Skip to main content

Sport bei Myokarderkrankungen

  • Chapter
  • First Online:
Sportkardiologie

Zusammenfassung

Myokarderkrankungen sind die Hauptursachen des plötzlichen Herztodes bei unter 35-Jährigen. Hierbei handelt es sich um einen Sammelbegriff für angeborene und erworbene Herzmuskelerkrankungen mit unterschiedlichen Ursachen, Symptomatik, klinischem Verlauf sowie Prognose und Risiko für akute Komplikationen und/oder eine progressive Verschlechterung durch Sport. Bei manchen Kardiomyopathien stellt der plötzliche Herztod das erste Krankheitssymptom dar.

Im Kapitel wird auf die Diagnostik, Therapie, Risikostratifizierung und Sportempfehlungen bei der hypertrophen Kardiomyopathie, der linksventrikulären “non-compaction” Kardiomyopathie, der arrhythmogenen rechtsventrikulären Kardiomyopathie und der Myokardits eingegangen.

In der Gesundheitsuntersuchung (noch) asymptomatischer Sportler kann eine erste Verdachtsdiagnose meist bereits im Ruhe-EKG gestellt werden, die Echokardiografie und das Belastungs-EKG stellen jedoch sinnvolle Ergänzungen dar.

In der Abklärung der Myokarderkrankungen konnten in den letzten Jahren erhebliche Fortschritte, insbesondere durch die Magnetresonanztomografie sowie die Längsschnittbeobachtung betroffener Sportler einschließlich der Auswertung implantierter Defibrillatoren erzielt werden. Inzwischen liegen präzisierte internationale europäische und US-amerikanische Empfehlungen zur sportlichen Belastbarkeit bei den verschiedenen Krankheitsbildern vor.

Bei den meisten Kardiomyopathien besteht eine klare Kontraindikation zum Leistungssport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  1. Ammirati E, Frigerio M, Adler ED et al (2020) Management of acute myocarditis and chronic inflammatory cardiomyopathy: an expert consensus document. Circ Heart Fail 13:e007405

    PubMed  PubMed Central  Google Scholar 

  2. Anzini M, Merlo M, Sabbadini G et al (2008) Long-term evolution and prognostic stratification of biopsy-proven active myocarditis. Circulation 128:2384–2394

    Google Scholar 

  3. Assis FR, Tandri H (2020) Epicardial ablation of ventricular tachycardia in arrhythmogenic right ventricular cardiomyopathy. Card Electrophysiol Clin 12:329–343

    PubMed  Google Scholar 

  4. Aung N, Doimo S, Ricci F et al (2020) Prognostic significance of left ventricular noncompaction: Systematic review and meta-analysis of observational studies. Circ Cardiovasc Imaging 13:e009712

    PubMed  PubMed Central  Google Scholar 

  5. Barratt Ross S, Singer ES, Driscoll E et al (2020) Genetic architecture of left ventricular noncompaction in adults. Hum Genome Var 7:33

    Google Scholar 

  6. Basso C, Thiene G, Corrado D, Angelini A, Nava A, Valente M (1996) Arrhythmogenic right ventricular cardiomyopathy: dysplasia, dystrophy, or myocarditis? Circulation 94:983–991

    CAS  PubMed  Google Scholar 

  7. Basso C, Carturan E, Corrado D, Thiene G (2007) Myocarditis and dilated cardiomyopathy in athletes: diagnosis, management, and recommendations for sport activity. Cardiol Clin 25:423–429

    PubMed  Google Scholar 

  8. Bauce B, Frigo G, Benini G et al (2010) Differences and similarities between arrhythmogenic right ventricular cardiomyopathy and athlete’s heart adaptations. Br J Sports Med 44:148–154

    CAS  PubMed  Google Scholar 

  9. Cadrin-Tourigny J, Bosman LP, Nozza A et al (2019) A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur Heart J 40:1850–1858

