Skip to main content
Log in

Fibrosis in hypertrophic cardiomyopathy: role of novel echo techniques and multi-modality imaging assessment

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Hypertrophic cardiomyopathy (HCM) represents one of the primary cardiomyopathies and may lead to heart failure and sudden cardiac death. Among various histologic features of the disease examined, assessment of myocardial fibrosis may offer valuable information, since it may be considered the common nominator for all HCM connected complications. Late gadolinium-enhanced cardiac magnetic resonance (LGE-CMR) has emerged as the reference noninvasive method for visualizing and quantifying myocardial fibrosis in patients with HCM. T1 mapping, a promising new CMR technique, may provide an advantage over conventional LGE-CMR, by permitting a more valid quantification of diffuse fibrosis. On the other hand, echocardiography offers a significantly more portable, affordable, and easily accessible solution for the study of fibrosis. Various echocardiographic techniques ranging from integrated backscatter and contrast-enhanced ultrasound to two- (2D) or three-dimensional (3D) deformation and shear wave imaging may offer new insights into substrate characterization in HCM. The aim of this review is to describe thoroughly all different modalities that may be used in everyday clinical practice for HCM fibrosis evaluation (with special focus on echocardiographic techniques), to concisely present available evidence and to argue in favor of multi-modality imaging application. It is essential to understand that the role of various imaging modalities is not competitive but complementary, since the information provided by each one is necessary to illuminate the complex pathophysiologic pathways of HCM, offering a personalized approach and treatment in every patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hughes SE (2009) The pathology of hypertrophic cardiomyopathy. Histopathology 44:412–427

    Article  Google Scholar 

  2. Yajima R, Kataoka A, Takahashi A, Uehara M, Saito M, Yamaguchi C, Lee K, Komuro I, Funabashi N (2012) Distinguishing focal fibrotic lesions and non-fibrotic lesions in hypertrophic cardiomyopathy by assessment of regional myocardial strain using two-dimensional speckle tracking echocardiography: comparison with multislice CT. Int J of Cardiol 158:423–432

    Article  Google Scholar 

  3. Urbano-Moral JA, Rowin EJ, Maron MS, Crean A, Pandian NG (2014) Investigation of global and regional myocardial mechanics with 3-dimensional speckle tracking echocardiography and relations to hypertrophy and fibrosis in hypertrophic cardiomyopathy. Circ Cardiovasc Imaging 7:11–19

    Article  PubMed  Google Scholar 

  4. Arteaga E, Araújo AQ, Bernstein M, Ramires FJA, Ianni BM, Fernandes F, Mady C (2009) Prognostic value of the collagen volume fraction in hypertrophic cardiomyopathy. Arq Bras Cardiol 92(3):210–214

    Article  PubMed  Google Scholar 

  5. Marian AJ, Braunwald E (2017) Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res 121(7):749–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chowdhry SS, Jacoby D, Moon JC, McKenna WJ (2016) Update on hypertrophic cardiomyopathy and a guide to the guidelines. Nat Rev 13:651–675

    Google Scholar 

  7. Hurtado-de-Mendoza D, Corona-Villalobos CP, Pozios I, Gonzales J, Soleimanifard Y, Sivalokanathan S, Montoya-Cerrillo D, Vakrou S, Kamel I, Mormontoy-Laurel W, Dolores-Cerna K, Suarez J, Perez-Melo S, Bluemke DA, Abraham TP, Zimmerman SL, Abraham MR (2017) Diffuse interstitial fibrosis assessed by cardiac magnetic resonance is associated with dispersion of ventricular repolarization in patients with hypertrophic cardiomyopathy. J Arrhythm 33:201–207

    Article  PubMed  Google Scholar 

  8. Fujita T, Konno T, Yokawa J, Masuta E, Nagata Y, Fujino N, Funada A, Hodatsu A, Kawashiri M, Yamagishi M, Hayashi K (2015) Increased extent of myocardial fibrosis in genotyped hypertrophic cardiomyopathy with ventricular tachyarrhythmias. J Cardiol 66:63–68

