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Abstract 

Wheat rusts, including stripe, leaf, and stem rusts, are severe wheat diseases and cause huge yield loss in China annu-
ally. Benefiting from utilizing the genetic resistance wheat varieties, wheat stem rust has been effectively controlled 
since the 1970s; however, the wheat stripe and leaf rusts are still threating the wheat production in China due to 
lack of effective agricultural regulations. This review summarizes the research advances on wheat rust physiology, 
epidemiology, and fungicide resistance in China. In addition, the corresponding field management strategies for the 
integrated control of rust diseases are also discussed.

Keywords  Wheat stripe rust, Wheat leaf rust, Wheat stem rust, Epidemiology, Fungicide resistance, Integrated 
management

Background
Wheat is one of the four staple crops in China. Stripe, 
leaf, and stem rusts are the three dominant rust diseases 
on wheat, which are caused by three Puccinia species 
in phylum Basidiomycota. Historically, the three wheat 
rust diseases caused severe epidemic incidents and sig-
nificant wheat yield loss in China. Currently, stripe rust 
is the most devastating disease on wheat among the 
three in China. Several excellent reviews have summa-
rized the occurrence and management of wheat stripe 
and leaf rusts in China (Shen and Wang 1962; Wang et al. 
1988; Wu and Niu 2000; Li and Zeng 2002; Zeng and Luo 
2006; Wan et al. 2007; Song et al. 2010; Wang et al. 2010; 
Chen et al. 2013; Kang et al. 2015; Ma 2018; Zhao et al. 
2016a, 2018; Zeng et al. 2022), but the research advances 
of wheat stem rust in China have not been comprehen-
sively reviewed yet. Recently, many exciting progresses 

related to the wheat rust disease controls have been 
achieved in China. Here, we reviewed the history of the 
wheat rust in China and proposed the future perspective 
for the disease control from following aspects: the eco-
nomic importance, epidemiology, fungicide resistance, 
and integrated managements.

Historical and current status of wheat rusts
Common wheat (Triticum aestivum L.) is one of the 
most important staple cereal crops, the rice, corn, wheat, 
and potato. China is the largest wheat-producing and 
consuming country, which produces an annual yield of 
over 128 million metric tons, accounting for approxi-
mately 17.5% of the global wheat production based on 
the 10-year’s data from 2011 to 2020 (FAOSTAT 2020). 
In 2021, the total planting area of wheat is 23.6 million 
hectares, which produces approximately 137 million tons 
of wheat (http://​www.​stats.​gov.​cn/). Therefore, wheat is 
of extremely and economically important crop in China. 
Currently, the major wheat-planting regions are distrib-
uted in five provinces, Shandong, Hebei, Henan, Jiangsu, 
and Anhui, which is also known as ‘the Huang-Huai-Hai 
winter wheat areas’ (Wan et al. 2007).

Wheat rusts, including stripe rust (or yellow rust) 
(Fig. 1), leaf rust (or brown rust) (Fig. 2), and stem rust 
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(or black rust) (Fig. 3), are the dominant wheat fungal 
diseases. These wheat diseases significantly limit the 
yield reduction. Wheat rust is an ancient disease. The 
recorded occurrence of wheat rusts in China can be 
tracked back to as early as 4000 years ago, the time of 

the introduction of wheat into Hexi Corridor in Gansu 
during the Shang Dynasty (Li and Zeng 2002; Yang et al. 
2016; Wei 2021). It was first documented in detail in a 
Chinese ancient agricultural book, Qimingyaoshu 《齐
民要术》 by the author Sixie Jia during AD 533 to 544 

Fig. 1  Single stripe signs of uredia between leaf veins of wheat stripe rust (a) and a nursery field showing severe stripe rust infection on wheat 
plants at elongation stage in Mianyang, Sichuan on March 18, 2011 (b)

Fig. 2  Symptoms of leaf rust on wheat leaves. a A few uredia at early stage of the development. b Numerous uredia produced on a leaf at late 
stage of the development
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in the Beiwei Dynasty. In this book, it was documented 
that wheat was vulnerable to ‘jaundice’ disease (actually 
stripe rust) and the disease was figuratively described 
as ‘jaundice’ because it resembled the color of newly 
born infants. Currently, wheat stripe rust is the most 
destructive disease among the three wheat rust diseases 
in China. It mainly prevails in the northwest and south-
west China. Because of the severe epidemics, the stripe 
rust disease is listed in first class crop diseases manage-
ment in the 333th bulletin by Ministry of Agriculture 
and Rural Affairs of the People’s Republic of China on 
September 15, 2020 (http://​www.​moa.​gov.​cn/​govpu​
blic/​ZZYGLS/​202112/​t2021​1224_​63854​89.​htm).

Wheat leaf rust usually takes place in the North 
China Plain, the middle-lower reaches of the Yangtz 
River, southwestern and northeastern regions of China 
(Liu and Chen 2012). Wheat leaf rust has been well 
controlled in China in the last decades, but the epi-
demic of the disease has often occurred in many wheat-
growing provinces, especially in ‘Huang-Huai-Hai 
regions’ recently (Zhao et  al. 2008; Zhang et  al. 2018, 
2020b; Wang et  al. 2022b). The increasing incident of 
wheat leaf rust has potentially threatened the wheat 
production in these regions, and is a major rust disease 
after stripe rust in China.

Wheat stem rust primarily occurred in the northeast-
ern spring wheat-growing region of China (Zeng et  al. 
1963; Li and Zeng 2002). This disease has been prob-
lematic in China prior to the 1970s. However, the dis-
ease rarely occurs in China nowadays (Han et  al. 2010; 
Li et al. 2017), which benefits from extensive application 
of wheat cultivars that carry the stem rust-resistant gene 
Sr31 since the 1970s (Li and Zeng 2002). Although Ug99 
(race TTKSK) and its variants that successfully over-
come the resistance of Sr31 and have widely spread from 
the origin of Uganda to many other African and Asian 
countries (https://​rustt​racker.​cimmyt.​org/?​page_​id=​
260), Ug99 has not been detected in China yet (Cao et al. 
2007). However, most of tested Chinese native wheat cul-
tivars (98.3% out of 118 varieties) are highly susceptible 
to Ug99. Ug99 also overcomes Sr21 and Sr38 that are two 
key resistance genes to stem rust in China. Therefore, 
invasion of Ug99 lineage races to China is of significantly 
potential risk. Regulations to prevent the invasion of 
Ug99 races are necessary.

Severe impacts recorded in the last 70 years
Prior to 1949, several severe epidemic incidents of wheat 
stripe rust were reported in Sichuan and Fujian prov-
inces in 1939–1940, which resulted in a yield reduction 

Fig. 3  Symptoms of stem rust in wheat fields. a Uredia on a diseased stem. b Uredia on awns and glumes of a wheat head
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up to 15% and 60%, respectively. In the 1940s, the dis-
ease severely occurred in the middle regions (Guanzhong 
plain) of Shaanxi Province, especially in the years of 1942, 
1946, 1948, and 1949 (Li and Zeng 2002). Since 1950, 
China has encountered five nationwide severe wheat 
stripe rust epidemics, which took place in 1950, 1964, 
1990, 2002, and 2017, respectively. These epidemics 
resulted in the wheat rust outbreak in a total of 550 mil-
lion hectares, leading to the yield loss up to 13.8 million 
metric tons (Li and Zeng 2002; Ma 2018). The most sever 
epidemics occurred in 1950 and 1964, which affected the 
growing area over 13.33 million hectares, with a yield 
loss of 6 million and 3.2 million metric tons, respectively 
(Li and Zeng 2002). From 1972 to 1983, several severe 
stripe rust epidemic events occurred in the key over-
summering (Qinghai, Gansu) and overwintering regions, 
which are distributed in Sichuan, Shaanxi, Henan, and 
Hubei provinces. Each incident resulted in the infection 
of wheat areas approximately 1.33 million to 2.0 million 
hectares (Li and Zeng 2002). In addition, large-scale epi-
demics caused by the disease occurred in 1975, 1983, and 
1985, resulting in an estimated crop yield reduction up 
to 0.865  million, 1.074  million, and 0.85 million metric 
tons, respectively. In 1991, an extremely severe nation-
wide epidemic took place in Gansu, Ningxia, Shaanxi, 
Henan, Hubei, and Shandong provinces, which destroyed 
approximately 6.53 million hectares of wheat and caused 
a conspicuous crop yield loss of 0.434 million metric tons, 
although the fungicides were timely applied (Li and Zeng 
2002). Based on the data acquired from 2006 to 2015, 
the average yield reduction caused by wheat stripe rust 
is approximately 0.159 million metric tons annually (Liu 
et al. 2016). The most recent large scale of stripe rust epi-
demic occurred in 2019, which is believed infecting two 
million hectares of wheat. Notably, no significant yield 
loss was observed due to the application of fungicides.

Serious epidemics caused by wheat leaf rust have been 
reported in winter wheat-growing areas of northern 
China and spring wheat-growing areas of northeastern 
China. This disease has led to a disastrous decrease in 
yield during the 1950s–1980s (Hu and Roelfs 1985; Li 
and Zeng 2002; Zhou et al. 2013; Peng et al. 2016). In this 
period, four moderate epidemics of leaf rust occurred 
in the north winter wheat-planting areas in 1969, 1973, 
1975, and 1979, respectively, which also resulted in a 
huge yield reduction (Li and Zeng 2002). Since the late 
1990s, five severe leaf rust epidemics in China have been 
documented in the year of 2008, 2009, 2012, 2012, and 
2015 (Zhou et al. 2013; Zhang et al. 2015, 2020b, 2020c; 
Wu et al. 2019), and the most severe epidemic of leaf rust 
occurred in Anhui, Gansu, Henan, Sichuan, and Shanxi 
provinces in 2012. It damaged more than 15 million hec-
tares of wheat growing area and caused a yield reduction 

near 3 million metric tons (Zhou et  al. 2013; Wu et  al. 
2019).

Wheat stem rust is known as a serious issue in wheat-
growing regions before the 1970s, especially in spring 
wheat growing regions of northeastern China, where 
nine severe epidemics were reported from 1923 to 1964 
(Li and Zeng 2002). Two most severe wheat stem rust 
epidemics occurred in 1923 and 1948, which caused 
a massive yield reduction of 7.4 million and 5.6 million 
metric tons, respectively (Wu et  al. 2020b). In 1956, 
1958, and 1964, the moderate and severe large-scale epi-
demics occurred in ‘Jiang-Huai region’ (also known as 
‘Yangtz-Huaihe region’), from 1949 to 1966. Each epi-
demic caused a massive yield loss. For instance, in 1956, 
the epidemic in Jiangsu and Anhui provinces caused a 
noteworthy yield loss up to 1.0 million metric tons (Li 
and Zeng 2002). Since the 1970s, wheat stem rust has not 
been a notable issue and the pathogen is considered as 
opportunistic pathogen and cannot cause a serious threat 
to wheat production. Therefore, wheat stripe rust is the 
most destructive rust disease and more attentions should 
be paid to control this disease.