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cadrin-Tourigny J, Bosman LP, Wang W et al (2021) Sudden cardiac death prediction in arrhythmogenic right ventricular cardiomyopathy: a multinational collaboration. Circ Arrhythmia Electrophysiol 14:e008509

    CAS  Google Scholar 

  11. Caforio A, Calabrese F, Angelini A et al (2007) A prospective study of biopsy-proven myocarditis: prognostic relevance of clinical and aetiopathogenetic features at diagnosis. Eur Heart J 28:1326–1333

    PubMed  Google Scholar 

  12. Caforio AL, Pankuweit S, Arbustini E et al (2013) European Society of Cardiology Working Group on Myocardial and Pericardial Diseases. Current state of knowledge on aetiology, diagnosis, management, and therapy of myocarditis: a position statement of the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 34:2636–2648, 2648a-2648d

    PubMed  Google Scholar 

  13. Calkins H, Corrado D, Marcus F (2017) Risk stratification in arrhythmogenic right ventricular cardiomyopathy. Circulation 136:2068–2082

    PubMed  PubMed Central  Google Scholar 

  14. Caselli S, Attenhofer Jost CH, Jenni R, Pelliccia A (2015) Left ventricular noncompaction diagnosis and management relevant to pre-participation screening of athletes. Am J Cardiol 116:801–808

    PubMed  Google Scholar 

  15. Chandra N, Bastiaenen R, Papadakis M, Sharma S (2013) Sudden cardiac death in young athletes. J Am Coll Cardiol 61:1027–1040

    PubMed  Google Scholar 

  16. Cooper LT Jr (2009) Myocarditis. N Engl J Med 360:1526–1538

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Corrado D, Basso C, Thiene G et al (1997) Spectrum of clinicopathologic manifestations of arrhythmogenic right ventricular cardiomyopathy/dysplasia: a multicenter study. J Am Coll Cardiol 30:1512–1520

    CAS  PubMed  Google Scholar 

  18. Corrado D, Basso C, Pavei A et al (2006) Trends in sudden cardiovascular death in young competitive athletes after implementation of a preparticipation screening program. JAMA 296:1593–1601

    CAS  PubMed  Google Scholar 

  19. Corrado D, Wichter T, Link MS et al (2015) Treatment of arrhythmogenic right ventricular cardiomyopathy/dysplasia: an international task force consensus statement. Eur Heart J 36:3227–3237

    PubMed  PubMed Central  Google Scholar 

  20. Corrado D, Link MS, Calkins H (2017) Arrhythmogenic right ventricular cardiomyopathy. Jarcho JA, ed. N Engl J Med 376:61–72

    CAS  PubMed  Google Scholar 

  21. Corrado D, Van Tintelen PJ, McKenna WJ et al (2020) Arrhythmogenic right ventricular cardiomyopathy: evaluation of the current diagnostic criteria and differential diagnosis. Eur Heart J 7:1414–1449

    Google Scholar 

  22. Czimbalmos C, Csecs I, Dohy Z et al (2019) Cardiac magnetic resonance based deformation imaging: role of feature tracking in athletes with suspected arrhythmogenic right ventricular cardiomyopathy. Int J Cardiovasc Imaging 35:529–538

    PubMed  Google Scholar 

  23. D’Ascenzi F, Solari M, Corrado D, Zorzi A, Mondillo S (2018) Diagnostic differentiation between arrhythmogenic cardiomyopathy and athlete’s heart by using imaging. JACC Cardiovasc Imaging 11:1327–1339

    PubMed  Google Scholar 

  24. Damm S, Andersson LG, Henriksen E et al (1999) Wall motion abnormalities in male elite orienteers are aggravated by exercise. Clin Physiol 19:121–126

    CAS  PubMed  Google Scholar 

  25. Daniels CJ, Rajpal S, Greenshields JT et al (2021) Big Ten COVID-19 Cardiac Registry Investigators. Prevalence of clinical and subclinical myocarditis in competitive athletes with recent SARS-CoV-2 infection: Results from the Big Ten COVID-19 Cardiac Registry. JAMA Cardiol:e212065