    Article  PubMed  Google Scholar 

  9. Harris KM, Spirito P, Maron MS, Zenovich AG, Formisano F, Lesser JR, Mackey-Bojack S, Manning WJ, Udelson JE, Maron BJ (2006) Prevalence, clinical profile, and significance of left ventricular remodeling in the end-stage phase of hypertrophic cardiomyopathy. Circ 18:2216–2225

    Google Scholar 

  10. Neubauer S, Kolm P, Ho CY, Kwong RY, Desai MY, Dolman DF, Appelbaum E, Desvigne-Nickens P, DiMarco JP, Friedrich MG, Geller N, Harper AR, Jarolim P, Jerosch-Herold M, Kim DY, Maron MS, Schulz-Menger J, Piechnik SK, Thomson K, Zhang C, Watkins H, Weintraub WS, Kramer CK, on behalf of the HCMR Investigators (2019) Distinct subgroups in hypertrophic cardiomyopathy in the NHLBI HCM Registry. J Am Coll Cardiol 74:2333–2345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P, Hagege AA, Lafont A, Limongelli G, Mahrholdt H, McKenna WJ, Mogensen J, Nihoyannopoulos P, Nistri S, Pieper PG, Pieske B, Rapezzi C, Rutten FH, Tillmanns C, Watkins H (2014) 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy. Eur Heart J 35:2733–2779

    Article  PubMed  Google Scholar 

  12. Weng Z, Yao J, Chan RH, He J, Yang X, Zhou Y, He Y (2016) Prognostic Value of LGE-CMR in HCM. Meta-Anal Cardiovasc Imaging 9:1392–1402

  13. Leonardo S (2019) Myocardial fibrosis in hypertrophic cardiomyopathy: what remains to be proven? Arq Bras Cardiol 112(3):290–291

    Google Scholar 

  14. Zhang L, Mmagu O, Liu L, Li D, Fan Y, Baranchuk A, Kowey PR (2014) Hypertrophic cardiomyopathy: can the noninvasive diagnostic testing identify high risk patients? World J Cardiol 6(8):764–770

    Article  PubMed  PubMed Central  Google Scholar 

  15. Klopotowski M, Kukula K, Malek LA, Spiewak M, Polanska-Skrzypczyk M, Jamiolkowski J, Dabrowski M, Baranowski R, Klisiewicz A, Kusmierczyk M, Jasinska A, Jarmus E, Kruk M, Ruzyllo W, Witkowski A, Chojnowska L (2016) The value of cardiac magnetic resonance and distribution of late gadolinium enhancement for risk stratification of sudden cardiac death in patients with hypertrophic cardiomyopathy. J Cardiol 68:49–56

    Article  PubMed  Google Scholar 

  16. Vergé MP, Cochet H, Reynaud A, Morlon L, Peyrou J, Vincent C, Rooryck C, Ritter F, Lafitte S, Réant P (2018) Characterization of hypertrophic cardiomyopathy according to global, regional, and multi-layer longitudinal strain analysis, and prediction of sudden cardiac death. Int J Cardiovasc Imaging 34:1091–1098

    Article  PubMed  Google Scholar 

  17. Cardim N, Galderisi M, Edvardsen T, Plein S, Popescu BA, D’Andrea A, Bruder O, Cosyns B, Davin L, Donal E, Freitas A, Habib G, Kitsiou A, Petersen SE, Schroeder S, Lancellotti P (2015) Role of multimodality cardiac imaging in the management of patients with hypertrophic cardiomyopathy: an expert consensus of the European Association of Cardiovascular Imaging Endorsed by the Saudi Heart Association. Eur Heart J – Cardiovasc Imaging 16:280

  18. Mavrogeni S, Petrou E, Kolovou G, Theodorakis G, Iliodromitis E (2013) Prediction of ventricular arrhythmias using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 14:518–525