The causal agents
Stripe rust, leaf rust, and stem rust on wheat are caused 
by different Puccinia species in Pucciniaceae family of 
phylum Basidiomycota. Wheat stripe rust is caused by 
Puccinia striiformis Westendorp f. sp. tritici Eriksson 
(Pst) [syn. P. glumarum (Schumacher) Erichsen et Hen-
nings] (Fig. 4a, b). Traditionally, P. striiformis f. sp. tritici 
is one of five different formae speciales (f. sp., pl.) of P. 
striiformis (Eriksson 1894; Stubbs 1985). Whereas, based 
on morphological and genomic data, P. striiformis (stripe 
rust agents of wheat, Aegilops, Elymus, and barley) were 
clustered into the same clade. Therefore, they were all 
re-designated as P. striiformis (Liu and Hambleton 2010). 
Wheat leaf rust is caused by P. triticina Eriksson (Pt) 
(syn. P. recondite Roberge ex Desmaz f. sp. tritici Eriksson 
et Hennings) (Mains 1932) (Fig. 4c, d); while wheat stem 
rust is caused by P. graminis f. sp. tritici Eriksson et Hen-
nings (Pgt) (Fig. 4e, f ). The differences are also reflected 
by the distinct uredia and urediospores of three rust spe-
cies, where they exhibit differences in color, spore size 
and cause different symptoms on the hosts.

Primary hosts and alternate hosts
Primary hosts (uredial host)
The wheat rusts Pst, Pt, and Pgt are obligate parasites. 
These pathogens primarily infect wheat, other cereal 
crops, and grasses. By infecting these hosts, they go 
through the uredial or telial stages (Stubbs 1985). The 
monocot plants Triticum, Aegilops, Agropyron, Bro-
mus, Elymus, Hordeum, and Secale are all vulnerable to 
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Pst (Stubbs 1985). In fact, many approaches have been 
made to determine the susceptibility of grass plants 
to Pst, Pt, and Pgt (Ling 1945; Lu et al. 1958; Peng and 
Chen 1987; Wang et  al. 1987; Niu et  al. 1991a, 1991b; 
Yuan et al. 1994; Wei et al. 2021; Qin et al. 2022; Li and 
Zeng 2002). Currently, 88 grass species (including vari-
eties) from 16 genera in the family Poaceae could serve 

as uredinial hosts or accessory hosts for Pst (Li and 
Zeng 2002). However, Pt isolated from leaf rust of six 
grass species, Agrimonia Pilosa, Bromus inermis, Ely-
mus dahuricus, E. sibiricus, Roegneria penduline, and R. 
ciliaris, could infect wheat (Wang et al. 1987), suggest-
ing that these plants assist the wheat leaf rust prevailing 
in field.

Fig. 4  Urediospores and teliospores of the wheat stripe, leaf, and stem rust fungus. a, b Urediospores (a) and teliospores (b) of Puccinia striiformis f. 
sp. tritici. c, d Urediospores (c) and teliospores (d) of Puccinia triticina. e, f Urediospores (e) and teliospores (f) of Puccinia graminis f. sp. tritici 



Page 6 of 30Zhao and Kang ﻿Phytopathology Research             (2023) 5:6 

Alternate host (aecial host)
The pathogens Pgt, Pt, and Pst are known to be heter-
oecious and macrocyclic. The have to infect alternate 
hosts to complete the sexual reproduction. For Pgt and 
Pt, their alternate hosts were discovered over a century 
ago (de Bary 1866; Jackson and Mains 1921); however, 
the alternate hosts for Pst remained to be mysterious 
till 2010 (Jin et al. 2010). Now it is known that Berberis 
and Mahonia are the alternate common hosts for Pgt 
and Pst (Roelfs 1985; Jin et  al. 2010; Zhao et  al. 2013; 
Cheng et  al. 2022). Notably, there are some differences 
for Berberis and Mahonia species or subspecies when 
they serve as alternate hosts for Pgt and Pst. For example, 
Berberis circumserrata could be an alternate host for Pst 
but not for Pgt (Roelfs 1985; Zhao et al. 2013). There are 
215 endemic Berberis and 36 endemic Mahonia species 
in China, while there are 500 Berberis and 60 Mahonia 
species around the world (Ying and Chen 2001). So far, 
more than forty Chinese Berberis species and four Maho-
nia species/subspecies have been reported to serve as 
alternate hosts for Pst (Zhao et al. 2013, 2016b, 2018; Du 
et al. 2019; Zhuang et al. 2019; Cheng et al. 2022). How-
ever, only one endemic Berberis species, the B. amurensis 
Rupr., was identified as an alternate host for Pgt in China 
(Zeng et al. 1963). Under field conditions, Pgt infects five 
Berberis species, B. aggregata, B. brachypoda, B. potani-
nii, B. shensiana, and B. soulieana, and sexual repro-
duction of this rust is completed during the infection of 
these hosts (Zhao et al. 2015). These observations clearly 
indicated that the above mentioned Berberis species are 
alternate hosts for Pgt.

Although many Thalictrum, Isopyrum, and Clema-
tis species in Ranunculaceae family, and a few Anchusa 
and Echium species in the Boraginaceae family have been 
identified as alternate hosts for Pt (Chester 1946; Sibilia 
1960; d’Oliveira and Samborski 1966), only four meadow 
rue (Thalictrum) species are the native alternate hosts 
in China. These species were identified as T. minus L., 
T. petaloideum L., T. minus var. hypoleucum, and T. bai-
calense recently (Zhao et al. 1994, 2021).

Life cycle of the rusts
Pst, Pgt, and Pt are the heteroecious, macrocyclic rust 
fungi. They complete their life cycle with five different 
types of spores on two unrelated hosts (Fig.  5). Their 
full life cycle includes asexual and sexual stages. Under 
favorable conditions, basidiospores generate from teli-
ospores. After germination, it can infect an alternate host 
to produce pycnia and pycniospores, as well as receptive 
hyphae (trichogyne) and paraphyses. With these mating 
type and receptive hyphae, they complete their sexual 
life cycle and consequently produce aecial clusters from 
abaxial leaves, where the aeciospores generate inside of 

the aecial clusters. Once the aecial clusters broke, aecio-
spores are released from aecial clusters and spread by 
wind to infect primary hosts, wheat and grasses. Ure-
diospores are produced after aeciospores infect the pri-
mary hosts. However, teliospores are primarily formed in 
wheat host tissues at a late wheat growth stage.

Wheat rust epidemiology
The wheat stripe rust epidemic in China can be divided 
into different epidemiological regions. In fact, the epide-
miological regions of the disease are consistent (Li and 
Zeng 2002) till 1995, when Zeng and the colleagues pro-
posed that the Chinese epidemiological region of wheat 
stripe rust can be divided into three regions (Zeng and 
Sun 1995). Based on a combined method of large-scale 
and long-term field surveillances, geographic infor-
mation system (GIS) system and molecular data, they 
divided the epidemiological regions into oversummering 
region (for the autumn spores), winter Pst-reproducing 
region that for the spring spores, and spring epidemic 
region (Chen et  al. 2013). Later, Zeng and Luo (2006) 
proposed to subdivide China’s main stripe rust epidemio-
logical region into 15 epidemiological zone according to 
the geographic features, crop cultivation modes, the reg-
ularity for pathogen oversummering and overwintering, 
and the frequency of stripe rust epidemics. It is worth 
to mention that because of the unique geography, the 
Yunnan epidemiological region is relatively independent 
because the pathogen can complete the disease cycle and 
over-summering and over-wintering without traveling to 
other regions (Li and Zeng 2002). As a result, this epide-
miological region is almost isolated from other regions. 
However, recent studies revealed that the Yunnan epi-
demiological region and other southwestern epidemio-
logical regions are also involved in wheat stripe rust 
epidemics in China (Awais et al. 2022; Huang et al. 2022; 
Ju et al. 2022; Zhan et al. 2022a). In addition to Yunnan 
region, Tibet and Xinjiang also developed to be the inde-
pendent stripe rust epidemiological regions (Li and Zeng 
2002; Hu et  al. 2017; Awais et  al. 2022). Importantly, 
Xinjiang and other Chinese provincial Pst populations 
are all isolated from that of Pakistan due to extremely 
high genetic divergence (Awais et  al. 2023). Chen et  al. 
(2013) considered that Chinese stripe rust epidemiologi-
cal regions include oversummering regions, winter-Pst 
reproductive regions, and spring epidemic regions. The 
oversummering regions include Gansu (area of Long-
nan, Tianshui, Dingxi, Linxia, Pingliang, Qingyang, and 
Gannan), Ningxia (Guyuan), Qinghai (Haidong), Shaanxi 
(Baoji), and Sichuan (Ganzi, Aba, and Liangshan area). 
However, the winter-Pst reproductive regions include 
low mountain, valley, mountain dam, and plain areas 
in Sichuan, South Shaanxi, Northwest Hubei, Yunnan, 
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Guizhou, and Chongqing. While, the spring epidemic 
regions are the most of winter wheat-growing regions, 
including the ‘Huang-Huai-Hai Plain’, the regions of Bei-
jing, Tianjin, Hebei, Henan, Shandong, Jiangsu, Anhui, 
the Guanzhong Plain of Shaanxi, and mid-lower reaches 
of Yangtz River.

For wheat stem rust, spring wheat-growing regions of 
Northeast China and Inner Mongolia, Northwest China, 
and wheat-growing regions of South Yunnan Province 
(Dehong, Honghe, Wenshan, and Simao regions) are 
important epidemiological areas. Weak winter wheat-
growing regions of middle and lower reaches of Yangtz 
River and Sichuan (Ganzi) are regular epidemiological 
areas. Wheat-growing regions of Fujian Province and 
Southeastern coastal regions (Guangdong and Guangxi 
provinces) are also epidemiological areas (Wu and Huang 
1987; Cao and Chen 2009).

Wheat leaf rust frequently occurs in wheat-growing 
regions of Southwest China and the mid-lower reaches 
of Yangtz River, but many of them appear in Yangtz 

River reaches, ‘Huang-Huai-Hai Plain’, and southwest-
ern China. Occasionally, severe epidemics can occur in 
wheat-planting regions of North and Northeast China, 
and even Northwest China (Jin et  al. 2017; Zhou et  al. 
2013).

The disease cycle of Puccinia species
Puccinia species are obligate pathogens when they infect 
wheat, where they fully depend on this living host to 
complete disease cycle. Temperature is the key factor for 
their disease cycle, and the rust diseases require different 
temperature for their growth. Wheat stem rust prefers 
higher temperature (opt. 30°C) than wheat leaf rust (opt. 
25°C) and wheat stripe rust (opt. 12–15°C) (Roelfs et al. 
1992). Cool and humid weather favor the development of 
wheat stripe rust. By contrast, high temperature inhibits 
the disease development (Rapilly 1979). In China, wheat 
stripe rust complete disease cycle by windborne uredio-
spore infection, including oversummering and overwin-
tering spores and the spores of infected autumn-sown 

Fig. 5  Life cycle of Puccinia striiformis f. sp. tritici 
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wheat (Li and Zeng 2002). In susceptible hosts, the tem-
perature for Pst oversummering period cannot exceed 
23°C (max. aver. Temp. of a 10-day duration) in July and 
August, the two hottest months (Li and Zeng 2002; Zeng 
and Luo 2006). In general, the lowest altitude for Pst 
oversummering is over 1600  m above sea level, where 
the highest average temperature is typically below 23°C. 
Urediospores in oversummering areas are spread to 
autumn-sown wheat seedlings by wind in the local and 
overwintering areas, where the pathogen infects the 
plants and develops the stripe rust. In addition, the low-
est temperature for Pst overwintering period is −6°C to 
−7°C from December to next January which are the cold-
est months. However, as long as the wheat seedlings are 
covered by snow, these pathogens can safely overwinter 
even if temperature drops to −10°C (Fig. 6) (Li and Zeng 
2002). Pst usually overwinters in infected wheat tissues 
in the form of hyphae. In these regions, wheat grows 
slowly in autumn and winter, which is usually warmer 
than other regions. Under such circumstances, Pst con-
tinuously grow on infected wheat plants during winter 
and subsequently develop as the Pst-reproducing regions. 
South Henan, North Hubei, Longnan of South Gansu, 
South Shaanxi, and Sichuan Basin are the primary over-
wintering regions (Li and Zeng 2002; Chen et al. 2013). In 
spring, the pathogens in overwintering regions are trans-
mitted to wide wheat-growing regions in East China and 
other regions to cause inter-regional epidemics.