    Google Scholar 

  26. Dejgaard LA, Haland TF, Lie OH et al (2018) Vigorous exercise in patients with hypertrophic cardiomyopathy. Int J Cardiol 250:157–163

    PubMed  Google Scholar 

  27. Drezner JA, Ackerman MJ, Anderson J et al (2013) Electrocardiographic interpretation in athletes: the Seattle Criteria. Br J Sports Med 47:122–124

    PubMed  Google Scholar 

  28. D'Silva A, Captur G, Bhuva AN et al (2020) Recreational marathon running does not cause exercise-induced left ventricular hypertrabeculation. Int J Cardiol 315:67–71

    PubMed  PubMed Central  Google Scholar 

  29. Eckart RE, Scoville SL, Campbell CL et al (2004) Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med 141:829–834

    PubMed  Google Scholar 

  30. Eichhorn C, Bière L, Schnell F et al (2020) Myocarditis in athletes is a challenge. Diagnosis, risk stratification, and uncertainties. J Am Coll Cardiol Imag 13:494–507

    Google Scholar 

  31. Elliott P, Andersson B, Arbustini E et al (2008) Classification of the cardiomyopathies: a position statement from the European Society of Cardiology working group on myocardial and pericardial diseases. Eur Heart J 29:270–276

    PubMed  Google Scholar 

  32. Engberding R, Yelbuz TM, Breithardt G (2007) Isolated noncompaction of the left ventricular myocardium – a review of the literature two decades after the initial case description. Clin Res Cardiol 96:481–488

    CAS  PubMed  Google Scholar 

  33. Filippetti L, Mandry D, Venner C et al (2018) Longterm outcome of patients with low/intermediate risk myocarditis is related to the presence of left ventricular remodeling in addition to the MRI pattern of delayed gadolinium enhancement. J Am Coll Cardiol Imag 11:1367–1369

    Google Scholar 

  34. Finocchiaro G, Papadakis M, Robertus JL et al (2016) Etiology of sudden death in sports: insights from a United Kingdom Regional Registry. J Am Coll Cardiol 67:2108–2115

    PubMed  Google Scholar 

  35. Friman G, Wesslen L (2000) Infections and exercise in high-performance athletes. Immunology and Cell Biology 78:510–522

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Gandjbakhch E, Redheuil A, Pousset F, Charron P, Frank R (2018) Clinical diagnosis, imaging, and genetics of arrhythmogenic right ventricular cardiomyopathy/dysplasia. J Am Coll Cardiol 72:784–804

    PubMed  Google Scholar 

  37. Gao X, Peng L, Zeng Q, Wu ZK (2009) Autonomic nervous function and arrhythmias in patients with acute viral myocarditis during a 6-month follow-up period. Cardiology 113:66–71

    PubMed  Google Scholar 

  38. Gasperetti A, Dello RA et al (2020) Novel risk calculator performance in athletes with arrhythmogenic right ventricular cardiomyopathy. Heart Rhythm 17:1251–1259

    PubMed  Google Scholar 

  39. Gatmaitan B, Chason J, Lerner M (1970) Augmentation of the virulence of murine coxsackie-virus B3 myocardiopathy by exercise. J Exp Med 131:1121–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Gerull B, Heuser A, Wichter T et al (2004) Mutations in the desmosomal protein plakophilin-2 are common in arrhythmogenic right ventricular cardiomyopathy. Nat Genet 36:1162–1164

    CAS  PubMed  Google Scholar 

  41. Gräni C, Eichhorn C, Biere L et al (2017) Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J Am Coll Cardiol 70:1964–1976

    PubMed  PubMed Central  Google Scholar 

  42. Harmon KG, Drezner JA, Maleszewski JJ et al (2014) Pathogeneses of sudden cardiac death in national collegiate athletic association athletes. Circ Arrhythm Electrophysiol 7:198–204