    Article  PubMed  Google Scholar 

  19. Almaas VM, Haugaa KH, Strøm EH, Scott H, Dahl CP, Leren TP, Geiran OR, Endresen K, Edvardsen T, AakhusT AJP (2013) Increased amount of interstitial fibrosis predicts ventricular arrhythmias, and is associated with reduced myocardial septal function in patients with obstructive hypertrophic cardiomyopathy. Europace 15:1319–1327

    Article  PubMed  Google Scholar 

  20. Disertori M, Masè M, Ravelli F (2017) Myocardial fibrosis predicts ventricular tachyarrhythmias. Trends Cardiovasc Med 27:363–372

    Article  PubMed  Google Scholar 

  21. O’Hanlon R, Grasso A, Roughton M, Moon JC, Clark S, Wage R, Webb J, Kulkarni M, Dawson D, Sulaibeekh L, Chandrasekaran B, Bucciarelli-Ducci C, Pasquale F, Cowie MR, McKenna WJ, Sheppard MN, Elliott PM, Pennell DJ, Prasad SK (2010) Prognostic significance of myocardial fibrosis in hypertrophic cardiomyopathy. JACC 56:867–874

    Article  PubMed  Google Scholar 

  22. Eijgenraam TR, Silljé HHW, de Boer RA. Current understanding of fibrosis in genetic cardiomyopathies (2019) Trends Cardiovasc Med. pii: S1050–1738(19)30132-X

  23. de Boer RA , De Keulenaer G , Bauersachs J , BrutsaertD , Cleland JG , Diez J, et al (2019) Towards better definition, quantification and treatment of fibrosis in heart failure. a scientific roadmap by the committee of translational research of the heart failure association (HFA) of the European Society of Cardiology. Eur J Heart Fail 21(3):272–85

  24. Nguyen TP, Qu Z, Weiss JN (2014) Cardiac fibrosis and arrhythmogenesis: the road to repair is paved with perils. J Mol Cell Cardiol 70:83–91

    Article  CAS  PubMed  Google Scholar 

  25. Morita N, Mandel WJ, Kobayashi Y, Karagueuzian HS (2014) Cardiac fibrosis as a determinant of ventricular tachyarrhythmias. J Arrhythm 30:389–394

    Article  PubMed  Google Scholar 

  26. Shiozaki AA, Senra T, Arteaga E, Filho MM, Pita CG, A’vila LFR, Filho JRP, Mady C, Kalil-Filho R, Bluemke DA, Rochitte CE, (2013) Myocardial fibrosis detected by cardiac CT predicts ventricular fibrillation/ventricular tachycardia events in patients with hypertrophic cardiomyopathy. J Cardiovasc Comput Tomogr 7:173–181

    Article  PubMed  PubMed Central  Google Scholar 

  27. Fluechter S, Kuschyk J, Wolpert C, Doesch C, Veltmann C, Haghi D, Schoenberg SO, Sueselbeck T, Germans T, Streitner F, Borggrefe M, Papavassiliu T (2010) Extent of late gadolinium enhancement detected by cardiovascular magnetic resonance correlates with the inducibility of ventricular tachyarrhythmia in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 12:30

    Article  PubMed  PubMed Central  Google Scholar 

  28. Maragiannis D, Alvarez PA, Ghos MG, Chin K, Hinojosa JJ, Buergler JM, Shah DJ, Nagueh SF (2018) Left ventricular function in patients with hypertrophic cardiomyopathy and its relation to myocardial fibrosis and exercise tolerance. Int J Cardiovasc Imaging 34:121–129

    Article  PubMed  Google Scholar 

  29. Shirani J, Pick R, Roberts WC, Maron BJ (2000) Morphology and significance of the left ventricular collagen network in young patients with hypertrophic cardiomyopathy and sudden cardiac death. JACC 35:36–44

    Article  CAS  PubMed  Google Scholar 

  30. Prinz C, Schwarz M, Ilic I, Laser KT, Lehmann R, Prinz EM, Bitter T, Vogt J, Buuren F, Bogunovic N, Horstkotte D, Faber L (2013) Myocardial fibrosis severity on cardiac magnetic resonance imaging predicts sustained arrhythmic events in hypertrophic cardiomyopathy. Can J Cardiol 29:358–363