Importantly, Chinese researchers found that in spring 
of the Northwest oversummering areas, such as Qinghai, 
Gansu, Western Shaanxi, and Tibet, Pst basidiospores 
can infect susceptible barberry to complete their sexual 
cycle (Zhao et  al. 2013, 2022; Wang et  al. 2016; Chen 

et  al. 2021a; Liu et  al. 2021; Du et  al. 2022). In some 
regions, such as Qinghai, Shaanxi, and Gansu, suscepti-
ble barberry released basidiospores are the major source 
of infection, and often cause the epidemics of wheat 
stripe rust (Chen et al. 2021a; Liu et al. 2021; Zhao et al. 
2022). Nevertheless, it was found recently that in Tibet, 
Pst can infect susceptible barberry to complete their sex-
ual reproduction in autumn (Du et al. 2022), but whether 
susceptible barberry is related to stripe rust infection on 
wheat is unknown.

Unlike other rusts, wheat leaf rust has wider oversum-
mering and overwintering areas in China. In particular, in 
some places, Pt urediospores can continuously infect the 
young wheat stumps after harvesting and are preserved 
in the local for oversummering. In autumn, the patho-
gens further infect the winter wheat seedlings that are 
sown in autumn season to cause leaf rust and overwinter 
in the infected wheat tissues in the form of hyphae. Gen-
erally, the frequency of overwintering in warmer regions 
is higher than that in cold regions, and the frequency 
of overwintering is positively correlated to the level of 
wheat leaf rust epidemic in the coming spring. The epi-
demic is mainly attributed to the continuous re-infection 
via the windborne urediospores.

In contrast, wheat stem rust has narrow overwintering 
areas due to the nature of urediospores that are sensitive 
to cold. As such, the pathogens overwinter in southeast-
ern regions (i.e. Fujian, Guangdong) and South Yunnan 
rather than in north wheat-producing regions. The rust 
can parasitize wheat plants in overwintering areas in 
which the average minimum temperature in December to 
next January is above 10°C (Huang et  al. 1993). Pgt can 
attack autumn-sown wheat seedlings in Shandong Pen-
insula and ‘Xuhuai regions’ of Jiangsu Province. How-
ever, they cannot survive the cold winter in most of these 
regions. Although few pathogens may successfully over-
winter in these regions, they contribute inconsiderably to 
wheat stem rust epidemics (Huang et al. 1993). In spring 
and summer, spores in overwintering areas spread from 
south to north and west via the Yangtz River reaches, the 
North China Plain and reach spring wheat-producing 
regions in Northeastern and Northwestern China as well 
as Inner Mongolia. Thus, the dispersal of the pathogen 
causes vast wheat stem rust epidemics. Pgt urediospores 
mostly oversummer on late-maturing spring wheat and 
wheat stump in Northwestern and Southwestern China, 
and also on volunteer winter wheat in the plains of Jiao-
dong of Shandong Province and Huaibei of Jiangsu Prov-
ince (Huang et al. 1993).

The race evolution of the pathogens
In nature, pathogens can rapidly evolve. The rule is also 
seen in the three wheat rust pathogens. Indeed, wheat 

Fig. 6  Autumn-sown winter wheat seedling leaves showing 
developing stripe rust infection underneath snow patches in Baoji, 
western of Shaanxi Province in China, based on field observations on 
December 14, 2015
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rust pathogens can evolve to new virulent races with a 
high frequency in the field. New races often overcome 
the resistance of wheat varieties and cause disease. Some 
of the races dominate epidemics in the field by overcom-
ing a certain resistance gene and evolve as the emerging 
new races.

The Pst races
Race identification of Pst in China was commenced in the 
1940s by Fang (1944), who identified nine races from iso-
lates in southwestern of China. These pathogen races are 
mostly from Yunnan Province (Fang 1944). Later, Lu et al. 
(1956) identified 10 isolates that were collected from 
seven provinces in 1951 as 5 races which were used by 
Gassner and Straib on wheat cultivars Carsten V, Michi-
gan Amber, Spaldings Prolific, Blé rouge Décosse, and 
Heines Kolbens (Gassner and Straib 1930). Based on the 
maximum scores of reaction on the differentials includ-
ing Early Premium, Nongda 3, Bima 1, Bima 4, Liying 3, 
and Yupi, fifty Pst isolates collected in 1953–1955 were 
determined as 16 races, and 8 of which were recovered 
from Elymus sibiricus, E. chinense, and Agropyron spp. 
(Lu et  al. 1956). Since 1957, CY (CY = Chinese yellow) 
series were assigned to Chinese Pst races, and later CYR 
(CYR = Chinese yellow rust) series designation for races 
of this rust has been used till nowadays. In addition, 
pathotypes that are virulent to a certain genotype of Chi-
nese differential sets, such as Hybrid 46 (Hy46) patho-
type, Suwon 11 (Su11) pathotype, Lovrin 10/13 (Lv10/13) 
pathotype, Guinong 22 (G22) pathotype, and Jubilejina 2 
(Ju2) pathotype, were also determined as Pst races that 
were not designated to CYR series. Since the designation 
of physiological CYR series races (CYR1 to CYR34) 
(Table  1), it has been designated according to the race 
with an outbreak frequency higher than 10% and a con-
tinuous prevalence in China (Lu et  al. 1963; Liu et  al. 
2017). During 1957–1961, 10 CYR races (CYR1–CYR10) 
were identified from 325 Pst isolates. Among the races, 
three of which, the CRY1, CYR8, and CYR3 were wide-
spread (Lu et  al. 1963). During 1963–1966, CYR1 and 
CYR10 were the dominant races, while CYR10 displayed 
the highest outbreak frequency in 1964, but CYR8 
decreased to rare race. CYR13 was firstly found in Lintao 
County of Gansu Province in 1962 and it exhibited an 
increasing frequency from 6.4% to 16.3% during 1964–
1966. By contrast, during 1971–1979, CYR1, CYR8, 
CYR10, and CYR13 displayed a decreasing frequency and 
were not detected any more after 1975. Meanwhile, 
CYR17, CYR18 (virulent to Abbondanza), and CYR19 
rapidly developed into major races. CYR17 caused an 
epidemic in Shaanxi Province in 1965. It gradually devel-
oped to be dominant race during 1974–1976 in North 
and East China; whereas, CYR18 that was founded for 

the first time in Gangu County in Gansu Province exhibit 
an extremely low frequency of outbreak. At the same 
time, in Sichuan Province, CYR18 was prevalent, but 
CYR17 was not. In Gansu Province, however, CYR18 was 
conspicuous and CYR17 had a high frequency of epi-
demic. Both races showed high outbreak frequency in 
Shaanxi Province (Wang et al. 1986). Since 1975, the out-
break frequency of CYR17 and CYR18 remarkably 
decreased, but CYR19 rapidly increased as a major race, 
where the outbreak frequency reached the highest of 
81.1% in all the countrywide races in 1977 after the first 
appearance in Qingsheng County of Sichuan Province in 
1972 (Wang et al. 1986). During 1980–1985, the CYR19 
was proved as a complex of races, which was further sep-
arately designated as CYR23 (previously 19-1); however, 
CYR24 (previously 19-3), CYR25 (previously 19-4), 
CYR26 (previously 19-2), CYR23, CYR25, and CYR26 
were prevalent races, and CYR25 was predominant race 
(Wang et al. 1986). CYR20 was first found virulent to the 
wheat variety Fengchan 3 in Shaanxi Province in 1971 
(SXIPP 1976). CYR21 was initially detected in the Pingli-
ang of Gansu Province in 1975. However, both CYR20 
and CYR21 were not developed to be the dominant races 
(Wang et al. 1986). In 1982, Su11 pathotypes that are vir-
ulent to wheat genotype Suwon 11 were first detected in 
an experimental field at Qinghai Academy of Agricultural 
Sciences (Li 1983; Wang et  al. 1986). CYR22 was first 
detected in Tianshui of Gansu Province in 1975, which 
then developed to be the dominant race in Gansu and 
Shaanxi provinces with the outbreak frequency of 25.5% 
and 22.7% in 1983, respectively. Lv10 and Lv13 patho-
types that are virulent to wheat genotypes Lovrin 10/13 
(Yr9) were initially detected in Longnan of Gansu Prov-
ince in 1975 and 1979, respectively (Kang and Li 1984; 
Kang et al. 1987). CYR27, also known as pathotype 82-1, 
was first detected in Xihe County of Gansu Province in 
1980. Later, it reached a high outbreak frequency in 1983. 
The trend was promptly decreased in 1984 in the prov-
inces Gansu, Shaanxi, Sichuan, Yunnan as well as eastern 
regions of China, including Shanxi, Hebei, Shandong, 
Henan, Jiangsu, Anhui, Hebei, Hunan, and Inner Mongo-
lia (CNWRCG 1985; Wang et al. 1986). CYR28 is a Lv10 
pathotype complex and CYR29 is also known as Lv13-1. 
Both races are the members of Lv10/13 pathotypes. They 
were first detected in 1983 and 1985, respectively 
(CNWRCG 1987). During 1986–1990, CYR29 rapidly 
became the top outbreak frequency race over others in 
1988, and reached the maximum frequency of 40.3% in 
1989. The frequency remained the highest in the follow-
ing 2 years (Wu et al. 1993). Meanwhile, Lv10/13 patho-
types rapidly developed into a prevalent pathotype. Due 
to rapid development of CYR29 and Lv10/13 pathotypes, 
the susceptible wheat which was planted about 8.8 
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million hectares in 1990 and accounted for 62.7% of the 
total planted areas in that year, was suffered with severe 
wheat stripe rust epidemic (CNWRCG 1991). In con-
trast, CYR28 remained low outbreak frequencies consist-
ently. During the same period, the outbreak frequency of 
CYR23, CYR25, and CYR26 races were rapidly decreased 
(CNWRCG 1991). In 1991–1996, CYR29 kept prevailing 
and emerged as the most dominant race till 1995, but it 
became inconsiderable to the rust epidemic since 1996. 
Although CYR25 ever developed as a second dominant 
race during 1991–1992, its outbreak frequency was low. 
CYR30, previously names as race 91-1, is virulent to the 
genotypes Hybrid 46 (Yr3b, Yr4b, and YrH46). Similarly, 
CYR31 previously named as race 93-1, is virulent to gen-
otypes Hybrid 46 and Suwon 11 (YrSu). CYR30 and 
CYR31 were first detected in Sichuan in 1991 and in 
Gansu in 1993, respectively; both pathogens have a broad 
virulence spectrum than CYR28 and CYR29. As a result, 
CYR 30 and CYR31 rapidly became third and second 
prevalent races during 1993–1995. In particular, CYR31 
ever emerged as the top prominent race in 1996 (Wang 
et  al. 1996; Wan et  al. 1999). Notably, Hy46 and Su11 
became the major pathotypes during 1994–1996, and 
they were further classified to 9 and 12 sub-pathotypes, 
respectively, based on their virulence differentiation 
(Wan et al. 1999). CYR32, a previous name Hy-3, is des-
ignated in 2002 and is more virulent than CYR30 and 
CYR31. This race was first detected in the wheat cultivar 
Red Abbondanza in Huangzhong of Qinghai Province in 
1994 (Wan et  al. 2003). The outbreak frequency of this 
race is comparable to that of CYR31, which are about 
11.7% in 2000. However, in 2001, the outbreak frequency 
reached incredibly to 28.8% (Wan et  al. 2003). CYR33 
(also known as Su11-14 previously) is virulent on Suwon 
11, which was designated in 2008. This race was detected 
in 1997 with an outbreak frequency less than 1%, but the 
frequency unbelievably jumped to 26.72% in 2007 (Chen 
et al. 2009). Since 2000, CYR32 and CYR33 become the 
dominant races (Wan et  al. 2003; Liu and Chen 2012; 
Wang et  al. 2014; Li et  al. 2016b; Wang et  al. 2017; Jia 
et  al. 2018a, 2021); with an exception of CYR33 that 
exhibited a remarkably low frequency (< 5%) in Gansu in 
2018 (Jia et al. 2021). Based on the annual reports from 
2010 to 2011, CYR32 and CYR33 were mostly detected in 
Gansu, Shaanxi, and Sichuan provinces (Liu et al. 2012). 
There are 133 races and pathotypes were identified from 
1014 isolates that are collected from 14 provinces. Thir-
teen of which are CYR races, including CYR17, CYR20, 
CYR21, CYR23, CYR25, CYR26, CYR27, CYR28, CYR29, 
CYR30, CYR31, CYR32, and CYR33. The remaining 115 
isolates were known pathogens (Liu et  al. 2012), which 
increases 35 pathotypes than that of identified before 
2004 (Wan et  al. 2004). Su11 pathotypes include 586 