    PubMed  Google Scholar 

  43. Harmon KG, Asif IM, Maleszewski JJ et al (2015) Incidence, causes and comparative frequency of sudden cardiac death in National Collegiate Athletic Association Athletes. Circulation 132:10–19

    PubMed  PubMed Central  Google Scholar 

  44. Ho CY (2012) Hypertrophic cardiomyopathy in 2012. Circulation 125:1432–1438

    PubMed  PubMed Central  Google Scholar 

  45. Hosenpud JD, Campbell SM, Niles NR et al (1987) Exercise induced augmentation of cellular and humoral autoimmunity associated with increased cardiac dilatation in experimental autoimmune myocarditis. Cardiovasc Res 21:217–222

    CAS  PubMed  Google Scholar 

  46. Hufnagel G, Pankuweit S, Richter A, Schönian U, Maisch B (2000) The European Study of Epidemiology and Treatment of Cardiac Inflammatory Diseases (ESETCID). First epidemiological results. Herz 25:279–285

    CAS  PubMed  Google Scholar 

  47. Ilbäck N-G, Fohlman J, Friman G (1989) Exercise in Coxsackie B3 myocarditis affects heart lymphocyte subpopulations and the inflammatory reaction. Am Heart J 117:1298–1302

    PubMed  Google Scholar 

  48. James CA, Bhonsale A, Tichnell C et al (2013) Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol 62:1290–1297

    PubMed  Google Scholar 

  49. Jenni R, Oechslin E, Schneider J, Attenhofer Jost C, Kaufmann PA (2001) Echocardiographic and pathoanatomical characteristics of isolated left ventricular non-compaction: a step towards classification as a distinct cardiomyopathy. Heart 86:666–671

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kiel R, Smith F, Chason J, Khatib R, Reyes M (1989) Coxsackievirus B3 myocarditis in C3H/HeJ mice: description of an inbred model and the effect of exercise on virulence. Eur J Epidemiol 5:348–350

    CAS  PubMed  Google Scholar 

  51. Kindermann W, Scharhag J (2014) Die physiologische Herzhypertrophie (Sportherz). Dtsc Z Sportmed 65:327–332

    Google Scholar 

  52. Kindermann W, Dickhuth HH, Niess A, Röcker K, Urhausen A (2003, 2007) Sportkardiologie. 1. und 2. Aufl. Steinkopff Verlag, Darmstadt

    Google Scholar 

  53. Kirklin W, Ellis FH Jr (1961) Surgical relief of diffuse subvalvular aortic stenosis. Circulation 24:739–742

    CAS  PubMed  Google Scholar 

  54. von Knobelsdorff-Brenkenhoff F, Schuler J, Doganguzel S et al (2017) Detection and monitoring of acute myocarditis applying quantitative cardiovascular magnetic resonance. Circ Cardiovasc Imaging 10:e005242

    Google Scholar 

  55. Kovacevic-Preradovic T, Jenni R, Oechslin EN, Noll G, Seifert B, Attenhofer Jost CH (2009) Isolated left ventricular noncompaction as a cause for heart failure and heart transplantation: a single center experience. Cardiology 112:158–164

    CAS  PubMed  Google Scholar 

  56. Kühl C, Luedde M, Langer C, Frey N (2013) Aktuelle Diagnostik und Therapie hypertrophischer Kardiomyopathien. Dtsch Med Wochenschr 138:583–588

    PubMed  Google Scholar 

  57. Larsson E, Wesslén L, Lindquist O et al (1999) Sudden unexpected cardiac deaths among young Swedish orienteers – morphological changes in hearts and other organs. APMIS 107:325–336

    CAS  PubMed  Google Scholar 

  58. Leopoulou M, Mattsson G, LeQuang JA et al (2020) Naxos disease–a narrative review. Expert Rev. Cardiovasc Ther 18:801–808

    CAS  PubMed  Google Scholar 

  59. Lie ØH, Dejgaard LA, Saberniak J et al (2018) Harmful effects of exercise intensity and exercise duration in patients with arrhythmogenic cardiomyopathy. JACC Clin Electrophysiol 4:744–753

