Skip to main content

Advertisement

Log in

LncRNA H19 suppresses pyroptosis of cardiomyocytes to attenuate myocardial infarction in a PBX3/CYP1B1-dependent manner

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Objective

Myocardial infarction (MI) is a major cause of cardiovascular disease which poses great healthy and financial burden for individuals. MI can be mainly induced by hypoxia. Therefore, in this study, we aimed to explore the function and mechanism of lncRNA H19 on hypoxia-induced pyroptosis of cardiomyocytes.

Method

Peripheral blood from healthy controls and MI patients was collected for determination of mRNA and protein expression levels of H19 and CYP1B1. The correlation between these two factors was analyzed. Then MI rat model was established and injected with H19 overexpression/CYP1B1 knockdown plasmid, in which the infraction area and pathological morphology were observed. Hypoxic cardiomyocytes were transfected with overexpression or knockdown of H19 and CYP1B1 for determination of NLRP3, ASC, caspase-1, IL-1β, IL-18, CyclinD1, and PCNA. Cell proliferation ability was assessed by CCK8. RIP and dual luciferase gene reporter assay were applied to verify the binding among H19, PBX3 and CYP1B1.

Results

Downregulated H19 and upregulated CYP1B1 were observed in MI patients. A negative correlation was found for H19 and CYP1B1 expressions. Transfection of H19 overexpression or CYP1B1 knockdown could attenuate the MI progression in MI rats. In hypoxic cardiomyocytes, H19 overexpression or CYP1B1 knockdown could also inhibit NLRP3, ASC, caspase-1, IL-1β, and IL-18 in addition to suppressing cell apoptosis rate and promoting cell proliferation rate. Different expression pattern was found in cells transfected with H19 knockdown or CYP1B1 overexpression. Overexpression of CYP1B1 could abrogate the suppressive effect of H19 on pyroptosis of cardiomyocytes. H19 could inhibit activity of CYP1B1 promoters by regulating PBX3.

Conclusion

H19 could inhibit CYP1B1 expression in a PBX3-dependent way and thus attenuate cell pyroptosis of cardiomyocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tama BA, Im S, Lee S (2020) Improving an intelligent detection system for coronary heart disease using a two-tier classifier ensemble. Biomed Res Int 2020:9816142. https://doi.org/10.1155/2020/9816142

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hausenloy DJ, Yellon DM (2013) Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest 123(1):92–100. https://doi.org/10.1172/JCI62874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson JL, Morrow DA (2017) Acute myocardial infarction. N Engl J Med 376(21):2053–2064. https://doi.org/10.1056/NEJMra1606915

    Article  CAS  PubMed  Google Scholar 

  4. Brun A, Range H, Prouvost B, Mazighi M, Kapila Y, Bouchard P, Michel JB (2020) Innovative application of nested PCR for detection of Porphyromonas gingivalis in human highly calcified atherothrombotic plaques. J Oral Microbiol 12(1):1742523. https://doi.org/10.1080/20002297.2020.1742523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Patel P, Karch J (2020) Regulation of cell death in the cardiovascular system. Int Rev Cell Mol Biol 353:153–209. https://doi.org/10.1016/bs.ircmb.2019.11.005

    Article  PubMed  Google Scholar 

  6. Lee S, Choi E, Cha MJ, Hwang KC (2015) Looking for Pyroptosis-modulating miRNAs as a therapeutic target for improving myocardium survival. Mediat Inflamm 2015:254871. https://doi.org/10.1155/2015/254871

    Article  CAS  Google Scholar 

  7. Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, Delling FN, Djousse L, Elkind MSV, Ferguson JF, Fornage M, Jordan LC, Khan SS, Kissela BM, Knutson KL, Kwan TW, Lackland DT, Lewis TT, Lichtman JH, Longenecker CT, Loop MS, Lutsey PL, Martin SS, Matsushita K, Moran AE, Mussolino ME, O'Flaherty M, Pandey A, Perak AM, Rosamond WD, Roth GA, Sampson UKA, Satou GM, Schroeder EB, Shah SH, Spartano NL, Stokes A, Tirschwell DL, Tsao CW, Turakhia MP, VanWagner LB, Wilkins JT, Wong SS, Virani SS, American Heart Association Council on E, Prevention Statistics C, Stroke Statistics S (2019) Heart disease and stroke statistics-2019 update: a report from the American Heart Association. Circulation 139(10):e56–e528. https://doi.org/10.1161/CIR.0000000000000659

    Article  Google Scholar 

  8. Ye B, Chen X, Dai S, Han J, Liang X, Lin S, Cai X, Huang Z, Huang W (2019) Emodin alleviates myocardial ischemia/reperfusion injury by inhibiting gasdermin D-mediated pyroptosis in cardiomyocytes. Drug Des Devel Ther 13:975–990. https://doi.org/10.2147/DDDT.S195412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265(1):130–142. https://doi.org/10.1111/imr.12287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shi J, Gao W, Shao F (2017) Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci 42(4):245–254. https://doi.org/10.1016/j.tibs.2016.10.004

    Article  CAS  PubMed  Google Scholar 

  11. Lei Q, Yi T, Chen C (2018) NF-kappaB-Gasdermin D (GSDMD) Axis couples oxidative stress and NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome-mediated cardiomyocyte pyroptosis following myocardial infarction. Med Sci Monit 24:6044–6052. https://doi.org/10.12659/MSM.908529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li L, Wang JJ, Zhang HS (2018) LncRNA-CARl in a rat model of myocardial infarction. Eur Rev Med Pharmacol Sci 22(13):4332–4340. https://doi.org/10.26355/eurrev_201807_15430

    Article  CAS  PubMed  Google Scholar 

  13. Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, Ponnusamy M, Shan C, Xu S, Wang Q, Zhang YH, Zhang J, Wang K (2018) LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun 9(1):29. https://doi.org/10.1038/s41467-017-02280-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP, Liu G (2020) LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med 24(1):1099–1115. https://doi.org/10.1111/jcmm.14846

    Article  CAS  PubMed  Google Scholar 

  15. Wan P, Su W, Zhang Y, Li Z, Deng C, Li J, Jiang N, Huang S, Long E, Zhuo Y (2020) LncRNA H19 initiates microglial pyroptosis and neuronal death in retinal ischemia/reperfusion injury. Cell Death Differ 27(1):176–191. https://doi.org/10.1038/s41418-019-0351-4

    Article  CAS  PubMed  Google Scholar 

  16. Liu L, An X, Li Z, Song Y, Li L, Zuo S, Liu N, Yang G, Wang H, Cheng X, Zhang Y, Yang X, Wang J (2016) The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy. Cardiovasc Res 111(1):56–65. https://doi.org/10.1093/cvr/cvw078

    Article  CAS  PubMed  Google Scholar 

  17. Alsaad AM, Zordoky BN, Tse MM, El-Kadi AO (2013) Role of cytochrome P450-mediated arachidonic acid metabolites in the pathogenesis of cardiac hypertrophy. Drug Metab Rev 45(2):173–195. https://doi.org/10.3109/03602532.2012.754460

    Article  CAS  PubMed  Google Scholar 

  18. Zordoky BN, El-Kadi AO (2010) Effect of cytochrome P450 polymorphism on arachidonic acid metabolism and their impact on cardiovascular diseases. Pharmacol Ther 125(3):446–463. https://doi.org/10.1016/j.pharmthera.2009.12.002

    Article  CAS  PubMed  Google Scholar 

  19. Bieche I, Narjoz C, Asselah T, Vacher S, Marcellin P, Lidereau R, Beaune P, de Waziers I (2007) Reverse transcriptase-PCR quantification of mRNA levels from cytochrome (CYP)1, CYP2 and CYP3 families in 22 different human tissues. Pharmacogenet Genomics 17(9):731–742. https://doi.org/10.1097/FPC.0b013e32810f2e58

    Article  CAS  PubMed  Google Scholar 

  20. Matsumura N, Takahara S, Maayah ZH, Parajuli N, Byrne NJ, Shoieb SM, Soltys CM, Beker DL, Masson G, El-Kadi AOS, Dyck JRB (2018) Resveratrol improves cardiac function and exercise performance in MI-induced heart failure through the inhibition of cardiotoxic HETE metabolites. J Mol Cell Cardiol 125:162–173. https://doi.org/10.1016/j.yjmcc.2018.10.023

    Article  CAS  PubMed  Google Scholar 

  21. Li H, Sun G, Liu C, Wang J, Jing R, Wang J, Zhao X, Xu X, Yang Y (2017) PBX3 is associated with proliferation and poor prognosis in patients with cervical cancer. Onco Targets Ther 10:5685–5694. https://doi.org/10.2147/OTT.S150139

    Article  PubMed  PubMed Central  Google Scholar 

  22. Morgan R, Pandha HS (2020) PBX3 in cancer. Cancers 12(2). https://doi.org/10.3390/cancers12020431

  23. Guo H, Chu Y, Wang L, Chen X, Chen Y, Cheng H, Zhang L, Zhou Y, Yang FC, Cheng T, Xu M, Zhang X, Zhou J, Yuan W (2017) PBX3 is essential for leukemia stem cell maintenance in MLL-rearranged leukemia. Int J Cancer 141(2):324–335. https://doi.org/10.1002/ijc.30739

    Article  CAS  PubMed  Google Scholar 

  24. Farr GH 3rd, Imani K, Pouv D, Maves L (2018) Functional testing of a human PBX3 variant in zebrafish reveals a potential modifier role in congenital heart defects. Dis Model Mech 11(10). https://doi.org/10.1242/dmm.035972

  25. Zhang J, Geng Y, Guo F, Zhang F, Liu M, Song L, Ma Y, Li D, Zhang Y, Xu H, Yang H (2017) Screening and identification of critical transcription factors involved in the protection of cardiomyocytes against hydrogen peroxide-induced damage by Yixin-shu. Sci Rep 7(1):13867. https://doi.org/10.1038/s41598-017-10131-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu Y, Gao S, Wang Z, Yang Y, Huo H, Tian X (2016) Effect of stromal cell-derived factor-1 on myocardial apoptosis and cardiac function recovery in rats with acute myocardial infarction. Exp Ther Med 12(5):3282–3286. https://doi.org/10.3892/etm.2016.3770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Koyama T, Temma K, Akera T (1991) Reperfusion-induced contracture develops with a decreasing [Ca2+]i in single heart cells. Am J Phys 261(4 Pt 2):H1115–H1122. https://doi.org/10.1152/ajpheart.1991.261.4.H1115

    Article  CAS  Google Scholar 

  28. Zeng Z, Li G, Wu S, Wang Z (2019) Role of pyroptosis in cardiovascular disease. Cell Prolif 52(2):e12563. https://doi.org/10.1111/cpr.12563

    Article  Google Scholar 

  29. Hu Q, Zhang T, Yi L, Zhou X, Mi M (2018) Dihydromyricetin inhibits NLRP3 inflammasome-dependent pyroptosis by activating the Nrf2 signaling pathway in vascular endothelial cells. Biofactors 44(2):123–136. https://doi.org/10.1002/biof.1395

    Article  CAS  PubMed  Google Scholar 

  30. Fang Y, Hu J, Wang Z, Zong H, Zhang L, Zhang R, Sun L (2018) LncRNA H19 functions as an aquaporin 1 competitive endogenous RNA to regulate microRNA-874 expression in LPS sepsis. Biomed Pharmacother 105:1183–1191. https://doi.org/10.1016/j.biopha.2018.06.007

    Article  CAS  PubMed  Google Scholar 

  31. Li X, Luo S, Zhang J, Yuan Y, Jiang W, Zhu H, Ding X, Zhan L, Wu H, Xie Y, Song R, Pan Z, Lu Y (2019) lncRNA H19 alleviated myocardial I/RI via suppressing miR-877-3p/Bcl-2-mediated mitochondrial apoptosis. Mol Ther Nucleic Acids 17:297–309. https://doi.org/10.1016/j.omtn.2019.05.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kwon YJ, Baek HS, Ye DJ, Shin S, Kim D, Chun YJ (2016) CYP1B1 enhances cell proliferation and metastasis through induction of EMT and activation of Wnt/beta-catenin signaling via Sp1 upregulation. PLoS One 11(3):e0151598. https://doi.org/10.1371/journal.pone.0151598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Li F, Zhu W, Gonzalez FJ (2017) Potential role of CYP1B1 in the development and treatment of metabolic diseases. Pharmacol Ther 178:18–30. https://doi.org/10.1016/j.pharmthera.2017.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Alhouayek M, Gouveia-Figueira S, Hammarstrom ML, Fowler CJ (2018) Involvement of CYP1B1 in interferon gamma-induced alterations of epithelial barrier integrity. Br J Pharmacol 175(6):877–890. https://doi.org/10.1111/bph.14122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Wang J, Cao B, Gao Y, Han D, Zhao H, Chen Y, Luo Y, Feng J, Guo Y (2020) Long non-coding RNA H19 positively associates with aspirin resistance in the patients of cerebral ischemic stroke. Front Pharmacol 11:580783. https://doi.org/10.3389/fphar.2020.580783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Thanks for all the contributors and participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youjian Han.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Dong, B., Chen, M. et al. LncRNA H19 suppresses pyroptosis of cardiomyocytes to attenuate myocardial infarction in a PBX3/CYP1B1-dependent manner. Mol Cell Biochem 476, 1387–1400 (2021). https://doi.org/10.1007/s11010-020-03998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03998-y

Keywords

Navigation