isolates (57.8% of the total) and is followed by Hy46 
pathotypes that consist 273 isolates (26.9% of the total). 
G22 pathotypes, known to be virulent on genotype 
Guinong 22 which harbors resistance gene Yr26, Yr24, 
and Yr10, are spreading since the first detection of the 
sub-pathotype 9 (G22-9) in Pi County of Sichuan Prov-
ince in 2009 (Liu et al. 2010). Due to rapid spreading, the 
outbreak frequency of G22-9 increased from 0.11% in 
2009 to 10.56% in 2015. As the result, the sub-pathotype 
G22-9 promptly developed to be the dominant pathotype 
and therefore was designated as CYR34 in 2016 (Liu et al. 
2017). Currently, CYR34, CYR33, CYR32, and G22 
pathotypes are dominate races/pathotypes (Han et  al. 
2016; Li et al. 2016b; Jia et al. 2018a, 2021). Meanwhile, 
more attention should be paid on monitoring the emerg-
ing pathotypes. For instance, the ZS pathotype, which is 
virulent to wheat genotype Zhong 4 (ZS). This pathotype 
was first detected from wheat cultivar Baomai in Taibai 
County of Shaanxi Province in 2003. It exhibits a similar 
virulence spectrum on 19 Chinese wheat varieties in 
addition to Zhong 4. (Li et al. 2016b). However, a patho-
type ZS-1 suddenly caused epidemics in Gansu Province 
during 2017–2018 (Jia et al. 2021). A rising concern is the 
high virulence pathotypes that have broken the fence of 
the resistance gene Yr-5 that exists in the genotype Triti-
cum aestivum subsp. spelta var. album. This pathotype 
displays similar virulence to the widely distributed 
CYR32 and CYR34 races and currently has evolved to 
generate the same lineage pathotypes (Zhang et al. 2020a, 
2022). Recently, more Pst races have been sporadically 
identified in a few provinces since 2012. Race identifica-
tion of Pst is very important to understand temporal 
dynamics, and can guide Yr gene deployment in the epi-
demiological regions. It is equally important for manag-
ing wheat stripe rust and race-targeted wheat breeding 
program.

The Pt races
Pt race identification in China started from 1940 by pro-
fessor Huanru Wang who temporarily worked at the 
Institute of Agricultural Research, Tsinghua University in 
Kunming, Yunnan Province (Wang 1947). He identified 
three races, the race 1, 63, and 123 from Yunnan isolates 
that were collected in 1940–1942 using the same inter-
national differential hosts applied by Mains and Jackson 
(1926). Later, Kening Wang identified 417 Pt isolates 
collected from 1949 to 1951 using the international dif-
ferential hosts set; however, the differentials was not 
suitable for identifying Pt races of China (Wang 1961). 
Until the early 1970s, the uniform differential hosts set, 
including eight wheat cultivars, viz. Lovrin 10, 6068, 
INR66-331, Redman, Dongfanghong3, Fengchan 3, Bai-
youbao, and Taishan 4, were used as Chinese differentials 
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to differentiate Pt races. Meanwhile, local wheat culti-
vars were added to the differential hosts. Therefore, the 
non-uniform names of Pt races, such as Zhi, Chun, Yu, 
and Lu series, were used in designating isolates in differ-
ent regions of China (Wang et al. 1982). By 1977, a uni-
form nomenclature was determined to designate Chinese 
Pt races with CL (CL = China leaf rust) plus a hyphen 
and a number (also Chinese Yezhong) series. Using this 
nomenclature rule, 1237 Pt isolates were identified annu-
ally from 18 provinces during 1974–1979, and finally 
were identified as 11 races by the Institute of Plant Pro-
tection, Chinese Academy of Agricultural Sciences, the 
College of Plant Protection, Hebei Agricultural Univer-
sity, and the Institute of Plant Protection, Heilongjiang 
Provincial Institute of Agricultural Sciences. Three out 
of 11 prevalent races were renamed as CL-1 (Yezhong 1), 
CL-2 (Yezhong 2), and CL-3 (Yezhong 3). The remaining 
8 races, including Zhi 2 to Zhi 7, Zhi 13, and Shandong 
A, were not uniformly determined (Wang et  al. 1982). 
In 1981, a combination of original standard differentials 
and additional eight wheat cultivars (Taishan 1, Zhong 5, 
Rulofen, Lovrin 12, Predgornaia 2, Avrora, Kavkez, and 
Kangyin 655) was used to differentiate Pt races. In 1986, 
16 races, CL-4, CL-38, CL-34, CL-7, CL-2, CL-44, CL-3, 
CL-19, CL-29, CL-12, and CL-17, and 5 unnamed races 
with additional virulence patterns were identified from 
113 isolates using eight Chinese differentials. Among 
them, CL-4 was the most prevalent race in China, with 
a highest 29% outbreak frequency (Hu and Roelfs 1989). 
It is worth to mention that Hu and Roelfs (1989) used 16 
Thatcher near-isogenic lines to identify Pt races in China. 
They detected a virulence frequency of 84% to 95% on 
Lr2c, Lr14a, Lr14b, Lr21, Lr17, and Lr3. Unified desig-
nated race 13, with virulence on Lr1, Lr2a, Lr2c, and Lr3, 
was prevalent across China. From 1996, 48 races, viz. 
CL-1 to CL-48 (also Yezhong 1 to 48), were identified 
in China. During 1976–1996, the dominant races, CL-1, 
CL-2, CL-3, CL-29, CL-38 (Yezhong series), and Lovrin 
10 pathotypes (virulent to wheat cv. Lovrin 10, includ-
ing CL-4, 34, 46, 19, and 45) have been detected annually 
(Yuan et al. 1983, 1991; Yuan 1984; Chen et al. 1994; Yuan 
and Zhu 1995). In 1997, PHT (virulent to Lr1, Lr2c, Lr3, 
Lr3ka, Lr11, Lr16, Lr17, Lr26, and Lr30), PCR (virulent 
to Lr1, Lr2c, Lr3, Lr3ka, Lr11, Lr26, and Lr30), and THT 
(virulent to Lr1, Lr2a, Lr2c, Lr3, Lr3ka, Lr11, Lr16, Lr17, 
Lr26, and Lr30) were dominant races among 41 races 
identified from 110 isolates collected from nine prov-
inces (Qin et  al. 1998). During 1998–2000, four out of 
162 races, the FHB, PHT, FHG, and THT, were identified 
from 479 Pt isolates and exhibit an outbreak frequency 
much higher than other races. Races TTJ, TRT, THD, 
FCJ, FCD, FHD, KHD, THB, and PHB in Shanghai, FHB 
in Hebei, PHT in Shandong, FHJ, FHG, FRG, and KRB in 

Shaanxi, and FHT, NHJ, PHJ, and THT in Yunnan were 
dominant races in the corresponding regions. In contrast, 
although the outbreak frequency of races FHB, PRF, and 
TMG were higher than 36 other races identified from 
43 isolates in Jiangsu Province, only three isolates were 
detected among all isolates, and there were no dominant 
races in this region (Yang et al. 2002). Isolates with viru-
lence to Lr2c, Lr3, Lr2b, Lr16, Lr26, Lr10, Lr37, and Lr14b 
exhibited an outbreak frequency over 80%, and isolates 
displaying virulent to Lr1, Lr2a, Lr9, Lr11, Lr14a, Lr29, 
Lr18, Lr14ab, Lr17, and Lr28 showed a frequency around 
50%. Notably, increasing number of isolates show viru-
lence to Lr2a, Lr2b, Lr3, Lr9, Lr19, Lr24, Lr28, and Lr29, 
but there are also decreasing numbers with virulence to 
Lr1, Lr3ka, Lr15, Lr14B, Lr6, Lr7, and Lr30 in the 3 years 
(Yang et  al. 2002). In addition, 79 races were identified 
from 613 Pt isolates during 2000–2006. The races PHT, 
THT, PHJ, and THJ were prominent in the field and were 
virulent to Lr1, Lr2c, Lr3, Lr11, Lr16, Lr17, and Lr26. 
An increasing virulence diversity has been seen in those 
years, although no pathotypes showed virulence to Lr9 
and Lr24 (Liu and Chen 2012). In 2007, 96 isolates from 
Shaanxi, Hebei, and Sichuan provinces were discovered 
that, PHST and FHST in Shaanxi, THQT, THQS, THQR, 
THQN, and PHSP in Hubei, and THTT in Sichuan were 
dominant races, respectively. The outbreak frequency 
of isolates with virulence to Lr2c, Lr3, Lr3bg, LrB, Lr11, 
Lr14a, Lr14b, Lr16, Lr25, Lr26, and Lr33 accounted for 
over 70% in the three provinces, and those isolates dis-
played avirulence to Lr9, Lr24, and Lr38 were null (Wu 
et  al. 2009). To make a conveniently comparison for Pt 
races between countries, a set of wheat Thatcher genetic 
background-based near-isogenic lines with Lr1, Lr2a, 
Lr2c, Lr3, Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17, and 
Lr30 was suggested to use (Jin et al. 2008). During 2009–
2010, three races, the FCBQQ, PCGLN, and PCGLL, 
which are the three out of 48 races identified from 155 Pt 
isolates collected from seven provinces were determined 
to be prevalent races. Almost all isolates, except for four 
isolates, showed virulence to Lr26, and none of them was 
virulent to Lr18 and Lr24 (Kolmer 2015). During 2011–
2015, 158 Pt races were identified from isolates collected 
from 18 provinces. Six races, the THTT, THTS, PHTT, 
THJS, and THJT are the most prominent. In particular, 
THTT and THTS were widely spread (Zhang et al. 2020b, 
2020c). Over 90% of the isolates (2296) collected from 18 
provinces in 2011–2013 were virulent to Lr1, Lr2c, Lr3, 
Lr3bg, Lr10, Lr14a, Lr14b, Lr16, Lr17, Lr26, Lr33, Lr37, 
Lr50, and LrB (Zhang et al. 2020c). More than 80% of the 
isolates (1143) from 15 provinces in 2014–2015 showed 
virulence to Lr1, Lr2a, Lr2b, Lr2c, Lr3, Lr3bg, Lr10, Lr11, 
Lr14a, Lr14b, Lr16, Lr17, Lr26, Lr32, Lr33, Lr50, and LrB 
(Zhang et  al. 2020b). In 2017, 52 races were identified 
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from 1407 Pt isolates collected from nine provinces using 
16 Thatcher near-isogenic lines (Lr1, Lr2a, Lr2c, Lr3, 
Lr9, Lr16, Lr24, Lr26, Lr3ka, Lr11, Lr17, Lr30, LrB, Lr10, 
Lr14a, and Lr18), where THTT, THTS, PHTT, THKT, 
PHTS, THKS, and THJT were the dominant races. 
THTT, PHTT, and THTS in Sichuan, THTT, THKT, and 
THJT in Shandong, THTT and PHTT in Hebei, THTT 
and THTS in Hubei, Henan, and Gansu, and THTS and 
THTT in Anhui and Jiangsu provinces were the prevalent 
races, respectively (Jia et al. 2018b).

The Pgt races
In China, Tu (1934) first identified six Pgt races in 
Guangdong Province in 1934, and subsequently, Yin 
(1947) identified fifteen races from Pgt isolates col-
lected from twelve provinces in 1947. Later, the race 1 
was detected in 15 sampling sites in Northeast China 
and race 2 was identified in Jiangsu, Hebei, and Shan-
dong provinces (Wang et  al. 1950). Wu and Huang 
(1987) summarized that, during 1959–1965 and 1973–
1985, sixteen races, including 17, 19, 21, 21C1, 21C2, 
21C3, 34, 34C1, 34C2, 34C3, 34C4, 40, 116, 194, 207, 
and Ketai 1 were detected from 10068 Pgt isolates in 
China. Of these races, race 21 and 34, and their race 
group (C series) were dominant. These races were viru-
lent to Sr resistance genes Sr7a, Sr7b, Sr8, Sr9a, Sr12, 
Sr14, Sr17, Sr23, and Sr29, but avirulent to Sr11, Sr15, 
Sr21, Sr22, Sr24, Sr26, Sr27, SrTmp, and SrTt-2 (Wu 
and Huang 1987). During 1956–1961, six races, the 
race 1 to race 6, were identified on a set of differential 
hosts that consisted of 12 wheat cultivars, viz. Hezuo 
6, Songhuajiang 1, Songhuajiang 2, Gansu 96, Mailiduo, 
Tubuqi, Manggou 335A-531, Khapli, Fule, Einkorn, 
Reliance, and Kehua (Zeng et al. 1963). Three of which, 
race1, 2 and 3, were identified from 1700 Pgt isolates. 
However, race 1 was dominant race, and race 3 was 
rarely discovered (Zeng et al. 1963). In addition, race 4 
and 5 were recovered from aecia produced on B. amu-
rensis via artificial inoculation (Zeng et al. 1963). Based 
on rust tests using standard (international) differentials 
that are comprised of the wheat varieties Little Club, 
Marguis, Reliance, Kota, Arnautka, Mindum, Spelmar, 
Kubanka, Acme, Einkorn, Uernal, and Khapli, with 
additional wheat cultivars (Mianzi 52/Mianzi49) as 
accessory differentials hosts. As a result, 26 and 334 iso-
lates, collected in Liaoning Province in 1960 and 1961 
respectively, were determined as six races including 
17, 21, 34, 40, 21C1 (C = Chinese), and 34C1 (Wu et al. 
1964). The race 116 was first detected during 1952–
1957 by the team of Institute of Northeast Agricultural 
Sciences and Institute of Applied Fungi, Chinese Acad-
emy of Sciences, but not recorded pathogenicity on 
wheat genotypes. This race was detected and identified 

from samples collected on wheat cultivar Mentana 
in Huaihua County in Hunan Province in 1982. This 
race was detected late than the race 40. However, both 
races were highly virulent to the wheat cultivar Vernal 
(Huang et al. 1984b). Race 34C3, detected on the wheat 
cultivar Orofen that was introduced into China in 
1970s and used as resistance germplasm against wheat 
stem rust, was avirulent to the wheat cultivar Rulofen 
that was introduced as a resistance germplasm to wheat 
leaf rust (Huang et al. 1984a). By 1977, race 34C4 (pro-
visionally 34CR), virulent to Orofen and Rulofen, was 
detected based on reactions on a set of differential 
hosts including Reliance, Mianzi 52, M2761, Huadong 
6, Rulofen and Orofen (Huang et  al. 1984a). During 
1990 to 1994, 19 races (pathotypes) that are 21C3CKH, 
21C3CKR, 21C3CTR, 21C3CTH, 21C3CPH, 21C3CPR, 
2 1 C 3 C F H ,   2 1 C 3 C F R ,   3 4 C 2 M K H ,   3 4 C 2 M K R , 
34C2MKK, 34C2MFK, 34C2MFR, 34MKG, 34MFG, 
34MFK, 34C1MKH, 34C1MKR, and 34C1MFH were 
identified among 1224 Pgt isolates from 18 provinces 
(Yunnan, Fujian, Sichuan, Guizhou, Hunan, Hubei, 
Zhejiang, Shanghai, Jiangsu, Shaanxi, Henan, Hebei, 
Gansu, Inner Mongolia, Jilin, Liaoning, Heilongjiang, 
and Qinghai) of China (Yao et al. 1997). Among those 
races, race 21C3 and race 34C2 were dominant ones 
(Yao et al. 1997). The new race (or pathotype) 21C3CTR 
that is virulent to Sr11 was first detected in Emeishan of 
Sichuan Province in 1993, and later it reached an out-
break frequency as high as 31.0% by widely spreading 
in Sichuan, Yunnan, Hubei, Henan, Hebei, and Gansu 
provinces (Yao et  al. 1996). During 2007–2008, four 
races 21C3CTH, 21C3CFH, 21C3CPH, and 34MKG 
were identified from 59 Pgt isolates in Heilongjiang, 
Sichuan, and Yunnan provinces. Of which, 21C3CTH 
was prevalent with high outbreak frequency of 72.9% 
(Han et al. 2010). During 2012–2013, 13 races (patho-
types), 21C3CTHTM, 21C3CTQSM, 21C3CTTSC, 
21C3HTTTM, 34MKGQM, 34MRGQM, 34MRGSM, 
34MTGSM, 34Oroll-MTGSM, 34Oroll-MRGQM, 
34C3RTGQM, 34C3RKGQM, and 34C3RKGSM, were 
identified from 23 Pgt isolates collected from wheat 
plants and 30 from Berberis species. Two of which, 
34C3RTGQM and 34Oroll-MRGQM, were promi-
nent races. Six of these races, 34MRGQM, 34MRGSM, 
34MTGSM, 34Oroll-MTGSM, 34Oroll-MRGQM, and 
34C3RTGQM, emerged recently and were first detected 
with a combined virulence to Sr5 + Sr11 (Cao et  al. 
2016). Over the past decade, many dominant races have 
decreased in the field. However, there is an exception 
that 21C3 and 34C2 have remained prominent with a 
consistently high outbreak frequency so far (Wu et  al. 
1964; Yao et al. 1993; Han et al. 2010; Cao et al. 2016).
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Variable oversummering and overwintering regions 
for the pathogens
Variable oversummering regions of Pst
Intriguingly, many studies showed that most of the new 
Pst races in China were originally uncovered in north-
western regions and some of southern regions, espe-
cially in Longnan of Gansu Province and northwestern 
of Sichuan Province, such as CYR13, CYR17, CYR18, 
CYR19, CYR21, CYR22, CYR27, CYR28, CYR29, CYR30, 
CYR31, CYR32, and CYR34 (Wang et al. 1986, 1996; Wan 
et  al. 2003; Liu and Hambleton 2010; Liu et  al. 2017). 
Due to the emergence of new Pst races, the resistance 
of wheat cultivars was often overcome in these regions. 
Molecular studies revealed that the Pst population in 
Gansu, especially in the Longnan region, had a high level 
of genetic diversity (Shan et al. 1998; Zheng et al. 2005; 
Duan et  al. 2010; Lu et  al. 2012). Therefore, the regions 
mentioned above are considered as the most important 
Pst genetic variation regions, and are also the origins of 
new Pst races. These races in turn provide vast Pst inoc-
ulum to the wheat plants grown in eastern regions. The 
formation of Pst genetically variable region is not known 
until recently. So far, more than 40 barberries (Berberis 
spp.) and four Mahonia spp. that are native in China have 
been identified as alternate hosts for Pst and more than 
10 Berberis species and at least two Mahonia spp. are 
widely distributed in Pst oversummering regions (Zhao 
et al. 2013, 2016b; Zhuang et al. 2019; Du et al. 2019; Li 
et al. 2021; Cheng et al. 2022) (Fig. 7). Importantly, it has 
been demonstrated that under natural conditions, sexual 
cycle of Pst in China occurs more frequently based on 
known and new races of Pst isolates that were recov-
ered from naturally-rusted barberry (Zhao et  al. 2013; 
Li et al. 2016a; Wang et al. 2016), and Mahonia (Cheng 
et  al. 2022). Accordingly, wide distributed Berberis spp. 
and frequent occurrence of sexual cycle of Pst resulted in 
the latently genetic recombination and the continual gen-
eration of new races, which represents the formation of 
oversummering Pst genetically variable regions in China.

Pgt genetically variable regions
Based on the studies of Pgt isolates in 1963–1967 and 
1973–1992, Yunnan, Sichuan, and, Guizhou provinces 
are known as Pgt genetically variable regions. In these 
regions, new virulent races emerge and accumulate more 
rapidly than other regions. One of the reasons is that the 
pathogens can oversummer and overwinter to complete 
their disease cycle locally (Huang et al. 1993).

Pt genetically variable regions
Although many Pt genetically variable regions in China 
have not been designated due to the lack of evidence, an 
increasing number of high genetic and virulence diversity 

have been found in the pathogen population habitats 
distributed in Hebei, Henan, Shandong, Sichuan, Yun-
nan, Gansu, and Shaanxi provinces (Xu et  al. 2013; Ge 
et al. 2015; Kolmer 2015; Ma et al. 2020). However, these 
regions are considered unlikely the potentially variable 
regions for Pt in China due to low clonal population (Kol-
mer 2015).

High temperature‑tolerant isolates
Temperature is a key factor that affects wheat rust fungi 
growth and development. Relatively, Pst requires the 
lowest high temperatures, which is lower than Pt and 
Pgt (Roelfs et  al. 1992), as high temperature restricts 
the development of Pst. When the average 10-day tem-
peratures are above 23°C in July and August, which is 
the two hottest months, can halt the development of 
the disease (Roelfs et al. 1992; Li and Zeng 2002). The 
data of global land–ocean temperature index indicate 
that the annual average temperature has arisen 0.85°C 
in 2021 (https://​clima​te.​nasa.​gov/​vital-​signs/​global-​
tempe​rature/). In China, especially the Central and East 
regions, it has increased 0.97°C (CMA 2021). Recently, 
studies on high-temperature tolerance have been inves-
tigated using a Chinese Pst population consisting of 
126 isolates from 12 provinces. Results showed that 
the Chinese Pst population had a remarkable adapta-
tion to high temperature and the average ET50 values, a 
temperature that is required to obtain 50% of the maxi-
mum effect, were 24.1°C with a range of 18.46–27.01°C, 
which has passed the highest temperature limitation 
of 23°C (Zhang et  al. 2013). Moreover, genetic diver-
sity of Pst population had a nicely negative correla-
tion with average ET50 values as well as a significantly 
positive correlation with the coefficient of ET50 varia-
tion, but there was no correlation with genetic diversity 
(Lian et al. 2016). Field investigations revealed that Pst 
can oversummer during 23–25°C in Pingliang of Gansu 
Province (Wang 2009), and that Pst can overwinter in 
high altitude with higher temperature and oversummer 
in lower altitude with lower temperature. The over-
wintering altitudes can be seen in Tianshui of Gansu 
Province from 1800 m up to 2080 m, and oversummer-
ing altitude can be the place of 1650 m down to 1450 m. 
While, in Yunnan Province which is at a higher altitude, 
the oversummering altitude for Pst ranges from 2300 to 
1950 m (Pan et al. 2011). Therefore, under high temper-
ature conditions (> 23°C), high temperature-tolerant Pst 
isolates have greater potential to complete the disease 
cycle than high temperature-sensitive ones. The poten-
tial influence of high temperature-tolerant Pst iso-
lates on wheat stripe rust occurrence should be under 
consideration. Recently, in the eastern coastal epide-
miological regions of Zhejiang and Jiangsu provinces, 

https://climate.nasa.gov/vital-signs/global-temperature/
https://climate.nasa.gov/vital-signs/global-temperature/
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wheat stripe rust is usually an ignorable issue because 
it normally develops slowly and sometimes stops infec-
tion in early April; however, it is not a severe issue 
until early May in 2019 (Ju et  al. 2022). The outbreak 
is possibly due to the warmer weather where the high 
temperature-tolerant isolates prevailed. Following the 
global warming, the race dynamics of high tempera-
ture-tolerant Pst isolates should be paid more attention 
and taken necessary measures to manage wheat stripe 
rust in China.