    PubMed  Google Scholar 

  60. Lurz P, Luecke C, Eitel I et al (2016) Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-trial. J Am Coll Cardiol 67:1800–1811

    PubMed  Google Scholar 

  61. Magnani JW, Danik HJ, Dec GW Jr, DiSalvo TG (2006) Survival in biopsy-proven myocarditis: a long-term retrospective analysis of the histopathologic, clinical, and hemodynamic predictors. Am Heart J 151:463–470

    PubMed  Google Scholar 

  62. Maisch B, Noutsias M, Ruppert V, Richter A, Pankuweit S (2012) Cardiomyopathies: classification, diagnosis, and treatment. Heart Fail Clin 8:53–78

    PubMed  Google Scholar 

  63. Marcus FI, Fontaine GH, Guiraudon G et al (1999) Right ventricular dysplasia: a report of 24 adult cases. Ann Noninvasive Electrocardiol 4:97–111

    Google Scholar 

  64. Marcus FI, McKenna WJ, Sherrill D et al (2010) Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Circulation 121:1533–1541

    PubMed  PubMed Central  Google Scholar 

  65. Maron BJ, Braunwald E (2012) Evolution of hypertrophic cardiomyopathy to a contemporary treatable disease. Circulation 126:1640–1644

    PubMed  Google Scholar 

  66. Maron BJ, Shen WK, Link MS (2000) Efficacy of implantable cardioverter-defibrillators for the prevention of sudden death in patients with hypertrophic cardiomyopathy. N Engl J Med 342:365–373

    CAS  PubMed  Google Scholar 

  67. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO (2009) Sudden deaths in young competitive athletes analysis of 1866 deaths in the United States, 1980–2006. Circulation 119:1085–1092

    PubMed  Google Scholar 

  68. Maron BJ, Maron MS, Sensarian C (2012) Genetics of hypertrophic cardiomyopathy after 20 years. J Am Coll Cardiol 60:705–715

    PubMed  Google Scholar 

  69. Maron BJ, Haas TS, Murphy CJ, Ahluwalia A, Rutten-Ramos S (2014) Incidence and causes of sudden death in U.S. college athletes. J Am Coll Cardiol 63:1636–1643

    PubMed  Google Scholar 

  70. Maron BJ, Udelson JE, Bonow RO et al (2015) American heart association electrocardiography and arrhythmias committee of council on clinical cardiology, council on cardiovascular disease in young, council on cardiovascular and stroke nursing, council on functional genomics and translational biology, and American College of Cardiology. Eligibility and disqualification recommendations for competitive athletes with cardiovascular abnormalities: task force 3: hypertrophic cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy and other cardiomyopathies, and myocarditis: a scientific statement from the American Heart Association and American College of Cardiology. Circulation 132:e273–e280

    PubMed  Google Scholar 

  71. Maupain C, Badenco N, Pousset F et al (2018) Risk stratification in arrhythmogenic right ventricular cardiomyopathy/dysplasia without an implantable cardioverter-defibrillator. JACC Clin Electrophysiol 4:757–768

    PubMed  Google Scholar 

  72. Mazzarotto F, Hawley MH, Beltrami M et al (2021) Systematic large-scale assessment of the genetic architecture of left ventricular noncompaction reveals diverse etiologies. Genet Med 23:856–864

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Miles C, Finocchiaro G, Papadakis M et al (2019) Sudden death and left ventricular involvement in arrhythmogenic cardiomyopathy. Circulation 139:1786–1797

    PubMed  PubMed Central  Google Scholar 

  74. Moon JC, McKenna WJ, McCrohon JA (2003) Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 41:1561–1567

    PubMed  Google Scholar 

  75. Morgera T, Di Lenarda A, Dreas L et al (1992) Electrocardiography of myocarditis revisited: clinical and prognostic significance of electrocardiographic changes. Am Heart J 124:455–467

