Skip to main content
Log in

Multiwalled carbon nanotubes activate NF-κB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

Our previous report on multiwall carbon nanotubes (MWCNT) has demonstrated the generation of reactive radicals and depletion of intracellular antioxidants which in turn cause cell death through activation of caspases. The molecular mechanism of cellular death due to MWCNT is not clear yet. In this study, we investigated the signaling pathways implicated in MWCNT-induced apoptosis in rat lung epithelial cells. First, we assessed the DNA damage in response to MWCNT treatment and showed the significant DNA damage as compared to control. The collapse of the mitochondrial membrane integrity, release of cytochrome c into the cytosol, reduction in cellular ATP content, increased levels of mitochondrial apoptogenic factor and activation and nuclear translocation of NF-κB were observed in MWCNT treated cells. In addition, a time-dependent induction of phosphorylated IκBα and its degradation were detected in cells exposed to MWCNT. Furthermore, MWCNT activated several death related proteins including apoptosis inducing factor, p53, p21 and bax. Together, our results suggest that signaling pathways such as NF-κB and AP-1 are activated upon MWCNT treatment for cellular cytotoxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. DaiLy (2006) Carbon nanotechnology. Elsevier, Amsterdam

    Google Scholar 

  2. Baughman RH, Zakhidov AA, de Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297:787–792

    Article  CAS  PubMed  Google Scholar 

  3. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD et al (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. Am Chem Soc 121:4388–4396

    Article  Google Scholar 

  4. West J, Halas N (2000) Applications of nanotechnology to biotechnology: commentary. Curr Opin Biotechnol 11:215–217

    Article  CAS  PubMed  Google Scholar 

  5. Maynard AD, Baron PA, Foley M, Shvedova AA, Kisin ER, Castranova V (2004) Exposure to carbon nanotube material: aerosol release during the handling of unrefined single-walled carbon nanotube material. J Toxicol Environ Health A 67:87–107

    Article  CAS  PubMed  Google Scholar 

  6. Murr LE, Bang JJ, Esquivel PA, Guerrero PA, Lopez DA (2004) Carbon nanotubes, nanocrystal forms, and complex nanoparticle aggregates in common fuel-gas combustion sources and ambient air. J Nanopart Res 6:241–251

    Article  CAS  Google Scholar 

  7. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  CAS  PubMed  Google Scholar 

  8. Warheit DB, Laurence BR, Reed KL, Roach DH, Reynolds GA, Webb TR (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125

    Article  CAS  PubMed  Google Scholar 

  9. Li JG, Li WX, Xu JY, Cai XQ, Liu RL et al (2007) Comparative study of pathological lesions induced by multiwalled carbon nanotubes in lungs of mice by intratracheal instillation and inhalation. Environ Toxicol 22:415–421

    Article  CAS  PubMed  Google Scholar 

  10. Mercer RR, Scabilloni J, Wang L, Kisin E, Murray AR, Schwegler-Berry D, Shvedova AA, Castranova V (2008) Alteration of deposition pattern and pulmonary response as a result of improved dispersion of aspirated single-walled carbon nanotubes in a mouse model. Am J Physiol Lung Cell Mol Physiol 294:L87–L97

    Article  CAS  PubMed  Google Scholar 

  11. Erdely A, Hulderman T, Salmen R, Liston A, Zeidler-Erdely PC, Schwegler-Berry D et al (2009) Cross-talk between lung and systemic circulation during carbon nanotube respiratory exposure. Potential biomarkers. Nano Lett 9:36–43

    Article  CAS  PubMed  Google Scholar 

  12. Witzmann FA, Monteiro-Riviere NA (2002) Multi-walled carbon nanotube exposure alters protein expression in human keratinocytes. Nanomedicine 2:158–168

    Google Scholar 

  13. Hirano S, Kanno S, Furuyama A (2008) Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicol Appl Pharmacol 232:244–251

    Article  CAS  PubMed  Google Scholar 

  14. Rotoli BM, Bussolati O, Bianchi MG, Barilli A, Balasubramanian C, Bellucci S, Bergamaschi E (2008) Non-functionalized multi-walled carbon nanotubes alter the paracellular permeability of human airway epithelial cells. Toxicol Lett 178:95–102

    Article  CAS  PubMed  Google Scholar 

  15. Ravichandran P, Periyakaruppan A, Sadanandan B, Ramesh V, Hall JC, Jejelowo O, Ramesh GT (2009) Induction of apoptosis in rat lung epithelial cells by multiwalled carbon nanotubes. J Biochem Mol Toxicol 23:333–344