    Article  PubMed  Google Scholar 

  31. Vöhringer M, Mahrholdt H, Yilmaz A, Sechtem U (2007) Significance of late gadolinium enhancement in cardiovascular magnetic resonance imaging (CMR). Herz 32:129–137

    Article  PubMed  Google Scholar 

  32. Scully PR, Bastarrika G, Moon JC, Treibel TA (2018) Myocardial extracellular volume quantification by cardiovascular magnetic resonance and computed tomography. Curr Cardiol Rep 20:15

    Article  PubMed  PubMed Central  Google Scholar 

  33. Moon JCC, Reed E, Sheppard MN, Elkington AG, Ho SY, Burke M, Petrou M, Pennell DJ (2004) The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. JACC 43(12):2260–2264

    Article  PubMed  Google Scholar 

  34. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, Bonow RO, Judd RM, Kim RJ (2002) Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. JACC 40(12):2156–2164

    Article  PubMed  Google Scholar 

  35. Cheng S, Fang M, Cuil C, Chen X, Yin G, Prasad SK, Dong D, Tian J, Zhao S (2018) LGE-CMR-derived texture features reflect poor prognosis in hypertrophic cardiomyopathy patients with systolic dysfunction: preliminary results. Eur Radiol 28:4615–4624

    Article  PubMed  Google Scholar 

  36. Cooper RM, Raphael CE, Liebregts M, Anavekar NS, Veselka J (2017) New developments in hypertrophic cardiomyopathy. Can J Cardiol 33:1254–1265

    Article  PubMed  Google Scholar 

  37. Patel N, Kolakalapudi P, Arora G (2018) Contrast applications in CMR. Echocardiography 35(3):401–409

    Article  PubMed  PubMed Central  Google Scholar 

  38. JCS Joint Working Group (2016) Guidelines for diagnosis and treatment of patients with hypertrophic cardiomyopathy (JCS 2012). Circ J 80:753–774

    Article  Google Scholar 

  39. Horwood L, Attili A, Luba F, Ibrahim ELS, Parmar H, Stojanovska J, Gadoth-Goodman S, Fette C, Oral H, Bogun F (2017) Magnetic resonance imaging in patients with cardiac implanted electronic devices: focus on contraindications to magnetic resonance imaging protocols. Europace 19:812–817

    PubMed  Google Scholar 

  40. Freitas P, Ferreira AM, Arteaga-Fernández E, de Oliveira AM, Mesquita J, Abecasis J, Marques H, Saraiva C, Matos DN, Rodrigues R, Cardim N, Mady C, Rochitte CE (2019) The amount of late gadolinium enhancement outperforms current guideline-recommended criteria in the identification of patients with hypertrophic cardiomyopathy at risk of sudden cardiac death. J Cardiovasc Magn Reson 21(1):50

    Article  PubMed  PubMed Central  Google Scholar 

  41. Teramoto R, Fujino N, Konno T, Nomura A, Nagata Y, Tsuda T, Tada H, Sakata K, Yamagishi M, Hayashi K, Kawashiri M (2018) Late Gadolinium enhancement for prediction of mutation-positive hypertrophic cardiomyopathy on the basis of panel-wide sequencing. Circ J 82:1139–1148

    Article  CAS  PubMed  Google Scholar 

  42. Taylor AJ, Salerno M, Dharmakumar R, Jerosch-Herold M (2016) T1 mapping basic techniques and clinical applications. JACC Cardiovasc Imaging 9(1):67–81

    Article  PubMed  Google Scholar 

  43. Ando K, Nagao M, Watanabe E, Sakai A, Suzuki A, Nakao R, Ishizaki U, Sakai S, Hagiwara N (2020) Association between myocardial hypoxia and fibrosis in hypertrophic cardiomyopathy: analysis by T2* BOLD and T1 mapping MRI. Eur Radiol. https://doi.org/10.1007/s00330-020-06779-9

