. Importance of diastolic fractional flow reserve and dobutamine challenge in physiologic assessment of myocardial bridging. J Am Coll Cardiol. 2003;42:226–33.

    Article  PubMed  Google Scholar 

  22. Bourassa MG, Butnaru A, Lespérance J, Tardif J-C. Symptomatic myocardial bridges: overview of ischemic mechanisms and current diagnostic and treatment strategies. J Am Coll Cardiol. 2003;41:351–9.

    Article  PubMed  Google Scholar 

  23. Ishikawa Y, Akasaka Y, Akishima-Fukasawa Y, et al. Histopathologic profiles of coronary atherosclerosis by myocardial bridge underlying myocardial infarction. Atherosclerosis. 2013;226:118–23.

    Article  CAS  PubMed  Google Scholar 

  24. Frommelt PC, Berger S, Pelech AN, et al. Prospective identification of anomalous origin of left coronary artery from the right sinus of Valsalva using transthoracic echocardiography: importance of color doppler flow mapping. Pediatr Cardiol. 2001;22:327–32.

    Article  CAS  PubMed  Google Scholar 

  25. Lorber R, Srivastava S, Wilder TJ, et al. Anomalous aortic origin of coronary arteries in the young: echocardiographic evaluation with surgical correlation. JACC Cardiovasc Imaging. 2015;8:1239–49.

    Article  PubMed  Google Scholar 

  26. de Jonge GJ, van Ooijen PM, Piers LH, et al. Visualization of anomalous coronary arteries on dual-source computed tomography. Eur Radiol. 2008;18:2425–32.

    Article  PubMed  Google Scholar 

  27. Kacmaz F, Ozbulbul NI, Alyan O, et al. Imaging of coronary artery anomalies: the role of multidetector computed tomography. Coron Artery Dis. 2008;19:203–9.

    Article  PubMed  Google Scholar 

  28. Komatsu S, Sato Y, Ichikawa M, et al. Anomalous coronary arteries in adults detected by multislice computed tomography: presentation of cases from multicenter registry and review of the literature. Heart Vessel. 2008;23:26–34.

    Article  Google Scholar 

  29. Lee S, Uppu SC, Lytrivi ID, et al. Utility of multimodality imaging in the morphologic characterization of anomalous aortic origin of a coronary artery. World J Pediatr Congenit Heart Surg. 2016;7:308–17.

    Article  PubMed  Google Scholar 

  30. Su JT, Chung T, Muthupillai R, et al. Usefulness of real-time navigator magnetic resonance imaging for evaluating coronary artery origins in pediatric patients. Am J Cardiol. 2005;95:679–82.

    Article  PubMed  Google Scholar 

  31. Aljaroudi WA, Flamm SD, Saliba W, et al. Role of CMR imaging in risk stratification for sudden cardiac death. JACC Cardiovasc Imaging. 2013;6:392–406.

    Article  PubMed  Google Scholar 

  32. Brothers JA, Whitehead KK, Keller MS, et al. Cardiac MRI and CT: differentiation of normal ostium and intraseptal course from slitlike ostium and interarterial course in anomalous left coronary artery in children. Am J Roentgenol. 2015;204:W104–9.

    Article  Google Scholar 

  33. Brothers JA, McBride MG, Seliem MA, et al. Evaluation of myocardial ischemia after surgical repair of anomalous aortic origin of a coronary artery in a series of pediatric patients. J Am Coll Cardiol. 2007;50:2078–82.

    Article  PubMed  Google Scholar 

  34. Stout KK, Daniels CJ, Aboulhosn JA, Bozkurt B, Broberg CS, Colman JM, Crumb SR, Dearani JA, Fuller S, Gurvitz M, Khairy P, Landzberg MJ, Saidi A, Valente AM, Van Hare GF. 2018 AHA/ACC guidelines for the Management of Adults with Congenital Heart Disease. J Am Coll Cardiol. 2019;73(12):e81–e192.