    Article  CAS  PubMed  Google Scholar 

  16. Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M (2000) Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem 275:36062–36066

    Article  CAS  PubMed  Google Scholar 

  17. Delhase M, Hayakawa M, Chen Y, Karin M (1999) Positive and negative regulation of I kappa B kinase activity through IKK beta subunit phosphorylation. Science 284:309–313

    Article  CAS  PubMed  Google Scholar 

  18. Karin M, Delhase M (2000) The Ikappa B kinase (IKK) and NFkappa B: key elements of proinflammatory signalling. Semin Immunol 12:85–98

    Article  CAS  PubMed  Google Scholar 

  19. Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotubes induces oxidative stress and activates nuclear transcription factor-kappaB in human keratinocytes. Nano Lett 5:1676–1684

    Article  CAS  PubMed  Google Scholar 

  20. Ramachandiran S, Huang Q, Dong J, Lau SS, Monks JT (2002) Mitogen activated protein kinases contribute to reactive oxygen species-induced cell death in renal proximal tubule epithelial cells. Chem Res Toxicol 15:1635–1642

    Article  CAS  PubMed  Google Scholar 

  21. Lee LF, Li G, Templeton DJ, Ting JP (1998) Paclitaxel (Taxol)-induced gene expression and cell death are both mediated by the activation of c-Jun NH2-terminal kinase (JNK/SAPK). J Biol Chem 273:28253–28260

    Article  CAS  PubMed  Google Scholar 

  22. Vousden K, Lu X (2002) Live or let die: the cell’s response to p53. Nature Rev Cancer 2:594–604

    Article  CAS  Google Scholar 

  23. Baluchamy S, Zhang Y, Ravichandran P, Ramesh V, Sodipe A, Hall JC, Jejelowo O, Gridley DS, Wu H, Ramesh GT (2010) Expression profile of DNA damage signaling genes in 2 Gy protons exposed mouse brain. Mol Cell Biochem. doi:10.1007/s11010-010-0451-4

  24. Bradbury DA, Simmons TD, Slaterv KJ, Crouch SP (2000) Measurement of the ADP: ATP ratio in human leukaemic cell lines can be used as an indicator of cell viability, necrosis and apoptosis. J Immunol Methods 240(1–2):79–92

    Article  CAS  PubMed  Google Scholar 

  25. Koczor CA, Shokolenko IN, Boyd AK, Balk SP, Wilson GL, LeDoux SP (2009) Mitochondrial DNA damage initiates a cell cycle arrest by a Chk2-associated mechanism in mammalian cells. J Biol Chem 284:36191–36201

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Zhou B, Mi B, Xue L, Shih J, Lee J, Chau J, Un F, Yen Y (2007) An increase of cytochrome C oxidase mediated disruption of Gemcitabine Incorporation into DNA in a resistant KB clone. Biochem Pharmacol 73(12):1927–1938

    Article  CAS  PubMed  Google Scholar 

  27. Razeghi P, Wang ME, Youker KA, Golfman L, Stepkowski S, Taegtmeyer H (2007) Lack of NF-κB1 (p105/p50) attenuates unloading-induced downregulation of PPARα and PPARα-regulated gene expression in rodent heart. Cardiovascular Res 74:133–139

    Article  CAS  Google Scholar 

  28. Reichard JF, Petersen DR (2004) Hepatic stellate cells lack AP-1 responsiveness to electrophiles and phorbol 12-myristate-13-acetate. Biochem Biophys Res Commun 322:842–853

    Article  CAS  PubMed  Google Scholar 

  29. Sharma CS, Sarkar S, Periyakaruppan A, Barr J, Wise K, Thomas R, Wilson BL, Ramesh GT (2007) Single-walled carbon nanotubes induce oxidative stress in rat lung epithelial cells. J Nanosci Nanotechnol 7:2466–2472

    Article  CAS  PubMed  Google Scholar 

  30. Wise CK, Manna SK, Yamauchi K, Ramesh V, Wilson BL, Thomas RL, Sarkar S, Kulkarni DA, Pellis NR, Ramesh GT (2005) Activation of nuclear transcription factor kappa B in mouse brain induced by a stimulated microgravity. In Vitro Cell Dev Biol Anim 41:118–123