    Article  PubMed  Google Scholar 

  44. Brouwer WP, Baars EN, Germans T, de Boer K, Beek AM, van der Velden J, van Rossum AC, Hofman MB (2014) In-vivo T1 cardiovascular magnetic resonance study of diffuse myocardial fibrosis in hypertrophic cardiomyopathy. J Cardiovasc Magn Reson 16:28

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wang C, Zheng J, Sun J, Wang Y, Xia R, Yin Q, Chen W, Xu Z, Liao J, Zhang B, Gao F (2015) Endogenous contrast T1rho cardiac magnetic resonance for myocardial fibrosis in hypertrophic cardiomyopathy patients. J Cardiol 66:520–526

    Article  PubMed  Google Scholar 

  46. Moharram MA, Lamberts RR, Whalley G, Williams MJA, Coffey S (2019) Myocardial tissue characterisation using echocardiographic deformation imaging. Cardiovasc Ultrasound 17(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  47. Milunski MR, MohrJE GA, Pérez JE, Vered Z, Wear KA, Gessler CJ, Sobel BE, Miller JG, Wickline SA (1989) Ultrasonic tissue characterization with integrated backscatter Acute myocardial ischemia reperfusion and stunned myocardium in patients Circulation 80(3):491

  48. Mizuno R, Fujimoto S, Yamaji K, Yutani C, Hashimoto T, Nakamura S (2001) Myocardial ultrasonic tissue characterization for estimating histological abnormalities in hypertrophic cardiomyopathy: comparison with endomyocardial biopsy findings. Cardiol 96(1):16–23

    Article  CAS  Google Scholar 

  49. Hiremath P, Lawler PR, Ho JE, Correia AW, Abbasi SA, Kwong RY, Jerosch-Herold M, Ho CY, Cheng S (2016) Ultrasonic assessment of myocardial microstructure in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ Heart Fail 9(9)

  50. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, Galderisi M, Marwick T, Nagueh SF, Sengupta PP et al (2011) Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Eur J Echocardiogr 12(3):167–205

    Article  PubMed  Google Scholar 

  51. Chaudeurge A, Garçon P, Cador R (2011) Potential value of myocardial contrast echocardiography for the detection of myocardial fibrosis in hypertrophic cardiomyopathy. Arch Cardiovasc Dis 104(12):682–683

    Article  PubMed  Google Scholar 

  52. Gaibazzi N, Bianconcini M, Marziliano N, Parrini I, Conte MR, Siniscalchi C, Faden G, Faggiano P, Pigazzani F, Grassi F, Albertini L (2016) Scar detection by pulse-cancellation echocardiography: validation by CMR in patients with recent STEMI. JACC Cardiovasc Imaging 9(11):1239–1251

    Article  PubMed  Google Scholar 

  53. Pagourelias ED, Mirea O, Vovas G, Duchenne J, Michalski B, Van Cleemput J, Bogaert J, Vassilikos VP, Voigt JU (2019) Relation of regional myocardial structure and function in hypertrophic cardiomyopathy and amyloidois: a combined two-dimensional speckle tracking and cardiovascular magnetic resonance analysis. Eur Heart J Cardiovasc Imaging 20(4):426–437

    Article  PubMed  Google Scholar 

  54. Mirea O, Duchenne J, Voigt JU (2016) Recent advances in echocardiography: strain and strain rate imaging. F1000Res 5. pii: F1000 Faculty Rev-787 https://doi.org/10.12688/f1000research.7228.1

  55. Ghio S, Revera M, Mori F, Klersy C, Raisaro A, Raineri C, Serio A, Pasotti M, Visconti LO (2009) Regional abnormalities of myocardial deformation in patients with hypertrophic cardiomyopathy: correlations with delayed enhancement in cardiac magnetic resonance. Eur J Heart Fail 11(10):952–957