    Article  PubMed  Google Scholar 

  35. Opolski MP, Pregowski J, Kruk M, Witkowski A, Kwiecinska S, Lubienska E, Demkow M, Hryniewiecki T, Michalek P, Ruzyllo W, Kepka C. Prevalence and characteristics of coronary anomalies originating from the opposite sinus of Valsalva in 8,522 patients referred for coronary computed tomography angiography. Am J Cardiol. 2013;111:1361_1367.

    Article  PubMed  Google Scholar 

  36. Mainwaring RD, Reddy VM, Reinhartz O, Petrossian E, MacDonald M, Nasirov T, Miyake CY, Hanley FL. Anomalous aortic origin of a coronary artery: medium-term results after surgical repair in 50 patients. Ann Thorac Surg. 2011;92:691_697.

    Article  PubMed  Google Scholar 

  37. Frommelt PC, Sheridan DC, Berger S, Frommelt MA, Tweddell JS. Ten-year experience with surgical unroofing of anomalous aortic origin of a coronary artery from the opposite sinus with an interarterial course. J Thorac Cardiovasc Surg. 2011;142:1046_1051.

    Article  PubMed  Google Scholar 

  38. Jegatheeswaran A, Devlin PJ, McCrindle BW, Williams WG, Jacobs ML, Blackstone EH, DeCampli WM, Caldarone CA, Gaynor JW, Kirklin JK, Lorber RO, Mery CM, St Louis JD, Molossi S, Brothers JA. Features associated with myocardial ischemia in anomalous aortic origin of a coronary artery: a congenital heart surgeons’ society study. J Thorac Cardiovasc Surg. 2019;158:822_834 e823.

    Article  Google Scholar 

  39. Angelini P. Novel imaging of coronary artery anomalies to assess their prevalence, the causes of clinical symptoms, and the risk of sudden cardiac death. Circ Cardiovasc Imaging. 2014;7:747–54.

    Article  PubMed  Google Scholar 

  40. Rajiah P, Setser RM, Desai MY, Flamm SD, Arruda JL. Utility of free-breathing, whole-heart, three-dimensional magnetic resonance imaging in the assessment of coronary anatomy for congenital heart disease. Pediatr Cardiol. 2011;32:418–25.

    Article  PubMed  Google Scholar 

  41. Angelini P. Is echocardiography adequate to identify the severity of anomalous coronary arteries? JACC Cardiovasc Imaging. 2016;9:898–9.

    Article  PubMed  Google Scholar 

  42. Angelini P, Flamm SD. Newer concepts for imaging anomalous aortic origin of the coronary arteries in adults. Catheter Cardiovasc Interv. 2007;69:942–54.

    Article  PubMed  Google Scholar 

  43. Angelini P. Sudden death and coronary anomalies: the importance of a detailed description. Tex Heart Inst J. 2011;38:544–6.

    PubMed  PubMed Central  Google Scholar 

  44. Angelini P, Uribe C, Monge J, Tobis JM, Elayda MA, Willerson JT. Origin of the right coronary artery from the opposite sinus of Valsalva in adults: characterization by intravascular ultrasonography at baseline and after stent angioplasty. Catheter Cardiovasc Interv. 2015;86:199–208.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Warnes CA, Williams RG, Bashore TM, Child JS, Connolly HM, Dearani JA, Del Nido P, Fasules JW, Graham Jr TP, Hijazi ZM, Hunt SA, King ME, Landzberg MJ, Miner PD, Radford MJ, Walsh EP, Webb GD. ACC/AHA 2008 guidelines for the Management of Adults with congenital heart disease: executive summary: a report of the American College of Cardiology/American Heart Association task force on practice guidelines (writing committee to develop guidelines for the management of adults with congenital heart disease). Circulation. 2008;118(23):2395–451.

    Article  PubMed  Google Scholar 

  46. Pflederer T, Marwan M, Ropers D, Daniel WG, Achenbach S. CT angiography unmasking catheter-induced spasm as a reason for left main coronary artery stenosis. J Cardiovasc Comput Tomogr. 2008;2:406–7.