    Article  CAS  PubMed  Google Scholar 

  31. Ryan KM, Ernst MK, Rice NR, Vousden KH (2000) Role of NF-kappaB in p53-mediated programmed cell death. Nature 404:892–897

    Article  CAS  PubMed  Google Scholar 

  32. Tian F, Cui D, Sehwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotube on human fibroblasts. Toxicol In Vitro 20:1202–1212

    Article  CAS  PubMed  Google Scholar 

  33. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single-wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  CAS  PubMed  Google Scholar 

  34. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  CAS  PubMed  Google Scholar 

  35. Ye SF, Wu YH, Hou ZQ, Zhang QQ (2009) ROS and NF-kappaB are involved in upregulation of IL-8 in A549 cells exposed to multi-walled carbon nanotubes. Biochem Biophys Res Commun 379(2):643–648

    Article  CAS  PubMed  Google Scholar 

  36. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219

    Article  CAS  PubMed  Google Scholar 

  37. Patlolla A, Patlolla B, Tchounwou P (2010) Evaluation of cell viability, DNA damage, and cell death in normal human dermal fibroblast cells induced by functionalized multiwalled carbon nanotubes. Mol Cell Biochem 338:225–232

    Article  CAS  PubMed  Google Scholar 

  38. Fortunato F, Deng X, Gates LK, McClain CJ, Bimmler D, Graf R, Whitcomb DC (2006) Pancreatic response to endotoxin after chronic alcohol exposure: switch from apoptosis to necrosis? Am J Physiol Gastrointest Liver Physiol 290:G232–G241

    Article  CAS  PubMed  Google Scholar 

  39. Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, Lin-Shiau SY, Liu SH (2006) Methylmercury induces pancreatic beta-cell apoptosis and dysfunction. Chem Res Toxicol 19:1080–1085

    Article  CAS  PubMed  Google Scholar 

  40. Periyakaruppan A, Sarkar S, Ravichandran P, Sadanandan B, Sharma CS, Ramesh V, Hall JC, Thomas R, Wilson BL, Ramesh GT (2009) Uranium induces apoptosis in lung epithelial cells. Arch Toxicol 83:595–600

    Article  CAS  PubMed  Google Scholar 

  41. Daugas E, Susin SA, Zamzami N, Ferri KF, Irinopoulou T, Larochette N, Prevost MC, Leber B, Andrews D, Penninger J, Kroemer G (2000) Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 14:729–739

    CAS  PubMed  Google Scholar 

  42. Karin M, Delhase M (1998) JNK or IKK, AP-1 or NF-kappa B, which are the targets for MEK kinase 1 action? Proc Natl Acad Sci USA 95:9067–9069

    Article  CAS  PubMed  Google Scholar 

  43. Pylkkanen L, Stockmann-Juvala H, Alenius H, Husgafvel-Pursiainen K, Savolainen K (2009) Wood dusts induce the production of reactive oxygen species and caspase-3 activity in human bronchial epithelial cells. Toxicology 262(3):265–270

    Article  PubMed  Google Scholar 

  44. Ramesh GT, Ghosh D, Gunasekar PG (2002) Activation of early signaling transcription factor, NF-kappa B following lowlevel manganese exposure. Toxicol Lett 136:151–158

    Article  CAS  PubMed  Google Scholar 

  45. Ramesh GT, Manna SK, Aggarwal BB, Jadhav AL (1999) Lead activates nuclear transcription factor-kappa B, activator protein-1, and amino-terminal c-Jun kinase in pheochromocytoma cells. Toxicol Appl Pharmacol 155:280–286

    Article  CAS  PubMed  Google Scholar 

  46. Muller JM, Rupec RA, Baeuerle PA (1997) Study of gene regulation by NF-kappaB and AP-1 in response to reactive oxygen intermediates. Methods 11:301–312

    Article  CAS  PubMed  Google Scholar 

  47. Manna SK, Ramesh GT (2005) Interleukin-8 induces nuclear transcription factor-kappa B through a TRAF6-dependent pathway. J Biol Chem 280(8):7010–7021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NASA funding NNX08BA47A: NCC-1-02038: NIH 1P20MD001822-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindarajan T. Ramesh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ravichandran, P., Baluchamy, S., Sadanandan, B. et al. Multiwalled carbon nanotubes activate NF-κB and AP-1 signaling pathways to induce apoptosis in rat lung epithelial cells. Apoptosis 15, 1507–1516 (2010). https://doi.org/10.1007/s10495-010-0532-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-010-0532-6

Keywords

Navigation