    Article  PubMed  Google Scholar 

  56. Pagourelias ED, Mirea O, Duchenne J, Van Cleemput J, Delforge M, Bogaert J, Kuznetsova T, Voigt JU (2017) Echo parameters for differential diagnosis in cardiac amyloidosis: a head-to-head comparison of deformation and nondeformation parameters. Circ Cardiovasc Imaging 10(3):e005588

    Article  PubMed  Google Scholar 

  57. Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, Voigt JU, EACVI-ASE-Industry Standardization Task Force, (2018a) Intervendor differences in the accuracy of detecting regional functional abnormalities: a report from the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc Imaging 11(1):25–34

    Article  PubMed  Google Scholar 

  58. Mirea O, Pagourelias ED, Duchenne J, Bogaert J, Thomas JD, Badano LP, Voigt JU, EACVI-ASE-Industry Standardization Task Force, (2018b) Variability and reproducibility of segmental longitudinal strain measurement: a report from the EACVI-ASE Strain Standardization Task Force. JACC Cardiovasc Imaging 11(1):15–24

    Article  PubMed  Google Scholar 

  59. Funabashi N, Takaoka H, Ozawa K, Kamata T, Uehara M, Komuro I, Kobayashi Y (2018) Quantitative differentiation of LV myocardium with and without layer-specific fibrosis using MRI in hypertrophic cardiomyopathy and layer-specific strain TTE analysis. Int Heart J 59(3):523–530

    Article  PubMed  Google Scholar 

  60. Funabashi N, Takaoka H, Ozawa K, Uehara M, Komuro I, Kobayashi Y (2018) 2D speckle-tracking TTE-based quantitative classification of left ventricular myocardium in patients with hypertrophic cardiomyopathy by the presence or the absence of fibrosis and/or hypertrophy. Heart Vessels 33(9):1046–1051

    Article  PubMed  Google Scholar 

  61. Saito M, Okayama H, Yoshii T, Higashi H, Morioka H, Hiasa G, Sumimoto T, Inaba S, Nishimura K, Inoue K, Ogimoto A, Shigematsu Y, Hamada M, Higaki J (2012) Clinical significance of global two-dimensional strain as a surrogate parameter of myocardial fibrosis and cardiac events in patients with hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 13(7):617–623

    Article  PubMed  Google Scholar 

  62. Popovic´ ZB, Kwon DH, Mishra M, Buakhamsri A, Greenberg NL, Thamilarasan M, Flamm SD, Thomas JD, Lever HM, Desai MY (2008) Association between regional ventricular function and myocardial fibrosis in hypertrophic cardiomyopathy assessed by speckle tracking echocardiography and delayed hyperenhancement magnetic resonance imaging. J Am Soc Echocardiogr 21(12):1299–1305

    Article  PubMed  Google Scholar 

  63. Chang SA, Lee SC, Choe YH, Hahn HJ, Jang SY, Park SJ, Choi JO, Park SW, Oh JK (2012) Effects of hypertrophy and fibrosis on regional and global functional heterogeneity in hypertrophic cardiomyopathy. Int J Cardiovasc Imaging 28:133–140

    Article  PubMed  Google Scholar 

  64. Weidemann F, Niemann M, Herrmann S, Kung M, Störk S, Waller C, Beer M, Breunig F, Wanner C, Voelker W, Ertl G, Bijnens B, Strotmann JM (2007) A new echocardiographic approach for the detection of non-ischaemic fibrosis in hypertrophic myocardium. Eur Heart J 28(24):3020–3026

    Article  PubMed  Google Scholar 

  65. Galli E, Vitel E, Schnell F, Le Rolle V, Hubert A, Lederlin M, Donal E (2019) Myocardial constructive work is impaired in hypertrophic cardiomyopathy and predicts left ventricular fibrosis. Echocardiography 36:74–82

    Article  PubMed  Google Scholar 

  66. Almaas VM, Haugaa KH, Strøm EH, Scott H, Smith HJ, Dahl CP, Geiran OR, Endresen K, Aakhus S, Amlie JP, Edvardsen T (2014) Noninvasive assessment of myocardial fibrosis in patients with obstructive hypertrophic cardiomyopathy. Heart 100(8):631–638

    Article  PubMed  Google Scholar 

  67. Haland TF, Almaas VM, Hasselberg NE, Saberniak J, Leren IS, Hopp E, Edvardsen T, Haugaa KH (2016) Strain echocardiography is related to fibrosis and ventricular arrhythmias in hypertrophic cardiomyopathy. Eur Heart J Cardiovasc Imaging 17:613–621

    Article  PubMed  PubMed Central  Google Scholar 

  68. Hayat D, Kloeckner M, Nahum J, Ecochard-Dugelay E, Dubois-Randé JL, Jean-François D, Guéret P, Lim P (2012) Comparison of real-time three-dimensional speckle tracking to magnetic resonance imaging in patients with coronary heart disease. The American Journal of Cardiology 109:180–186

    Article  PubMed  Google Scholar 

  69. Badran HM, Faheem N, Soliman M, Hamdy M (2019) Yacoub M (2019) Comparison of vector velocity imaging and three-dimensional speckle tracking echocardiography for assessment of left ventricular longitudinal strain in hypertrophic cardiomyopathy. Glob Cardiol Sci Pract 1:6

    Google Scholar 

  70. Muraru D, Niero A, Rodriguez-Zanella H, Cherata D, Badano L (2018) Three-dimensional speckle-tracking echocardiography: benefits and limitations of integrating myocardial mechanics with three-dimensional imaging. Cardiovasc Diagn and Ther. 8(1):101–117

  71. Saito K, Okura H, Watanabe N, Hayashida A, Obase K, Imai K, Maehama T, Kawamoto T, Neishi Y, Yoshida K (2009) Comprehensive evaluation of left ventricular strain using speckle tracking echocardiography in normal adults: comparison of three-dimensional and two-dimensional approaches. J Am Soc Echocardiogr 22:1025–1030

    Article  PubMed  Google Scholar 

  72. Trache T, Stöbe S, Tarr A, Pfeiffer D, Hagendorff A (2014) The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate. Echo Res Pract 1:71–83

    Article  PubMed  PubMed Central  Google Scholar 

  73. Badano LP, Cucchini U, Muraru D, Nono OA, Sarais C, Iliceto S (2013) Use of three-dimensional speckle tracking to assess left ventricular myocardial mechanics: inter-vendor consistency and reproducibility of strain measurements. Eur Heart J Cardiovasc Imaging 14:285–293

    Article  PubMed  Google Scholar 

  74. Maffessanti F, Nesser H-J, Weinert L, Steringer-Mascherbauer R, Niel J, Gorissen W et al (2009) Quantitative evaluation of regional left ventricular function using three-dimensional speckle tracking echocardiography in patients with and without heart disease. Am J Cardiol 104:1755–1762

    Article  PubMed  Google Scholar 

  75. Baccouche H, Maunz M, Beck T, Gaa E, Banzhaf M, Knayer U, Fogarassy P, Beyer M (2012) Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 29(6):668–677

    Article  PubMed  Google Scholar 

  76. Hjertaas JJ, Fosså H, Dybdahl GL, Grüner R, Lunde P, Matre K (2013) Accuracy of real-time single- and multi-beat 3-d speckle tracking echocardiography in vitro. Ultrasound Med Biol 39:1006–1014

    Article  PubMed  Google Scholar 

  77. Seo Y, Ishizu T, Atsumi A, Kawamura R, Aonuma K (2014) Tree-dimensional speckle tracking echocardiography – a promising tool for cardiac functional analysis –. Circ J 78:1290–1301

    Article  PubMed  Google Scholar 

  78. Pagourelias ED, Mirea O, Duchenne J, Unlu S, Van Cleemput J, Papadopoulos CE, Bogaert J, Vassilikos VP, Voigt JU (2020) Speckle tracking deformation imaging to detect regional fibrosis in hypertrophic cardiomyopathy: a comparison between 2D and 3D echo modalities. Eur Heart J Cardiovasc Imaging pii: jeaa057. https://doi.org/10.1093/ehjci/jeaa057

