Skip to main content
Log in

Advanced asymmetrical supercapacitors based on graphene hybrid materials

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Supercapacitors operating in aqueous solutions are low cost energy storage devices with high cycling stability and fast charging and discharging capabilities, but generally suffer from low energy densities. Here, we grow Ni(OH)2 nanoplates and RuO2 nanoparticles on high quality graphene sheets in order to maximize the specific capacitances of these materials. We then pair up a Ni(OH)2/graphene electrode with a RuO2/graphene electrode to afford a high performance asymmetrical supercapacitor with high energy and power density operating in aqueous solutions at a voltage of ∼1.5 V. The asymmetrical supercapacitor exhibits significantly higher energy densities than symmetrical RuO2-RuO2 supercapacitors or asymmetrical supercapacitors based on either RuO2-carbon or Ni(OH)2-carbon electrode pairs. A high energy density of ∼48 W·h/kg at a power density of ∼0.23 kW/kg, and a high power density of ∼21 kW/kg at an energy density of ∼14 W·h/kg have been achieved with our Ni(OH)2/graphene and RuO2/graphene asymmetrical supercapacitor. Thus, pairing up metal-oxide/graphene and metal-hydroxide/graphene hybrid materials for asymmetrical supercapacitors represents a new approach to high performance energy storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burke, A. Ultracapacitors: How, why and where is the technology. J. Power Sources 2000, 91, 37–50.

    Article  CAS  Google Scholar 

  2. Kötz, R.; Carlen, M. Principles and applications of electrochemical capacitors. Electrochim. Acta 2000, 45, 2483–2498.

    Article  Google Scholar 

  3. Winter, M.; Brodd, R. What are batteries, fuel cells, and supercapacitors? J. Chem. Rev. 2004, 104, 4245–4269.

    Article  CAS  Google Scholar 

  4. Inagaki, M.; Konno, H.; Tanaike, O. Carbon materials for electrochemical capacitors. J. Power Sources 2010, 195, 7880–7903.

    Article  CAS  Google Scholar 

  5. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

    Article  CAS  Google Scholar 

  6. Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

    Article  CAS  Google Scholar 

  7. Wang, Y.; Yu, L.; Xia, Y. Electrochemical capacitance performance of hybrid supercapacitors based on Ni(OH)2/carbon nanotube composites and activated carbon. J. Electrochem. Soc. 2006, 153, A743-A748.

    Google Scholar 

  8. Qu, Q.; Zhang, P.; Wang, B.; Chen, Y.; Tian, S.; Wu, Y.; Holze, R. Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors. J. Phys. Chem. C 2009, 113, 14020–14027.

    Article  CAS  Google Scholar 

  9. Wu, Z.; Ren, W.; Wang, D.; Li, F.; Liu, B.; Cheng, H. High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS Nano 2010, 4, 5835–5842.

    Article  CAS  Google Scholar 

  10. Li, J.; Gao, F. Analysis of electrodes matching for asymmetric electrochemical capacitor. J. Power Sources 2009, 194, 1184–1193.

    Article  CAS  Google Scholar 

  11. Lang, J.; Kong, L.; Liu, M.; Luo, Y.; Kang, L. Asymmetric supercapacitors based on stabilized α-Ni(OH)2 and activated carbon. J. Solid State Electrochem. 2010, 14, 1533–1539.

    Article  CAS  Google Scholar 

  12. Wang, H.; Gao, Q.; Hu, J. Asymmetric capacitor based on superior porous Ni-Zn-Co oxide/hydroxide and carbon electrodes. J. Power Sources 2010, 195, 3017–3024.

    Article  CAS  Google Scholar 

  13. Kong, L.; Liu, M.; Lang, J.; Luo, Y.; Kang, L. Asymmetric supercapacitor based on loose-packed cobalt hydroxide nanoflake materials and activated carbon. J. Electrochem. Soc. 2009, 156, A1000-A1004.

    Google Scholar 

  14. Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282.

    Article  CAS  Google Scholar 

  15. Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 2010, 132, 12556–12558.

    Article  CAS  Google Scholar 

  16. Stoller, M. D.; Park, S.; Zhu, Y.; An, J.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

    Article  CAS  Google Scholar 

  17. Wang, Y.; Shi, Z.; Huang, Y.; Ma, Y.; Wang, C.; Chen, M.; Chen, Y. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107.

    Article  CAS  Google Scholar 

  18. An, X.; Simmons, T.; Shah, R.; Wolfe, C.; Lewis, K. M.; Washington, M.; Nayak, S. K.; Talapatra, S.; Kar, S. Stable aqueous dispersions of noncovalently functionalized graphene from graphite and their multifunctional high-performance applications. Nano Lett. 2010, 10, 4295–4301.

    Article  CAS  Google Scholar 

  19. Wang, H.; Cui, L.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y.; Cui, Y.; Dai, H. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

    Article  CAS  Google Scholar 

  20. Yang, S.; Cui, G.; Pang, S.; Cao, Q.; Kolb, U.; Feng, X.; Maier, J.; Mullen, K. Fabrication of cobalt and cobalt oxide/graphene composites: Towards high-performance anode materials for lithium ion batteries. ChemSusChem 2010, 3, 236–239.

    Article  CAS  Google Scholar 

  21. Wu, Z.; Wang, D.; Ren, W.; Zhao, J.; Zhou, G.; Li, F.; Cheng, H. Anchoring hydrous RuO2 on graphene sheets for high-performance electrochemical capacitors. Adv. Funct. Mater. 2010, 20, 3595–3602.

    Article  CAS  Google Scholar 

  22. Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

    Article  CAS  Google Scholar 

  23. Wang, H.; Robinson, J. T.; Diankov, G.; Dai, H. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.

    Article  CAS  Google Scholar 

  24. Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705.

    Article  CAS  Google Scholar 

  25. Li, X.; Zhang, G.; Bai, X.; Sun, X.; Wang, X.; Wang, E.; Dai, H. Highly conducting graphene sheets and Langmuir-Blodgett films. Nat. Nanotechnol. 2008, 3, 538–542.

    Article  CAS  Google Scholar 

  26. Lin, Y.; Lee, K.; Chen, K.; Huang, Y. Superior capacitive characteristics of RuO2 nanorods grown on carbon nanotubes. Appl. Surf. Sci. 2009, 256, 1042–1045.

    Article  CAS  Google Scholar 

  27. Wang, Y.; Wang, Z.; Xia, Y. An asymmetric supercapacitor using RuO2/TiO2 nanotube composite and activated carbon electrodes. Electrochim. Acta 2005, 50, 5641–5646.

    Article  CAS  Google Scholar 

  28. Liu, Y.; Zhao, W.; Zhang, X. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors. Electrochim. Acta 2008, 53, 3296–3304.

    Article  CAS  Google Scholar 

  29. Bi, R.; Wu, X.; Cao, F.; Jiang, L.; Guo, Y.; Wan, L. Highly dispersed RuO2 nanoparticles on carbon nanotubes: Facile synthesis and enhanced supercapacitance performance. J. Phys. Chem. C 2010, 114, 2448–2451.

    Article  CAS  Google Scholar 

  30. Min, M.; Machida, K.; Jang, J. H.; Naoi, K. Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors. J. Electrochem. Soc. 2006, 153, A334-A338.

    Google Scholar 

  31. Liu, X.; Pickup, P. G. Ru oxide supercapacitors with high loadings and high power and energy densities. J. Power Sources 2008, 176, 410–416.

    Article  CAS  Google Scholar 

  32. Lee, J.; Pathan, H. M.; Jung, K.; Joo, O. Electrochemical capacitance of nanocomposite films formed by loading carbon nanotubes with ruthenium oxide. J. Power Sources 2006, 159, 1527–1531.

    Article  CAS  Google Scholar 

  33. Chen, P.; Chen, H.; Qiu, J.; Zhou, C. Inkjet printing of single-walled carbon nanotube/RuO2 nanowire supercapacitors on cloth fabrics and flexible substrates. Nano Res. 2010, 3, 594–603.

    Article  CAS  Google Scholar 

  34. Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

    Article  CAS  Google Scholar 

  35. Wang, H.; Robinson, J. T.; Li, X.; Dai, H. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

    Article  CAS  Google Scholar 

  36. Sun, X.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie Dai.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Liang, Y., Mirfakhrai, T. et al. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 4, 729–736 (2011). https://doi.org/10.1007/s12274-011-0129-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0129-6

Keywords

Navigation