    Article  PubMed  Google Scholar 

  47. Baumgartner H, De Backer J, Babu-Narayan SV, Budts W, Chessa M, Diller GP, Lung B, Kluin J, Lang IM, Meijboom F, Moons P, Mulder BJM, Oechslin E, Roos-Hesselink JW, Schwerzmann M, Sondergaard L, Zeppenfeld K, ESC Scientific Document Group. ESC guidelines for the management of adult congenital heart disease. Eur Heart J. 2021;42(6):563–645.

    Article  CAS  PubMed  Google Scholar 

  48. Cheezum MK, Ghoshhajra B, Bittencourt MS, et al. Anomalous origin of the coronary artery arising from the opposite sinus: prevalence and outcomes in patients undergoing coronary CTA. Eur Heart J Cardiovasc Imaging. 2017;18:224–35.

    Article  PubMed  Google Scholar 

  49. Brothers J, Carter C, McBride M, Spray T, Paridon S. Anomalous left coronary artery origin from the opposite sinus of Valsalva: evidence of intermittent ischemia. J Thorac Cardiovasc Surg. 2010;140:e27–9.

    Article  PubMed  Google Scholar 

  50. Uebleis C, Groebner M, von Ziegler F, Becker A, Rischpler C, Tegtmeyer R, Becker C, Lehner S, Haug AR, Cumming P, et al. Combined anatomical and functional imaging using coronary CT angiography and myocardial perfusion SPECT in symptomatic adults with abnormal origin of a coronary artery. Int J Cardiovasc Imaging. 2012;28:1763–74.

    Article  CAS  PubMed  Google Scholar 

  51. Said SM, Cetta F. Pulmonary root mobilization and modified Lecompte Maneuver for transseptal course of the left Main coronary artery. World Journal for Pediatric and Congenital Heart Surgery. 2020;11(6):792–6.

    Article  PubMed  Google Scholar 

  52. Agrawal H, Mery C, Krishnamurthy R, et al. Stress myocardial perfusion imaging in anomalous aortic origin of a coronary artery: results following a standardized approach. J Am Coll Cardiol. 2017;69(11_S):1616.

    Article  Google Scholar 

  53. Greenwood JP, Maredia N, Younger JF, et al. Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet. 2012;379:453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Noel Cory V, Krishnamurthy R, Silvana M, et al. Cardiac MR stress perfusion with regadenoson or dobutamine in children single center experience in repaired & unrepaired congenital & acquired heart disease. Circulation. 2016;134(suppl_1):A19899–A119899.

    Google Scholar 

  55. Pflugi S, Roujol S, Akçakaya M, Kawaji K, Foppa M, Heydari B, Goddu B, Kissinger K, Berg S, Manning WJ, Kozerke S, Nezafat R. Accelerated cardiac MR stress perfusion with radial sampling after physical exercise with an MR-compatible supine bicycle ergometer. Magn Reson Med. 2015;74(2):384–95.

    Article  PubMed  Google Scholar 

  56. Agrawal H, Molossi S, Alam M, et al. Anomalous coronary arteries and myocardial bridges: risk stratification in children using novel cardiac catheterization techniques. Pediatr Cardiol. 2017;38:624–30.

    Article  PubMed  Google Scholar 

  57. Tonino PAL, De Bruyne B, Pijls NH, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  58. De Bruyne B, Bartunek J, Sys SU, et al. Simultaneous coronary pressure and flow velocity measurements in humans: feasibility, reproducibility, and hemodynamic dependence of coronary flow velocity reserve, hyperemic flow versus pressure slope.

    Google Scholar 

  59. Eckart RE, Shry EA, Burke AP, et al. Sudden death in young adults: an autopsy-based series of a population undergoing active surveillance. J Am Coll Cardiol. 2011;58:1254–61.

    Article  PubMed  Google Scholar 

  60. Krasuski RA, Magyar D, Hart S, et al. Long-term outcome and impact of surgery on adults with coronary arteries originating from the opposite coronary cusp. Circulation. 2011;123:154–62.

    Article  PubMed  Google Scholar 

  61. Frescura C, Basso C, Thiene G, et al. Anomalous origin of coronary arteries and risk of sudden death: a study based on an autopsy population of congenital heart disease. Hum Pathol. 1998;29:689–95.