Fungicide resistance of Puccinia species
There are a variety of fungicides used to control Puc-
cinia species pathogen infection. One of the key fun-
gicides triazole plays an important role in preventing 
wheat from rust disease infection. In China, fungicide 
application for wheat rust control can be tracked back 
to the 1950s (Ou and Meng 1958; Lu et al. 1962). Now, 
more than ten chemicals are used as fungicides to con-
trol this disease, such as sodium sulfanilate and fluo-
rides; however, wheat often suffers from yield lose when 

Fig. 7  The map showing extensive distribution of most of Chinese Berberis spp. and Mahonia spp. serving as alternate hosts for Puccinia striiformis 
f. sp. tritici in North-western area of oversummering areas, and a few Berberis spp. for P. graminis f. sp. tritici in Gansu, Shaanxi and Tibet in China 
based on data collections of field investigations during 2010–2020 (Zhao et al. 2013, 2015, 2016b; Wang et al. 2016; Du et al. 2019; Li et al. 2021; 
Zhuang et al. 2019; Cheng et al. 2022). Geographic outline of oversummering areas were redraw according to a review by Wan et al. (2007) and 
Tibet of oversummering area was added. 1 North-western area. 2 South-western area. 3 Xinjiang area. 4 Northern area. 5 Tibet area. Map resource: 
http://​bzdt.​ch.​mnr.​gov.​cn/. Data resource: Information on barberry data in Northeast China from Yuanyin Cao’s laboratory at Shenyang Agricultural 
University, Shenyang, Liaoning Province

http://bzdt.ch.mnr.gov.cn/
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severe epidemic hits (Wang et  al. 1988). Nevertheless, 
those chemicals had been extensively applied to con-
trol wheat rust diseases in the 1960s–1970s, and made 
a considerable success (Wang et  al. 1988). Notably, the 
fungicide triadimefon was introduced into China in 1976 
and was locally synthesized by Institute of Elemental 
Organic Chemistry of Nankai University (Wang et  al. 
1988). This fungicide effectively controlled wheat rust 
infection by seed treatment and foliar spray inoculation 
(Wang et  al. 1988). Additionally, other triazole fungi-
cides, such as tebuconazole and hexaconazole, have been 
developed to control wheat rusts. Triazole type of fun-
gicides has maintained high efficiency in controlling the 
wheat rusts for 5 decades. A worrisome situation is that 
following the long duration use of triazole type of fun-
gicides, especially triadimefon, the insensitive and anti-
fungicide isolates have been found in Chinese wheat 
rust populations (Cook et al. 2021; Zhan et al 2022b). A 
recent study by Zhan et al. (2022b) showed that there are 
about 7% of Pst isolates in total of 446 isolates collected 
from winter-producing regions and northwest oversum-
mering regions exhibiting triadimefon resistance and 
cross-resistance to triadimefon, tebuconazole, and hexa-
conazole. However, the majority of the resistance isolates 
are from southwestern of China. The isolates in Xinjiang 
and Tibet epidemic regions are still high sensitive to tri-
adimefon. Compared with the Pst isolates from Europe, 
United States, Ethiopia, and Chile, Chinese Pst isolates 
have a high percentage of fungicide-resistant mutants 
(Cook et al. 2021). Genetic analyses revealed that single-
site mutation by Y134F substitution in the target gene 
of demethylase inhibitor (DMI; Cyp51) resulted in fun-
gicide resistance in Chinese Pst population (Cook et al. 
2021; Zhan et al. 2022b).

Notably, fungicide-resistance has also been detected 
in Chinese Pgt population recently. A study by Wu et al. 
(2020a) reported that low to moderate triadimefon-
resistance had been detected in 29 Pgt isolates accounting 
for ~ 32.6% in the tested 89 Pgt isolates that were sam-
pled from wheat and barberry in Heilongjiang, Liaoning, 
Sichuan, and Shaanxi provinces during 2013–2015. Chi-
nese Pgt population had a positive correlation between 
resistance to triadimefon and carbendazim, and no 
cross-resistance to triadimefon, thiophanate-methyl, and 
kresoxim-methyl. In addition, triazole type of fungicides 
have been consistently used to control wheat leaf rust in 
China since the late 1970s. While, isolates of Pst and Pgt 
with the resistance to triazole fungicides have emerged in 
China. Although no evidence to demonstrate Pt isolates 
are resistant to fungicides, it is plausible to propose that 
the risk of anti-fungicide of Pt against triazole type of 
fungicide may need to be investigated.

Emergence of new rust races
Although wheat cultivars carrying resistance genes have 
been effectively used to control the three rusts, new races 
often overcome the resistance of these wheat cultivars 
and cause disease. As a result, many of which developed 
to be the prevalent races and cause huge yield reduc-
tion annually. The emergence and rapid accumulation of 
new pathogenic rust races are usually accompanied with 
the high level of threatening to wheat production. Due 
to the emergence of new pathogenic races, the resist-
ance of many cultivated varieties are facing danger than 
ever before, where they turn to be vulnerable to the 
new emerged races. It has been observed that a few new 
strip rust races quickly diffused to other wheat-growing 
regions that are far away from their origin sites. These 
new races caused a severe interregional wheat stripe rust 
epidemic. So far, eight main cultivated wheat cultivars 
across China have been displaced (Li and Zeng 2002; 
Wan et al. 2007; Han et al. 2016). Recently, a newly-emer-
gence race, named TSA-6 which is virulence to Yr5, has 
been identified in Shaanxi Province (Zhang et al. 2020a). 
Later, it was detected in Qinghai Province (unpublished 
data). The Yr5-virulent race and its mutant TSA-9 pos-
sess similar pathogenicity with dominant Pst races 
CYR34 and CYR 32, which are pathogenic to most of the 
165 tested Chinese wheat cultivars (Zhang et  al. 2022). 
Historically, in China, a new race could develop into a 
prevalent race within 6–9  years, and sometimes within 
the frame of 3–5 years after initial emergence (Lu et  al. 
1963; Wang et al. 1986; Wu et al. 1993; Jiang et al. 1996; 
Wan et  al. 2003, 2004; Li et  al. 2016b; Liu et  al. 2017). 
Thus, the enhanced surveillance on the dynamics of new 
emerging Pst isolates should be taken in consideration.

New races of Chinese Pgt population have been inten-
sively reported for nearly 5 decades since the 1970s. 
Dominant 21C3 and 34C0 race families have been existed 
for many years. However, during 2009–2015, three new 
races, 21C3CTTTM and 34C0MRGSM identified from 
wheat, and 34C3MTGQM identified from Berberis spe-
cies become the dominant races in China (Zhao et  al. 
2013, 2015; Li et al. 2018; Cao et al. 2019).

Recent studies have reported that although new races 
of China Pt population emerged over the past years, 
occurrence frequencies of new races were extremely low 
and new races were somewhat different from surveillance 
years (Zhang et al. 2020b, 2020c). Generally, leaf rust epi-
demics are thought to be closely related to the appear-
ance of new races, but the outbreaks of wheat leaf rust in 
China during 2011–2015 were considered as a result of 
climatic and host conditions instead of new races (Zhang 
et  al. 2020b, 2020c). Since 2011, no case with regard to 
new races developing to be prevalent races to cause 
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wheat leaf rust epidemics in China during these years 
have been reported.

Invasion risk of alien races
Wheat rusts are air borne diseases where the fungal 
spores can spread with a long distance. Theoretically, the 
wind can help the spores travel across regions and even 
continents. In particular, human activities accelerate 
the spread by the travel between continents. In fact, the 
inter-continental spread of wheat rusts have become a 
major disease propagation means. Over the past 30 years, 
stripe rust has spread to Australia in 1979 (O’Brien et al. 
1980; Wellings et  al. 2003; Wellings 2007), New Zea-
land in 1980 (Beresford 1982), and South Africa in 1996 

(Pretorius et  al. 1997). A recent well known case is the 
spread of the Pgt race Ug99 (TTKSK) lineage that trave-
led from Uganda in 1999, and finally landed in Iran in 
2019, demonstrating the incredible long-distance travel 
of wheat rusts (Fig. 8; relabeled based on data informa-
tion from https://​rustt​racker.​cimmyt.​org/?​page_​id=​22).

In China, since 1970s, wheat stem rust has been effec-
tively controlled for 5 decades because of the cultivation 
of stem rust-resistant wheat cultivars. Notably, Pgt races 
have been found to mutate at a low frequency in the 
field, and two race groups, 21C3 and 34C, finally become 
dominant for nearly 5 decades since the 1970s (Wu and 
Huang 1987; Yao et al. 1998; Cao et al. 2016). However, 
the new Pgt race TTKSK (previously TTKS, also known 

Fig. 8  The re-labelled map sketch illustrating origin (Uganda indicated by red-dotted circle), evolution and dispersal of the Puccinia graminis f. sp. 
tritici race TTKSK (Ug99) lineage and potential invasion risk to China. Data resource: CIMMYT, September 2021 at https://​rustt​racker.​cimmyt.​org/?​
page_​id=​22

https://rusttracker.cimmyt.org/?page_id=22
https://rusttracker.cimmyt.org/?page_id=22
https://rusttracker.cimmyt.org/?page_id=22
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as Ug99) breaks the resistance of Sr31, a resistance gene 
that maintains a long-lasting protection from wheat stem 
rust infection for over a half century and introduced to 
most of the wheat variety worldwide. This race was first 
detected in Uganda in 1998 (Pretorius et al. 2000). Cur-
rently, Ug99 has developed to 15 Ug99 lineage variants 
through somatic recombination (Li et  al. 2019b), and 
each has a combined virulence not only to Sr31 but also 
to some of the eight important Sr genes, which are Sr21, 
Sr24, Sr30, Sr36, Sr38, Sr9h, SrTmp, and Sr8155B1. Since 
Ug99 race group has invaded Iran, much attention should 
be paid as they are geographically not far from China, 
although Ug99 and its variants have not been detected in 
China yet. In fact, only two (~ 1.7%) wheat varieties out 
of 118 in the tested Chinese wheat varieties are moder-
ately resistant or fully resistant to the Ug99 race (Singh 
et al. 2006). Therefore, wind-borne spores of Ug99 line-
age have a strong potential to be spread to China.

Discovery of the sexual cycle of the rusts
The sexual stage of Pgt has been known for a long time. 
The finding of susceptible barberry serving as alternate 
host has greatly pushed our understanding of Pst sexual 
cycle forward. It was recognized that susceptible bar-
berry plays an important role in providing rust spores 
that cause primary stem rust infection of wheat in United 
States (Roelfs 1982). In China, although attempts were 
made to verify the role of barberry relating to occurrence 
of wheat stem rust under field conditions over the past 
decades (Wang 1955; Zhang et al. 1957; Wang et al. 1958; 
Zeng and Xue 1963), they all failed. Until recently, the 
existence of sexual cycle of Pgt in the fields has been dis-
covered in China (Zhao et al. 2015). However, the role of 
susceptible barberry in a wheat stem rust epidemic is still 
not fully understood. Further work should be focused on 
this issue in China.

Since many Chinese barberry (Berberis spp.) and 
Mahonia spp. were identified as alternate hosts for Pst, 
the occurrence of Pst sexual cycle has been intensively 
investigated under field conditions. Chinese researchers 
demonstrated that Pst could infect susceptible Berberis 
and Mahonia spp. which are native in China to com-
plete the sexual cycle in spring (Zhao et al. 2013, 2022; 
Wang et  al. 2016; Liu et  al. 2021; Chen et  al. 2021a; 
Cheng et  al. 2022), and that Pst could infect endemic 
Berberis to achieve sexual reproduction in autumn in 
Tibet (Du et al. 2022). In regions such as Qinghai and 
Shaanxi provinces, where susceptible Berberis spp. 
and wheat grow adjacently, under this situation, bar-
berry provides aeciospores as inoculum to cause stripe 
rust infection on wheat (Chen et al. 2021a; Zhao et al. 
2022). In addition, whether susceptible Mahonia spp. is 

involved in providing aeciospores as inoculum to trig-
ger stripe rust outbreak on wheat also needs further 
investigation.

Attempts have also been made to demonstrate the 
relationship between Thalictrum spp. as alternate hosts 
of Pt and leaf rust on wheat and grasses, but the rela-
tionship remains obscure. In 1960s, Guichao Huang at 
Institute of Agricultural Sciences in Jiamusi, testified 
that rusts on Thalictrum spp. were related to leaf rust 
on Agropyron instead of leaf rust on wheat (Wang et al. 
1987). In 1980s, Wang et al. (1987) reported that, in the 
Baishitougou village of Inner Mongolia, leaf rust on 
Agrostis spp. can complete sexual cycle on T. petaloi-
deum; however the aeciospores from T. minus, T. minus 
var. stipellatum, T. minus var. hypoleucum, and/or T. 
petaloideum failed to cause wheat leaf rust by artificial 
inoculation. Although a few Chinese Thalictrum spp. 
have been identified as alternate hosts for Pt, the role of 
Thalictrum spp. in the occurrence of leaf rust on wheat 
under natural conditions remains unknown. Sequence 
alignment of internal transcribed space (ITS) indicated 
that more than 20 aeciospores from susceptible T. bai-
calense plants had 95–96% of sequence similarity with 
P. triticina (Zhao et  al. 2021). However, inoculation 
experiment of aeciospores on susceptible wheat culti-
vars were not conducted to justify the potential infec-
tion by Pt urediospores in fields.

Sources of Pst teliospores for alternate host infection
Teliospores are essential for infecting alternate hosts 
(Berberis and Mahonia) to invoke sexual cycle. Under 
favorable conditions, basidiospores, which germinate 
from teliospores, infect alternate hosts to initiate sex-
ual reproduction in the three wheat rusts. Therefore, 
vigorous teliospore sources are associated with sexual 
stage of the three rust pathogens. Field investigations 
and laboratory experiments demonstrate that Pst 
teliospores can be produced at all growth stages and 
possess germination capacity in field. However, the teli-
ospore production and germination rate are depend-
ent of the fungi growth stage, weather condition, and 
locations (Chen et al. 2021b). In addition, wheat straw 
stacks of diseased tissues are the harbor of Pst teli-
ospores in oversummering regions, such as Gansu and 
Qinghai provinces (Chen et al. 2021b). A study by Qin 
et al. (2022) reported that grass residues can harbor the 
overwintering Pst for the primary infection in the com-
ing spring. Survival of Pst teliospores on grasses after 
overwintering can also serve as the potential source to 
infect alternate hosts of Pst.
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Wheat stripe rust management
Planting rust-resistant wheat cultivars has been consid-
ered as an effective, economical, and green strategy to 
control wheat rust diseases. In China, comprehensive 
application of wheat cultivars carrying Sr resistance genes 
has been successful for long-term disease control. By 
deploying an integrated management strategy for wheat 
stripe rust, the disease has been effectively controlled in 
most wheat-producing areas since 2004 in China (Chen 
et  al. 2013). After the year 2010, wheat stripe rust has 
led to the infection around 2.67 million hectares peren-
nially, and caused annual yield loss around 0.17 million 
metric tons (Huang et al. 2018). One of the key reasons 
is that the resistance genes in wheat cultivars were fre-
quently overcome by the emerging new races, resulting in 
the wheat cultivars to be vulnerable within a short period 
after released in the fields. Therefore, an integrated strat-
egy should be considered to slow down the new rust race 
emergence.

Mining novel resistance genes for durable control
At present, 83 wheat stripe rust (yellow rust) resistance 
genes (Yr), viz. Yr81-Yr83, have been designated (McIn-
tosh et al. 2017; Li et al. 2020). Of the 83 Yr genes, only 
Yr15, Yr45, and Yr61 possess effective resistance to prev-
alent Chinese Pst races (Zhang et  al. 2020a; Feng et  al. 
2022). Moreover, unnamed new Yr genes from current 
wheat varieties or other Triticum species, such as YrElm, 
YrElm1-4, YrElm4, YrLm2, YrM97, and YrM852 from 
Elymus mollis (Yang et  al. 2009b, 2010; He et  al. 2010; 
Xu et al. 2012; Bai et al. 2013; Zhang et al. 2014), YrHua, 
YrHy, YrH122, YrH9014, YrH9020a, YrHua9020, and 
YrHu from Psathyrostachys huashanica (Cao et al. 2005; 
Liu et  al. 2008; Yao et al. 2010; Tian et al. 2011; Ma et al. 
2013, 2015a, b, 2016; Liu et al. 2014), YrV1, YrHV, YrWV, 
and YrV3 from Haynaldia villosa (Zhou et al. 2008; Hou 
et al. 2009, 2013; Wang et al. 2011a), YrCH5383, YrL693, 
and YrCH5026 from Thinopyrum intermedium (Hou 
et  al. 2015; Huang et  al. 2014; Zhan et  al. 2014b), and 
YrM8003 from rye (Xu et  al. 2010), have been identi-
fied. In addition, 12 meta-quantitative trait loci (MQTL), 
including both quantitative resistance loci (QRL) and 
major resistance genes, were discovered from 194 QRL 
that have been identified previously (Cheng et al. 2019), 
which can be used for breeding stripe rust-resistant 
wheat cultivars by marker-assisted selection (MAS).

So far, 63 wheat stem rust resistance genes (Sr) have 
been identified worldwide (Mago et  al. 2022). In China, 
eight Sr genes, including Sr9e, Sr26, Sr31, Sr33, Sr37, 
Sr38, Sr47, and SrTt3, are still resistant to local Pgt races. 
Nevertheless, much attention should be paid to those 
races with combined virulence to the resistances Sr5 and 

Sr11 (Cao et  al. 2016). The stem rust resistance genes 
have been confirmed to be effective against the domi-
nant races 34MKGQM, such as Sr9e, Sr10, Sr11, Sr13, 
Sr14, Sr17, Sr18, Sr19, Sr20, Sr21, Sr23, Sr25, Sr26, Sr30, 
Sr31, Sr32, Sr33, Sr34, Sr35, Sr36, Sr37, Sr38, Sr47, Srdp-
2, SrTmp, SrTt3, and SrWld-1. The resistant genes against 
the dominant race 21C3CTHSM include Sr5, Sr9e, Sr19, 
Sr20, Sr21, Sr22, Sr23, Sr25, Sr26, Sr27, Sr30, Sr31, Sr32, 
Sr33, Sr36, Sr37, Sr38, Sr47, and SrTmp (Han et al. 2018). 
Fifteen Sr genes, viz. Sr9e, Sr19, Sr20, Sr21, Sr23, Sr25, 
Sr26, Sr30, Sr31, Sr32, Sr36, Sr37, Sr38, Sr47 and SrTmp 
exhibited resistance to both predominant races. Li et al. 
(2019a) reported that 83 Heilongjiang wheat cultivars, 
carrying Sr2, Sr24, Sr25, Sr26, Sr31, and Sr38 based on 
molecular detection, were resistance to three prevalent 
races 21C3CTHQM, 34MKGQM, and 34C3RTGQM, 
respectively. Field adult-plant resistance to all three 
prevalent Pgt races 21C3CTH, 21C3CFH, and 34MKG 
were identified in 56 out of 78 (71.79%) alien Ug99-resist-
ance wheat varieties (lines) that were introduced from 
International Maize and Wheat Improvement Center 
(CIMMYT), and 72 out of 142 (50.7%) domestic wheat 
varieties from 15 provinces of China (Han et  al. 2013). 
Wu et  al. (2020b) identified the wheat lines from CIM-
MYT carrying Sr9e, Sr21, Sr26, Sr33, Sr35, Sr37, Sr38, 
Sr47, and SrTt3 resistance genes against Ug99, and the 
lines possessing resistance genes against the prevalent 
Pgt races 21C3CTTTM, 34C0MRGSM, and 34C3MT-
GQM in China. Those Sr genes are important resistance 
germplasm resources for wheat breeding.

Currently, over 100 wheat leaf rust resistance genes (Lr) 
have been identified worldwide, and 80 of which have 
been officially named (McIntosh et al. 2017; Kumar et al. 
2021). Wu et  al. (2020a) reported that, based on resist-
ance of 100 Chinese cultivars that challenged with 20 
prevailing Pt isolates, nine Lr genes, viz. Lr9, Lr18, Lr19, 
Lr24, Lr28, Lr29, Lr47, Lr51, and Lr53, exhibited a broad 
resistance spectrum to all tested isolates. It is worth to 
mention that the Lr genes can be utilized for leaf rust-
resistant wheat breeding, but Lr genes, including Lr2c, 
Lr3, Lr16, Lr17, LrB, Lr3bg, Lr14b, Lr23, and Lr39, should 
be avoided since they are high susceptible to the 20 pre-
vailing Pt isolates in the fields (Wu et al. 2020a). In addi-
tion, six Lr genes, Lr1, Lr33, Lr34, Lr45, and Lr46, were 
identified in 37 Chinese wheat cultivars. Of which, 29 
cultivars carrying Lr34 and Lr46, and exhibit adult-plant 
resistance to leaf rust (Wu et al. 2020a). Chinese cultivar 
Shanghai 7 displays high resistance to Ug99, but it is dif-
ficult to identify the Ug99-resistance gene in this cultivar 
due to the unknown genetic background of this wheat 
variety (Singh et al. 2006). Currently, over 70 quantitative 
trait loci (QTL) against wheat leaf rust have been iden-
tified, and 11 of which possess pleiotropic resistance to 
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the disease (Zhang et al. 2016; Liu and Li 2019; Yan et al. 
2022).

Pyramiding multi‑gene resistance to wheat rusts
Pyramiding rust-resistant genes is an important strategy 
to breed wheat resistance cultivars. Previously, 1BL/IRS 
translocation lines that carry the stem rust gene Sr31, and 
the stripe rust gene Yr9 were widely used in stem rust-, 
and stripe rust-resistant wheat breeding. Chinese wheat 
cultivars carrying both genes play an important role in 
controlling stripe and stem rust. Wheat cultivars with 
multi-resistance genes exhibit a broader resistance spec-
trum. Multi-gene pyramiding strategy therefore has been 
verified to be practicable for durable control of wheat 
rusts. By pyramiding Yr15 and Yr64 to the resistance 
wheat line RIL-Yr64/Yr15, a wider spectrum and durable 
resistance wheat variety was obtained (Qie et  al. 2019). 
Zhang and Zhang (2016) introduced both YrSM139-
1B and YrSM139-2D into the wheat cultivar Shaanmai 
139, which increased the reception wheat with a broad 
resistance to wheat rusts remarkably. Zeng et  al. (2015) 
reported that wheat cultivars carrying multi-Yr genes 
displayed stripe rust resistance in adult plant. However, 
pyramiding multi-Lr or Sr genes to a wheat cultivar has 
not been reported in China yet. Notably, the wheat vari-
ety carrying tandem resistance genes, such as Sr24-Lr24 
and Lr37-Yr17-Sr38, can simultaneously resist the three 
wheat rusts, which is a good donor germplasm for wheat 
breeding.

Deployment of wheat cultivars carrying rust resistance 
genes
The deployment of wheat varieties carrying resistance 
genes in epidemiological regions can theoretically con-
trol disease outbreak. Wheat varieties with whole growth 
stage resistance have been grown in epidemiological 
regions now. In 1965, wheat varieties Abbondanza and 
Fengchan 3 were widely grown in South Shaanxi and 
central Shaanxi Province to control wheat stripe rust for 
9 years (SXIPP 1976). In the 1970s, breeding and appli-
cation of stem rust-resistant wheat cultivars, especially 
those carrying Sr31, play a significant role in controlling 
the rust disease outbreak in China. Since then, wheat 
stem rust has been a sporadic-occurring disease in China 
(Cao et  al. 1994; Wang et  al. 2010). One of the sugges-
tions regarding the deployment of resistance genes is to 
cultivate the wheat varieties carrying multi-resistance 
genes but not a single resistance gene at a large scale or in 
epidemiological region.

Regulation of alternate hosts
Alternate hosts and vigorous teliospores are required for 
wheat rusts to complete the sexual stage. Sexual genetic 

recombination of wheat rusts can conceive high viru-
lence progenies of the pathogen. Some techniques have 
been employed to reduce possibility of the new race gen-
eration by controlling the pathogen’s sexual reproduction 
on alternate hosts, which largely reduced the potential 
emergence of new races generated in the habitat of bar-
berry species. Some useful tips are recommended: (1) 
triazole fungicides (i.e. triadimefon) should be frequently 
used on alternate host plants; (2) eradicating alternate 
host plants close to wheat fields; (3) reducing overwinter-
ing teliospore levels by removing wheat straw.

Use of fungicides
Chemical fungicides, such as Flutriafol, hexaconazole, 
diniconazole, propiconazole, tebuconazole, and triadime-
fon, have been registered and applied in China. However, 
long-term and intensive application of triazole fungicides 
has led to the emergence of anti-fungicide Pst and Pgt 
races in China (Wu et al. 2020a; Zhan et al. 2022b). The 
trouble is that the fungicide-resistant isolates are con-
tinuously emerging. Therefore, exploring new fungicides 
or alternative utilization of fungicides is an issue on table.

Biocontrol of the rust disease
Mycoparasitism mechanism is common in rust fungi, 
especially in the genus of Puccinia, which can be a useful 
and environmental-friendly method to control the rust 
diseases in addition to the fungicides. To date, approxi-
mately 30 genera of fungi are able to hyper-parasitize rust 
fungi. However, only five fungal species, Lecanicillium 
lecanii, Typhula idahoensis, Microdochium nivale (Lit-
tlefield 1981), Cladosporium cladosporioides (Zhan et al. 
2014a), and Alternaria alternata (Zheng et al. 2017), have 
been reported to infect and kill Pst urediospores. Like-
wise, hyper-parasitism of two Verticillium spp., V. psal-
liotae and V. tenuipes, on P. triticina (syn. P. recondita), 
and Aphanocladium album on P. graminis have been 
reported (Koc et al. 1981; Leinhos and Buchenauer 1992). 
In addition, the biocontrol agent Pseudomonas auran-
tiaca was reported to have a potential control effect on 
wheat leaf rust (Wang et  al. 2011b). However, effects of 
hyper-parasitic mycoparasites and biocontrol agents on 
three wheat rusts were observed under laboratory con-
ditions. Application of hyper-parasites and biocontrol 
agents in fields to control wheat rusts is on the way.

Monitoring and forecasting wheat rust epidemics
Monitoring and forecasting dynamics of crop disease 
can help to manage crop diseases. These field manage-
ments include pathogen spore volume, the planting area 
of susceptible host plants, and environmental conditions. 
By monitoring race dynamics, virulence variation, and 
pathogen population structure, we can obtain valuable 
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information of the pathogen dynamics which will deter-
mine how and why to deploy the agricultural regulations. 
A classical case is that in 1958, a monitoring and forecast-
ing method was employed to control wheat stripe rust. 
Based on the pathogen volume in winter and the coming 
early spring, the susceptible wheat cultivars planted, and 
the climatic factors, it predicted the epidemics of wheat 
stripe rust in 1964, 1973, and 1977. By 1977, more than 
30 monitoring and forecasting stations were established 
national wide. This prediction method was proved to be 
reliable and it still is adopted nowadays. For instance, 
monitoring and forecasting wheat stripe rust was carried 
out in 14 individual years during 1960–1979, 8 epidem-
ics were successfully predicted (Wang et al. 1988). Later, 
the computer-based models to predict the mid/long term 
epidemics of wheat stripe and leaf rusts were established 
and successfully applied (Yucheng Plant Protection Sta-
tion 1979; Zeng et al. 1981; Xiao et al. 1983; Dong et al. 
1987; Wu et al. 1991; Cao et al. 1995; Jiang et al. 1996; Pu 
et al. 2012). For the short-term prediction, overwintering 
inoculum and weather conditions during/after overwin-
tering are predicted to be associated with the occurrence 
of wheat rust epidemics. In addition, high virulence fre-
quency of a single dominant race and a few other races, 
the virulence spectrum, parasite fitness, and susceptible 
wheat cultivars planted can be used to predict epidemics 
of wheat rusts. For instance, the 1990s severe nationwide 
epidemic of wheat stripe rust was predicted in advance 
based on the high virulence frequency of the race CYR29 
(up to 40.3%) and 6.7 million planting areas of suscepti-
ble wheat cultivars in 1989 (Wu et  al. 1991). Currently, 
a series of internet-based devices or technologies, such 
as inoculum trapping, remote sensing, geographic infor-
mation system (GIS), Global positioning system (GPS), 
atmospheric circulation modelling, and Internal of 
Things (IoT), have been developed and applied to manage 
crop diseases including wheat rusts (Hu et al. 2022). The 
modern agricultural technologies will undoubtedly ena-
ble us to precisely monitor and predict the development 
of wheat rusts and other crop diseases, and as a result to 
control the wheat rusts.

Planting wheat variety mixtures
Monoculture often fosters compatible pathogen accu-
mulation. Growing a mixture of different wheat varie-
ties can effectively control epidemics in fields. Many 
studies indicated that planting multi-wheat variety mix-
tures is an effective approach to reduce wheat stripe 
and leaf rusts outbreak in field. The low density suscep-
tible wheat plants, such as 3:1 (resistant: susceptible) 
ratio, will decline disease development in wheat variety 
mixtures (Cao and Zeng 1994; Shen et al. 2008; Lü et al. 
2014; Wang et al. 2022a). However, it is not determined if 

increasing of wheat variety can further reduce the occur-
rence of wheat rusts. Nevertheless, the mixing planting of 
distinct wheat varieties to reduce rust infection is worth 
of further filed practicing.

Intercropping
Intercropping of wheat and other crops can also decrease 
wheat rust occurrence. For example, intercropping of 
rust-resistant wheat cultivars with faba bean can reduce 
wheat stripe rust infection by 22–100% according to 
1-year field trial (Xiao et  al. 2005). Likewise, Yang et  al. 
(2009a) reported that, based on 6 years trials, intercrop-
ping of wheat and faba bean can decrease 30.4–63.55% 
wheat stripe rust occurrences with an increase of 0.28–
0.63 metric tons per hectare of crop yields. In addition, 
intercropping of wheat and faba bean, namely the Yumai 
1(wheat)/Yuxi (local bean variety) and Qiekuina (wheat)/
Yuxi (local bean variety), achieve 38.7–39.6% of control 
to wheat leaf rust (Yang et al. 2003).

The outlook to the future
Due to the emerging new rust pathogens, there is a 
potential risk that the new rust pathogens would over-
come the resistance of currently-growing wheat cultivars 
and cause a large scale of epidemics. Therefore, the work 
that monitoring and analyzing the emerging rust races 
in field should be strengthened to avoid wheat rust out-
breaks. On the other hand, monitoring the effectiveness 
of wheat rust resistance genes will help to guide the rust 
managements, such as the deployment and introducing 
of new resistance genes. Mining of new wheat rust resist-
ance genes would always promote our capability to fight 
against these devastating pathogens.

New technologies, especially the novel biotechnol-
ogy, will assist to defend wheat rusts. The techniques, 
such as the molecular-assisted selection, and gene-edit-
ing technology have been applied to help breed disease 
resistant wheat cultivars, including wheat stripe rust (Li 
et al. 2022; Wang et al. 2022b). MAS breeding is not only 
shortening the breeding procedure but also can rapidly 
locate the resistance genes for further pyramiding multi-
resistance genes in a given variety. Multi-resistance gene 
wheat cultivars possess the merit of broad disease resist-
ance spectrum, which can be generated by introducing 
the all-stage resistance genes.

In addition, management of alternate hosts is impor-
tant for reducing the generation of new wheat rust 
races. Eradication of barberry bushes has been con-
firmed as an effective long-term control of wheat stem 
rust in the United States (Roelfs 1982). In China, the 
barberry species are abundant and widespread and are 
often observed in spring, even autumn-wheat plant-
ing regions (Du et  al. 2022). Therefore, controlling the 
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barberry rust infection by applying fungicides timely 
prior to the early stage of pycnial development has been 
successful in interrupting sexual cycle of rust pathogens.

Investigation of the avirulence genes in rust pathogens 
is essential for understanding the pathogenesis variation 
of the wheat rusts and for the targeted wheat breeding. 
Although some avirulence genes have been cloned in 
Pgt, such as AvrSr27, AvrSr35, and AvrSr50 (Chen et  al. 
2017; Salcedo et al. 2017; Upadhyaya et al. 2021), none of 
the avirulence genes in Pst and Pt has been cloned so far. 
Therefore, identification of avirulence genes of Pst and 
Pt and more avirulence genes of Pgt should be taken into 
consideration.

Conclusions
Wheat stripe, leaf, and stem rusts are destructive fungal 
diseases on wheat in China. Their spores can travel a long 
distance by wind. Severe epidemics of the three wheat 
rust diseases frequently occurred and have resulted in 
huge yield and economic losses. Strategies for the man-
agement of the wheat rusts have been made, which has 
achieved the effective control on wheat rusts in China, 
especially the wheat stem rust. Recently, new research 
progresses have been achieved on the control of wheat 
rusts. Herein, we summarized the rust epidemics, fun-
gicide-resistance and the agricultural managements in 
China. With the aids of new bio-technologies, we are 
confident to fully control the wheat rust epidemics in 
China in the near future.
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