  79. Spartera M, Damascelli A, Mozes F, De Cobelli F, La Canna G (2017) Three-dimensional speckle tracking longitudinal strain is related to myocardial fibrosis determined by late-gadolinium enhancement. Int J Cardiovasc Imaging 33:1351–1360

    Article  PubMed  Google Scholar 

  80. Jasaityte R, Heyde B, D’hooge J, (2013) Current state of three-dimensional myocardial strain estimation using echocardiography. J Am Soc Echocardiogr 26(1):15–28

    Article  PubMed  Google Scholar 

  81. Villemain O, Correia M, Mousseaux E, Baranger J, Zarka S, Podetti I, Soulat G, Damy T, Hagège A, Tanter M, Pernot M, Messas E (2019) Myocardial stiffness evaluation using noninvasive shear wave imaging in healthy and hypertrophic cardiomyopathic adults. JACC Cardiovasc Imaging 12(7):1135–1145

    Article  PubMed  PubMed Central  Google Scholar 

  82. Petrescu A, Santos P, Orlowska M, Pedrosa J, Bézy S, Chakraborty B, Cvijic M, Dobrovie M, Delforge M, D’hooge J, Voigt JU, (2019) Velocities of naturally occurring myocardial shear waves increase with age and in cardiac amyloidosis. JACC Cardiovasc Imaging 12(12):2389–2398

    Article  PubMed  Google Scholar 

  83. Gyöngyösi M, Winkler J, Ramos I, Do QT, Firat H, McDonald K, González A, Thum T, Díez J, Jaisser F, Pizard A, Zannad F (2017) Myocardial fibrosis: biomedical research from bench to bedside. Eur J Heart Fail 19(2):177–191

    Article  PubMed  Google Scholar 

  84. Sado DM, Flett AS, Moon JC (2011) Novel imaging techniques for diffuse myocardial fibrosis. Future Cardiol 7:643–650

    Article  PubMed  Google Scholar 

  85. Knaapen P, Götte MJ, Paulus WJ, Zwanenburg JJ, Dijkmans PA, Boellaard R, Marcus JT, Twisk JW, Visser CA, van Rossum AC, Lammertsma AA, Visserv FC (2006) Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study. Radiology 240:380–388

    Article  PubMed  Google Scholar 

  86. Rischpler C, Nekolla SG, Dregely I, Schwaiger M (2013) Hybrid PET/MR imaging of the heart: potential, initial experiences, and future prospects. J Nucl Med 54:402–415

    Article  CAS  PubMed  Google Scholar 

  87. Li XG, Roivainen A, Bergman J, Heinonen A, Bengel F, Thum T, Knuuti J (2015) Enabling [18 F]-bicyclo[6.1.0]nonyne for oligonucleotide conjugation for positron emission tomography applications: [18 F]-anti-microRNA-21 as an example. Chem Commun 51:9821–9824

    Article  CAS  Google Scholar 

  88. Pagourelias E, Delforge M, Claus P, Gheysens O (2016) Functional and molecular correlative imaging in a patient with amyloidosis. Eur Heart J 37(23):1834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Efstathios Pagourelias is a Kakkis-Metaxas fellowship awardee while the fulfillment and completion of this project was possible through a scholarship from the Greek State Scholarships Foundation (IKY).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Efstathios Pagourelias and Georgios Alexandridis. The first draft of the manuscript was written by Georgios Alexandridis, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Efstathios D. Pagourelias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pagourelias, E.D., Alexandridis, G.M. & Vassilikos, V.P. Fibrosis in hypertrophic cardiomyopathy: role of novel echo techniques and multi-modality imaging assessment. Heart Fail Rev 26, 1297–1310 (2021). https://doi.org/10.1007/s10741-020-10058-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-020-10058-6

Keywords

Navigation