    Article  CAS  PubMed  Google Scholar 

  62. Kaushal S, Backer CL, Popescu AR, et al. Intramural coronary length correlates with symptoms in patients with anomalous aortic origin of the coronary artery. Ann Thorac Surg. 2011;92:986–91.

    Article  PubMed  Google Scholar 

  63. Sharma V, Burkhart HM, Dearani JA, et al. Surgical unroofing of anomalous aortic origin of a coronary artery: a single-center experience. Ann Thorac Surg. 2014;98:941–5.

    Article  PubMed  Google Scholar 

  64. Molossi S, Mery CM, Krishnamurthy R, et al. Standardized approach to patients with anomalous aortic origin of a coronary artery: results from the coronary anomalies program a Texas Children’s hospital. J Am Coll Cardiol. 2015;65(10_S):A501.

    Article  Google Scholar 

  65. Sachdeva S, Frommelt MA, Mitchell ME, et al. Surgical unroofing of intramural anomalous aortic origin of a coronary artery in the pediatric patients: single-center perspective. J Thorac Cardiovasc Surg. 2018;155(4):1760–8.

    Article  PubMed  Google Scholar 

  66. Vinnakota A, Stewart RD, Najm H, et al. Anomalous aortic origin of the coronary arteries: a novel unroofing technique in an adult cohort. Ann Thorac Surg. 2019;107(3):823–8.

    Article  PubMed  Google Scholar 

  67. Mostefa Kara M, Fournier E, Cohen S, et al. Anomalous aortic origin of coronary arteries: is the unroofing procedure always appropriate? Eur J Cardiothorac Surg. 2021;59(3):705–10.

    Article  PubMed  Google Scholar 

  68. Agati S, Secinaro A, Caldaroni F, et al. Perfusion study helps in the management of the intraseptal course of an anomalous coronary artery. World J pediatr Congenit Heart Surg. 2019;10(3):360–3.

    Article  PubMed  Google Scholar 

  69. Najm KH, Ahmad M. Transconal unroofing of anomalous left main coronary artery from right sinus with trans-septal course. Ann Thorac Surg. 2019;108(6):e383–6.

    Article  PubMed  Google Scholar 

  70. Mainwaring RD, Hanley FL. Surgical treatment of anomalous left main coronary artery with an intraconal course. Congenit Heart Dis. 2019;14(4):504–10.

    Article  PubMed  Google Scholar 

  71. Rodefeld MD, Culbertson CB, Rosenfeld HM, et al. Pulmonary artery translocation: a surgical option for complex anomalous coronary artery anatomy. Ann Thorac Surg. 2001;72(6):2150–2.

    Article  CAS  PubMed  Google Scholar 

  72. Bonilla-ramirez C, Molossi S, Sachdeva S, et al. Outcomes in anomalous aortic origin of a coronary artery after surgical reimplantation. J Thorac Cardiovasc Surg. 2021:S0022-5223/20)33455-3. https://doi.org/10.1016/j.jtcvs.2020.12.100.

  73. Gaudin R, Raisky O, Vouhè P. Anomalous aortic origin of coronary arteries: “anatomical” surgical repair. Multimed Man Cardiothorac Surg. 2014;2014:mmt022. https://doi.org/10.1093/mmcts/mmt022.

    Article  PubMed  Google Scholar 

  74. Gaillard M, Pontailler M, Danial P, et al. Anomalous aortic origin of coronary arteries: an alternative to the unroofing strategy. Eur J Cardiothorac Surg. 2020;58(5):975–82.

    Article  PubMed  Google Scholar 

  75. Jegatheeswaran A, Devlin PJ, Williams WG, et al. Outcomes after anomalous aortic origin of a coronary artery repair: a congenital heart Surgeon’s society study. J Thorac Cardiovasc Surg. 2020;160(3):757–771.e5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duccio Federici .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marrone, C., Federici, D. (2023). Anomalous Aortic Origin of a Coronary Artery: Clinical and Surgical Perspective. In: Concistrè, G. (eds) Ischemic Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-031-25879-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25879-4_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25878-7

  • Online ISBN: 978-3-031-25879-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics