Skip to main content

Advertisement

Log in

Nonstructural Genetic Cardiac Disease as the Most Common Cause of Sudden Cardiac Death in the Young Athlete: Is This True?

  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Abstract

Purpose of review

This review is aimed at summarizing and discussing the primary causes of sudden cardiac death (SCD) in young athletes.

Recent findings

SCD in young athletes is a dramatic event, with an incidence rate that can reach 13 deaths per 100,000 athletes. Occasionally, exercise can trigger SCD, and unfortunately, this event may be the first manifestation of an underlying and silent cardiac condition. In the USA, hypertrophic cardiomyopathy is reported as the leading cause of SCD among young athletes, whereas arrhythmogenic right ventricular cardiomyopathy has been reported as the main cause in the Veneto region of Italy. However, emerging evidence has demonstrated that in many cases, athletes who experience sudden death have a seemingly normal cardiac structure, suggesting the possibility of sudden arrhythmic death syndrome. In recent decades, it has been possible to determine the causes of many SCDs that occur in the presence of nonstructural cardiac diseases. It is worth noting that routinely used cardiovascular screening methods, such as electrocardiogram and echocardiogram, may fail to detect nonstructural genetic cardiac diseases. In turn, in some circumstances, genetic testing may play a role in identifying individuals at risk of SCD due to these conditions.

Summary

Understanding the underlying causes of SCD in young athletes is noteworthy for developing effective prevention and screening strategies. A multidisciplinary approach involving cardiologists, clinical sports physicians, pathologists, and geneticists collaborating represents an opportunity to enhance and optimize patient care and can play a crucial role in the prevention of SCD among young athletes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Emery MS, Kovacs RJ. Sudden cardiac death in athletes. JACC Heart Fail. 2018;6:30–40.

    Article  PubMed  Google Scholar 

  2. Malhotra A, Dhutia H, Finocchiaro G, et al. Outcomes of cardiac screening in adolescent soccer players. N Engl J Med. 2018;379:524–34.

    Article  PubMed  Google Scholar 

  3. Wasfy MM, Hutter AM, Weiner RB. Sudden cardiac death in athletes. Methodist Debakey Cardiovasc J. 2016;12:76–80.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Harmon KG, Drezner JA, Wilson MG, Sharma S. Incidence of sudden cardiac death in athletes: a state-of-the-art review. Heart. 2014;100:1227–34.

    Article  PubMed  Google Scholar 

  5. Rajan D, Garcia R, Svane J, Tfelt-Hansen J. Risk of sports-related sudden cardiac death in women. Eur Heart J. 2022;43:1198–206.

    Article  PubMed  Google Scholar 

  6. Bohm P, Meyer T, Narayanan K, et al. Sports-related sudden cardiac arrest in young adults. Europace. 2023;25:627–33.

    Article  PubMed  Google Scholar 

  7. Peterson DF, Kucera K, Thomas LC, et al. Aetiology and incidence of sudden cardiac arrest and death in young competitive athletes in the USA: a 4-year prospective study. Br J Sports Med. 2021;55:1196–203.

    Article  PubMed  Google Scholar 

  8. • Finocchiaro G, Papadakis M, Robertus JL, et al. Etiology of sudden death in sports: insights from a United Kingdom Regional Registry. J Am Coll Cardiol. 2016;67:2108–2115. In an analysis of 357 cases of sudden death in athletes with a mean age of 29 ± 11 years, the primary cause of death (>40%) was sudden arrhythmic death syndrome, characterized by athletes with structurally normal hearts. 

  9. de Noronha SV, Sharma S, Papadakis M, Desai S, Whyte G, Sheppard MN. Aetiology of sudden cardiac death in athletes in the United Kingdom: a pathological study. Heart. 2009;95:1409–14.

    Article  PubMed  Google Scholar 

  10. Wisten A, Börjesson M, Krantz P, Stattin EL. Exercise related sudden cardiac death (SCD) in the young - pre-mortal characterization of a Swedish nationwide cohort, showing a decline in SCD among athletes. Resuscitation. 2019;144:99–105.

    Article  PubMed  Google Scholar 

  11. Maron BJ. Distinguishing hypertrophic cardiomyopathy from athlete’s heart: a clinical problem of increasing magnitude and significance. Heart. 2005;91:1380–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maron BJ. Hypertrophic cardiomyopathy and other causes of sudden cardiac death in young competitive athletes, with considerations for preparticipation screening and criteria for disqualification. Cardiol Clin. 2007;25:399–414.

    Article  PubMed  Google Scholar 

  13. Basavarajaiah S, Wilson M, Whyte G, Shah A, McKenna W, Sharma S. Prevalence of hypertrophic cardiomyopathy in highly trained athletes: relevance to pre-participation screening. J Am Coll Cardiol. 2008;51:1033–9.

    Article  PubMed  Google Scholar 

  14. Corrado D, Basso C, Rizzoli G, Schiavon M, Thiene G. Does sports activity enhance the risk of sudden death in adolescents and young adults? J Am Coll Cardiol. 2003;42:1959–63.

    Article  PubMed  Google Scholar 

  15. Harmon KG, Drezner JA, Maleszewski JJ, et al. Pathogeneses of sudden cardiac death in national collegiate athletic association athletes. Circ Arrhythm Electrophysiol. 2014;7:198–204.

    Article  PubMed  Google Scholar 

  16. Landry CH, Allan KS, Connelly KA, Cunningham K, Morrison LJ, Dorian P; Rescu Investigators. Sudden cardiac arrest during participation in competitive sports. N Engl J Med. 2017;377:1943–1953.

  17. Eckart RE, Scoville SL, Campbell CL, et al. Sudden death in young adults: a 25-year review of autopsies in military recruits. Ann Intern Med. 2004;141:829–34.

    Article  PubMed  Google Scholar 

  18. Daw JM, Chahal CAA, Arkles JS, et al. Longitudinal electrocardiographic assessment in Brugada syndrome. Heart Rhythm. 2022;O2(3):233–40.

    Article  Google Scholar 

  19. van der Werf C, Nederend I, Hofman N, et al. Familial evaluation in catecholaminergic polymorphic ventricular tachycardia: disease penetrance and expression in cardiac ryanodine receptor mutation-carrying relatives. Circ Arrhythm Electrophysiol. 2012;5:748–56.

    Article  PubMed  Google Scholar 

  20. Fischbach P. The role of illicit drug use in sudden death in the young. Cardiol Young. 2017;27:S75–9.

    Article  PubMed  Google Scholar 

  21. Morentin B, Callado LF. Sudden cardiac death associated to substances of abuse and psychotropic drugs consumed by young people: a population study based on forensic autopsies. Drug Alcohol Depend. 2019;201:23–8.

    Article  CAS  PubMed  Google Scholar 

  22. Abouk R, Adams S. Examining the relationship between medical cannabis laws and cardiovascular deaths in the US. Int J Drug Policy. 2018;53:1–7.

    Article  PubMed  Google Scholar 

  23. Chami T, Kim CH. Cannabis abuse and elevated risk of myocardial infarction in the young: a population-based study. Mayo Clin Proc. 2019;94:1647–9.

    Article  PubMed  Google Scholar 

  24. Farwell D, Gollob MH. Electrical heart disease: genetic and molecular basis of cardiac arrhythmias in normal structural hearts. Can J Cardiol. 2007;23 Suppl A(Suppl A):16A-22A.

  25. Wever EF, Robles de Medina EO. Sudden death in patients without structural heart disease. J Am Coll Cardiol. 2004;43:1137–44.

  26. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO. Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation. 2009;119:1085–92.

    Article  PubMed  Google Scholar 

  27. Maron BJ, Haas TS, Murphy CJ, Ahluwalia A, Rutten-Ramos S. Incidence and causes of sudden death in U.S. college athletes. J Am Coll Cardiol. 2014;63:1636–43.

  28. Suárez-Mier MP, Aguilera B. Causes of sudden death during sports activities in Spain [in Spanish]. Rev Esp Cardiol. 2002;55:347–58.

    PubMed  Google Scholar 

  29. Holst AG, Winkel BG, Theilade J, et al. Incidence and etiology of sports-related sudden cardiac death in Denmark–implications for preparticipation screening. Heart Rhythm. 2010;7:1365–71.

    Article  PubMed  Google Scholar 

  30. D’Ascenzi F, Valentini F, Pistoresi S, et al. Causes of sudden cardiac death in young athletes and non-athletes: systematic review and meta-analysis: Sudden cardiac death in the young. Trends Cardiovasc Med. 2022;32:299–308.

    Article  PubMed  Google Scholar 

  31. Suárez-Mier MP, Aguilera B, Mosquera RM, Sánchez-de-León MS. Pathology of sudden death during recreational sports in Spain. Forensic Sci Int. 2013;226:188–96.

    Article  PubMed  Google Scholar 

  32. Marijon E, Tafflet M, Celermajer DS, et al. Sports-related sudden death in the general population. Circulation. 2011;124:672–81.

    Article  PubMed  Google Scholar 

  33. Manolis AS, Manolis AA. Exercise and arrhythmias: a double-edged sword. Pacing Clin Electrophysiol. 2016;39:748–62.

    Article  PubMed  Google Scholar 

  34. Drezner JA, Sharma S, Baggish A, et al. International criteria for electrocardiographic interpretation in athletes: consensus statement. Br J Sports Med. 2017;51:704–31.

    Article  PubMed  Google Scholar 

  35. Lu JT, Kass RS. Recent progress in congenital long QT syndrome. Curr Opin Cardiol. 2010;25:216–21.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Viskin S. Important developments in long QT syndrome: not only for arrhythmia specialists. Circulation. 2020;142:2416–9.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Johnson JN, Ackerman MJ. Competitive sports participation in athletes with congenital long QT syndrome. JAMA. 2012;308:764–5.

    Article  CAS  PubMed  Google Scholar 

  38. • Gomez AT, Prutkin JM, Rao AL. Evaluation and management of athletes with long QT syndrome. Sports Health. 2016;8:527–535. Athletes with a prolonged corrected QT interval, ideally exceeding 500 ms, require increased attention, as this cutoff point serves as a significant risk marker.

  39. Chambers KD, Beausejour Ladouceur V, et al. Cardiac events during competitive, recreational, and daily activities in children and adolescents with long QT syndrome. J Am Heart Assoc. 2017;6: e005445.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Aziz PF, Sweeten T, Vogel RL, et al. Sports participation in genotype positive children with long QT syndrome. JACC Clin Electrophysiol. 2015;1:62–70.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Tobert KE, Bos JM, Garmany R, Ackerman MJ. Return-to-play for athletes with long QT syndrome or genetic heart diseases predisposing to sudden death. J Am Coll Cardiol. 2021;78:594–604.

    Article  PubMed  Google Scholar 

  42. Ritt LE, Milani M, Stein R. Long QT syndrome: to exercise safely or not to exercise, that’s the question!!! Eur J Prev Cardiol. 2022;29:1630–2.

    Article  PubMed  Google Scholar 

  43. Brugada R, Campuzano O, Sarquella-Brugada G, Brugada J, Brugada P. Brugada syndrome Methodist Debakey Cardiovasc J. 2014;10:25–8.

    Article  PubMed  Google Scholar 

  44. Chung EH. Brugada ECG patterns in athletes. J Electrocardiol. 2015;48:539–43.

    Article  PubMed  Google Scholar 

  45. Mascia G, Arbelo E, Hernandez-Ojeda J, Solimene F, Brugada R, Brugada J. Brugada syndrome and exercise practice: current knowledge, shortcomings and open questions. Int J Sports Med. 2017;38:573–81.

    Article  PubMed  Google Scholar 

  46. Suzuki-Yamanaka M, Ayusawa M, Hosokawa Y, Hirose N, Kaneoka K. Epidemiology of sudden cardiac death and sudden cardiac arrest with resultant disability during high school organized sport in Japan. J Sci Med Sport. 2022;25:705–9.

    Article  PubMed  Google Scholar 

  47. Bohm P, Scharhag J, Meyer T. Data from a nationwide registry on sports-related sudden cardiac deaths in Germany. Eur J Prev Cardiol. 2016;23:649–56.

    Article  PubMed  Google Scholar 

  48. Thiene G, Rizzo S, Schiavon M, et al. Structurally normal hearts are uncommonly associated with sudden deaths in athletes and young people. J Am Coll Cardiol. 2019;73:3031–2.

    Article  PubMed  Google Scholar 

  49. Masrur S, Memon S, Thompson PD. Brugada syndrome, exercise, and exercise testing. Clin Cardiol. 2015;38:323–6.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Makimoto H, Nakagawa E, Takaki H, et al. Augmented ST-segment elevation during recovery from exercise predicts cardiac events in patients with Brugada syndrome. J Am Coll Cardiol. 2010;56:1576–84.

    Article  PubMed  Google Scholar 

  51. Amin AS, de Groot EA, Ruijter JM, Wilde AA, Tan HL. Exercise-induced ECG changes in Brugada syndrome. Circ Arrhythm Electrophysiol. 2009;2:531–9.

    Article  PubMed  Google Scholar 

  52. Roston TM, Haji-Ghassemi O, LaPage MJ, et al. Catecholaminergic polymorphic ventricular tachycardia patients with multiple genetic variants in the PACES CPVT Registry. PLoS ONE. 2018;13: e0205925.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Christina G, Peter J, Bernhard S, Gerhard P. Catecholaminergic polymorphic ventricular tachycardia complicated by dilated cardiomyopathy: a case report. Eur Heart J Case Rep. 2020;4:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Abbas M, Miles C, Behr E. Catecholaminergic polymorphic ventricular tachycardia. Arrhythm Electrophysiol Rev. 2022;11:e20.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Priori SG, Napolitano C, Memmi M, et al. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation. 2002;106:69–74.

    Article  CAS  PubMed  Google Scholar 

  56. Stępień-Wojno M, Ponińska J, Biernacka EK, et al. A recurrent exertional syncope and sudden cardiac arrest in a young athlete with known pathogenic p.Arg420Gln variant in the RYR2 gene. Diagnostics (Basel). 2020;10:435.

  57. Kawata H, Ohno S, Aiba T, et al. Catecholaminergic polymorphic ventricular tachycardia (CPVT) associated with ryanodine receptor (RyR2) gene mutations - long-term prognosis after initiation of medical treatment. Circ J. 2016;80:1907–15.

    Article  CAS  PubMed  Google Scholar 

  58. Roston TM, Vinocur JM, Maginot KR, et al. Catecholaminergic polymorphic ventricular tachycardia in children: analysis of therapeutic strategies and outcomes from an international multicenter registry. Circ Arrhythm Electrophysiol. 2015;8:633–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heidbuchel H, Arbelo E, D'Ascenzi F, et al. EAPC/EHRA update of the recommendations for participation in leisure-time physical activity and competitive sports in patients with arrhythmias and potentially arrhythmogenic conditions. Recommendations for participation in leisure-time physical activity and competitive sports of patients with arrhythmias and potentially arrhythmogenic conditions. Part 2: ventricular arrhythmias, channelopathies, and implantable defibrillators. Europace. 2021;23:147–148.

  60. Mazzanti A, Kukavica D, Trancuccio A, et al. Outcomes of patients with catecholaminergic polymorphic ventricular tachycardia treated with β-blockers. JAMA Cardiol. 2022;7:504–12.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kramer CC, Maldonado JR, Kimball A, Law IH. Flipping syncope: the case of an adolescent athlete with syncopal episodes ultimately diagnosed with catecholaminergic polymorphic ventricular tachycardia. Clin Case Rep. 2020;8:1409–12.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Giudicessi JR, Ackerman MJ. Exercise testing oversights underlie missed and delayed diagnosis of catecholaminergic polymorphic ventricular tachycardia in young sudden cardiac arrest survivors. Heart Rhythm. 2019;16:1232–9.

    Article  PubMed  Google Scholar 

  63. Tester DJ, Medeiros-Domingo A, Will ML, Haglund CM, Ackerman MJ. Cardiac channel molecular autopsy: insights from 173 consecutive cases of autopsy-negative sudden unexplained death referred for postmortem genetic testing. Mayo Clin Proc. 2012;87:524–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. • Ostby SA, Bos JM, Owen HJ, Wackel PL, Cannon BC, Ackerman MJ. Competitive sports participation in patients with catecholaminergic polymorphic ventricular tachycardia: a single center’s early experience. JACC Clin Electrophysiol. 2016;2:253–62. In this retrospective study of 63 individuals with catecholaminergic polymorphic ventricular tachycardia (42 non-athletes and 21 athletes), it was found that 21 young people continued to participate in competitive sports. The study revealed no significant difference in event rates, including death, between athletes and non-athletes during the average follow-up period of 108 ± 90 months.

    Article  PubMed  Google Scholar 

  65. Krahn AD, Sanatani S. Catecholaminergic polymorphic ventricular tachycardia: activity as tolerated? JACC Clin Electrophysiol. 2016;2:263–5.

    Article  PubMed  Google Scholar 

  66. Roston TM, Jones K, Hawkins NM, et al. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: a systematic review. Heart Rhythm. 2018;15:1791–9.

    Article  PubMed  Google Scholar 

  67. Pappone C, Vicedomini G, Manguso F, et al. Wolff-Parkinson-White syndrome in the era of catheter ablation: insights from a registry study of 2169 patients. Circulation. 2014;130:811–9.

    Article  PubMed  Google Scholar 

  68. Harmon KG, Asif IM, Maleszewski JJ, et al. Incidence, cause, and comparative frequency of sudden cardiac death in National Collegiate Athletic Association athletes: a decade in review. Circulation. 2015;132:10–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Finocchiaro G, Papadakis M, Behr ER, Sharma S, Sheppard M. Sudden cardiac death in pre-excitation and Wolff-Parkinson-White: demographic and clinical features. J Am Coll Cardiol. 2017;69:1644–5.

    Article  PubMed  Google Scholar 

  70. Sharma AD, Yee R, Guiraudon G, Klein GJ. Sensitivity and specificity of invasive and noninvasive testing for risk of sudden death in Wolff-Parkinson-White syndrome. J Am Coll Cardiol. 1987;10:373–81.

    Article  CAS  PubMed  Google Scholar 

  71. Scheiper-Welling S, Tabunscik M, Gross TE, et al. Variant interpretation in molecular autopsy: a useful dilemma. Int J Legal Med. 2022;136:475–82.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Ackerman MJ, Tester DJ, Driscoll DJ. Molecular autopsy of sudden unexplained death in the young. Am J Forensic Med Pathol. 2001;22:105–11.

    Article  CAS  PubMed  Google Scholar 

  73. Barretta F, Mirra B, Monda E, et al. The hidden fragility in the heart of the athletes: a review of genetic biomarkers. Int J Mol Sci. 2020;21(18):6682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Torkamani A, Muse ED, Spencer EG, Rueda M, Wagner GN, Lucas JR, et al. Molecular autopsy for sudden unexpected death. JAMA. 2016;316:1492–4.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Han J, Lalario A, Merro E, Sinagra G, Sharma S, Papadakis M, Finocchiaro G. Sudden cardiac death in athletes: facts and fallacies. J Cardiovasc Dev Dis. 2023;10:68.

    PubMed  PubMed Central  Google Scholar 

  76. Isbister JC, Nowak N, Butters A, et al. “Concealed cardiomyopathy” as a cause of previously unexplained sudden cardiac arrest. Int J Cardiol. 2021;324:96–101.

    Article  PubMed  Google Scholar 

  77. Wilde AAM, Semsarian C, Márquez MF, et al. Developed in partnership with and endorsed by the European Heart Rhythm Association (EHRA), a branch of the European Society of Cardiology (ESC), the Heart Rhythm Society (HRS), the Asia Pacific Heart Rhythm Society (APHRS), and the Latin American Heart Rhythm Society (LAHRS). European Heart Rhythm Association (EHRA)/Heart Rhythm Society (HRS)/Asia Pacific Heart Rhythm Society (APHRS)/Latin American Heart Rhythm Society (LAHRS) Expert Consensus Statement on the state of genetic testing for cardiac diseases. Europace. 2022;24:1307–1367.

  78. de Noronha SV, Behr ER, Papadakis M, et al. The importance of specialist cardiac histopathological examination in the investigation of young sudden cardiac deaths. Europace. 2014;16:899–907.

    Article  PubMed  Google Scholar 

  79. Weizman O, Empana JP, Blom M, et al; ESCAPE-NET Investigators. Incidence of cardiac arrest during sports among women in the European Union. J Am Coll Cardiol. 2023;81:1021–1031.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Stein MD, ScD.

Ethics declarations

Conflict of Interest

Ricardo Stein is an established investigator of the Conselho Nacional de Pesquisa (CNPq), Brasília, Brazil. Filipe Ferrari and Thais M. A. Beuren receive financial support from Coordination for the Improvement of Higher Education (CAPES). Anderson D. da Silveira declares that he has no conflict of interest. Luciana Sacilotto declares that she has no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stein, R., Ferrari, F., Beuren, T.M.A. et al. Nonstructural Genetic Cardiac Disease as the Most Common Cause of Sudden Cardiac Death in the Young Athlete: Is This True?. Curr Treat Options Cardio Med 25, 525–542 (2023). https://doi.org/10.1007/s11936-023-01005-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11936-023-01005-3

Keywords

Navigation