    CAS  PubMed  Google Scholar 

  76. O’Mahony C, Jichi F, Pavlou M et al (2014) A novel clinical risk prediction model for sudden cardiac death in hypertrophic cardiomyopathy (HCM risk-SCD). Eur Heart J 35:2010–2020

    PubMed  Google Scholar 

  77. Olivotto I, Maron BJ, Montereggi A, Mazzuoli F, Dolara A, Cecchi F (1999) Prognostic value of systemic blood pressure response during exercise in a community based patient population with hypertrophic cardiomyopathy. J Am Coll Cardiol 33:2044–2051

    CAS  PubMed  Google Scholar 

  78. Olivotto I, Oreziak A, Barriales-Villa R et al (2020) Mavacamten for treatment of symptomatic obstructive cardiomyopathy (EXPLORER-HCM); a randomized, double-blind, placebo-controlled phase 3 trial. Lancet 396:759–769

    CAS  PubMed  Google Scholar 

  79. Orgeron GM, James CA, Te RA et al (2017) Implantable cardioverter-defibrillator therapy in arrhythmogenic right ventricular dysplasia/cardiomyopathy: predictors of appropriate therapy, outcomes, and complications. J Am Heart Assoc 6:e006242

    PubMed  PubMed Central  Google Scholar 

  80. Pan JA, Lee YJ, Salerno M (2018) Diagnostic performance of extracellular volume, native T1, and T2 mapping versus Lake Louise criteria by cardiac magnetic resonance for detection of acute myocarditis: a meta-analysis. Circ Cardiovasc Imaging 11:e007598

    PubMed  PubMed Central  Google Scholar 

  81. Parsai C, O’Hanlon R, Prasad SK, Mohiaddin RH (2012) Diagnostic and prognostic value of cardiovascular magnetic resonance in nonischaemic cardiomyopathies. J Cardiovasc Magn Reson 14:54

    PubMed  PubMed Central  Google Scholar 

  82. Patrianakos AP, Parthenakis FI, Nyktari EG, Vardas PE (2008) Noncompaction myocardium imaging with multiple echocardiographic modalities. Echocardiography 25:898–900

    PubMed  Google Scholar 

  83. Pelliccia A, Corrado D, Bjornstad HH et al (2006) Recommendations for participation in competitive sport and leisure-time physical activity in individuals with cardiomyopathies, myocarditis and pericarditis. Eur J Cardiovasc Prev Rehabil 13:876–885

    PubMed  Google Scholar 

  84. Pelliccia A, Caselli S, Sharma S et al (2018a) Internal reviewers for EAPC and EACVI European Association of Preventive Cardiology (EAPC) and European Association of Cardiovascular Imaging (EACVI) joint position statement: recommendations for the indication and interpretation of cardiovascular imaging in the evaluation of the athlete’s heart. Eur Heart J 39:1949–1969

    Google Scholar 

  85. Pelliccia A, Lemme E, Maestrini V et al (2018b) Does sport participation worsen the clinical course of hypertrophic cardiomyopathy? Clinical outcome of hypertrophic cardiomyopathy in athletes. Circulation 137:531–533

    Google Scholar 

  86. Pelliccia A, Sharma S, Gati S et al (2021) 2020 ESC guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur Heart J 42:17–96

    CAS  PubMed  Google Scholar 

  87. Petersen SE, Selvanayagam JB, Wiesmann F et al (2005) Left ventricular non-compaction: insights from cardiovascular magnetic resonance imaging. J Am Coll Cardiol 46:101–105

    PubMed  Google Scholar 

  88. Piepoli MF, Conraads V, Corra U et al (2011) Exercise training in heart failure: from theory to practice: a consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur J Heart Fail 13:347–357

    PubMed  Google Scholar 

  89. Pignatelli RH, McMahon CJ, Dreyer WJ et al (2003) Clinical characterization of left ventricular noncompaction in children: a relatively common form of cardiomyopathy. Circulation 108:2672–2678

    PubMed  Google Scholar 

  90. Pilichou K, Nava A, Basso C et al (2006) Mutations in desmoglein-2 gene are associated with arrhythmogenic right ventricular cardiomyopathy. Circulation 113:1171–1179

    CAS  PubMed  Google Scholar 

  91. Priori SG, Blomstrom-Lundqvist C, Mazzanti A et al (2015) 2015 ESC guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death. The task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology. Eur Heart J 36:2793–2867

    PubMed  Google Scholar 

  92. Prochnau D, Surber R, Kuehnert H, Heinke M (2010) Successful use of a wearable cardioverter-defibrillator in myocarditis with normal ejection fraction. Clin Res Cardiol 99:129–131

    PubMed  Google Scholar 

  93. Punja M, Mark DG, McCoy JV, Javan R, Pines JM, Brady W (2010) Electrocardiographic manifestations of cardiac infectious-inflammatory disorders. Am J Emergency Med 28:364–377

    Google Scholar 

  94. Rampazzo A, Nava A, Malacrida S et al (2002) Mutation in human desmoplakin domain binding to plakoglobin causes a dominant form of arrhythmogenic right ventricular cardiomyopathy. Am J Hum Genet 71:1200–1206

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Rigato I, Bauce B, Rampazzo A et al (2013) Compound and digenic heterozygosity predicts lifetime arrhythmic outcome and sudden cardiac death in desmosomal gene-related arrhythmogenic right ventricular cardiomyopathy. Circ Cardiovasc Genet 6:533–542

    CAS  PubMed  Google Scholar 

  96. Ross S, Jones K, Blanch B et al (2020) A systematic review and meta-analysis of the prevalence of left ventricular non-compaction in adults. Eur Heart J 20(41):1428–1436

    Google Scholar 

  97. Ruwald AC, Marcus F, Estes NAM et al (2015) Association of competitive and recreational sport participation with cardiac events in patients with arrhythmogenic right ventricular cardiomyopathy: results from the North American multidisciplinary study of arrhythmogenic right ventricular cardiomyopath. Eur Heart J 36:1735–1743

    PubMed  PubMed Central  Google Scholar 

  98. Saberniak J, Hasselberg NE, Borgquist R et al (2014) Vigorous physical activity impairs myocardial function in patients with arrhythmogenic right ventricular cardiomyopathy and in mutation positive family members. Eur J Heart Fail 16:1337–1344

    PubMed  Google Scholar 

  99. Scharhag J, Schneider G, Urhausen A, Rochette V, Kramann B, Kindermann W (2002) Athlete’s heart: right and left ventricular mass and function in male athletes and untrained individuals determined by magnetic resonance imaging. J Am Coll Cardiol 40:1856–1863

    PubMed  Google Scholar 

  100. Sedaghat-Hamedani F, Kayvanpour E, Frankenstein L et al (2015) Biomarker changes after strenuous exercise can mimic pulmonary embolism and cardiac injury- a meta-analysis of 45 studies. Clin Chem 61:1246–1255

    CAS  PubMed  Google Scholar 

  101. Sen-Chowdhry S, Syrris P, Ward D, Asimaki A, Sevdalis E, McKenna WJ (2007) Clinical and genetic characterization of families with arrhythmogenic right ventricular dysplasia/cardiomyopathy provides novel insights into patterns of disease expression. Circulation 115:1710–1720

    PubMed  Google Scholar 

  102. Sen-Chowdhry S, Syrris P, Prasad SK, Ward D et al (2008) Left-dominant arrhythmogenic cardiomyopathy. An under-recognized clinical entity. J Am Coll Cardiol 52:2175–2187

    PubMed  Google Scholar 

  103. Sharma S, Elliott PM, Whyte G et al (2000) Utility of metabolic exercise testing in distinguishing hypertrophic cardiomyopathy from physiologic left ventricular hypertrophy in athletes. J Am Coll Cardiol 36:864–870

    CAS  PubMed  Google Scholar 

  104. Stiles MK, Fauchier L, Morillo CA, Wilkoff BL (2020) 2019 HRS/EHRA/APHRS/LAHRS focused update to 2015 expert consensus statement on optimal implantable cardioverter-defibrillator programming and testing. Heart Rhythm 17:e220–e228

    PubMed  Google Scholar 

  105. Syrris P, Ward D, Evans A et al (2006) Arrhythmogenic right ventricular dysplasia/cardiomyopathy associated with mutations in the desmosomal gene desmocollin-2. Am J Hum Genet 79:978–984

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Tabib A, Loire R, Chalabreysse L et al (2003) Circumstances of death and gross and microscopic observations in a series of 200 cases of sudden death associated with arrhythmogenic right ventricular cardiomyopathy and/or dysplasia. Circulation 108:3000–3005

    CAS  PubMed  Google Scholar 

  107. Tear D (1958) Asymmetric hypertrophy of the heart in young adults. Br Heart J 20:1–8

    Google Scholar 

  108. Towbin JA, Lorts A, Jefferies JL (2015) Left ventricular non-compaction cardiomyopathy. Lancet 386:813–815

    PubMed  Google Scholar 

  109. Towbin JA, McKenna WJ, Abrams DJ et al (2019) 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 16:e301–e372

    PubMed  Google Scholar 

  110. Urhausen A (2013) Die Echokardiographie in der Sportmedizin. Dtsch Z Sportmed 64:357–361

    Google Scholar 

  111. Urhausen A, Kindermann W (1998) Der plötzliche Herztod im Sport. Ther Umsch 55:229–234

    CAS  PubMed  Google Scholar 

  112. Vio R, Zorzi A, Corrado D (2020) Myocarditis in the Athlete: arrhythmogenic substrates, clinical manifestations, management, and eligibility decisions. J Cardiovasc Transl Res 13:284–295

    PubMed  Google Scholar 

  113. Wallace R, Calkins H (2021) Risk stratification in arrhythmogenic right ventricular cardiomyopathy. Arrhythmia Electrophysiol Rev 10:26–32

    Google Scholar 

  114. Wang W, Orgeron G, Tichnell C et al (2018) Impact of exercise restriction on arrhythmic risk among patients with arrhythmogenic right ventricular cardiomyopathy. J Am Heart Assoc 7:e008843

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Wilson MG, Sharma S, Carré F et al (2012) Significance of deep T-wave inversions in asymptomatic athletes with normal cardiovascular examinations: practical solutions for managing the diagnostic conumdrum. Br J Sports Med 46(Suppl 1):i51–i58

    PubMed  Google Scholar 

  116. Yilmaz A, Mahrholdt H, Athanasiadis A et al (2008) Coronary vasospasm as the underlying cause for chest pain in patients with PVB19 myocarditis. Heart 94:1456–1463

    CAS  PubMed  Google Scholar 

  117. Zemrak F, Ahlman MA, Captur G et al (2014) The relationship of left ventricular trabeculation to ventricular function and structure over a 9.5- year follow-up: the MESA study. J Am Coll Cardiol 64:1971–1980

    PubMed  PubMed Central  Google Scholar 

  118. Zorzi A, Perazzolo Marra M, Rigato I et al (2016) Nonischemic left ventricular scar as a substrate of life-threatening ventricular arrhythmias and sudden cardiac death in competitive athletes. Circ Arrhythm Electrophysiol 9:e004229

    PubMed  PubMed Central  Google Scholar 

  119. Zorzi A, Cipriani A, Mattesi G, Vio R, Bettella N, Corrado D (2020) Arrhythmogenic cardiomyopathy and sports activity. J Cardiovasc Transl Res 13:274–283

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Codreanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Codreanu, A., Delagardelle, C., Groben, L., Kyriakopoulou, M., Urhausen, A. (2023). Sport bei Myokarderkrankungen. In: Niebauer, J. (eds) Sportkardiologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-65165-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-65165-0_23

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-65164-3

  • Online ISBN: 978-3-662-65165-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics