How people wake up is associated with previous night's sleep together with physical activity and food intake

Raphael Vallat^{1*}, Sarah E. Berry², Neli Tsereteli³, Joan Capdevila⁴, Haya Al Khatib^{2,4}, Ana M. Valdes^{5,6}, Linda M. Delahanty⁷, David A. Drew^{8,9}, Andrew T. Chan^{8,9}, Jonathan Wolf⁴, Paul W. Franks^{3,10,11}, Tim D. Spector¹⁰, Matthew P. Walker^{1*}

Affiliations

¹ Center for Human Sleep Science, Department of Psychology, University of California, Berkeley, USA

² Department of Nutritional Sciences, King's College London, London, UK

- ³ Department of Clinical Sciences, Lund University, Malmö, Sweden
- ⁴ Zoe Ltd, London, UK

⁵ School of Medicine, University of Nottingham, Nottingham, UK

⁶ Nottingham NIHR Biomedical Research Centre, Nottingham, UK

⁷ Diabetes Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

⁸ Clinical & Translational Epidemiology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA

⁹ Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA

¹⁰ Department of Twin Research and Genetic Epidemiology, King's College London, London, UK

¹¹ Department of Nutrition, Harvard Chan School of Public Health, Boston, MA, USA

Corresponding authors

Raphael Vallat (<u>raphaelvallat@berkeley.edu</u>), Matthew P. Walker (<u>mpwalker@berkeley.edu</u>)

Department of Psychology, 2121 Berkeley Way, University of California, Berkeley, CA 94720-1650, USA. Phone: 510-642-5292 / Fax: 510-642-5293.

Supplementary Information

-	-				-			_
C	nlamantan	Toble 1	Dradiatora	of dov	to dow	fluctuationa	in morning	, alartnaaa
JUL	Diementary	гарет.	Frediciors	u uav-	lo-uav	nucluations		i alertness.
								,

Predictors	β	95% CI	р		
Sleep (within-person, i.e. deviation from a person's average)					
Sleep efficiency	2.57	-4.62 – 9.76	0.483		
Sleep duration	0.90	0.59 – 1.20	<0.001		
Sleep offset	0.75	0.33 – 1.16	<0.001		
Physical activity and circadian rhythm					
L5 value	-0.21	-0.36 – -0.07	0.004		
L5 onset	-0.12	-0.34 – 0.10	0.289		
M10 value (prior day)	0.02	0.00 – 0.03	0.049		
M10 onset (prior day)	0.07	-0.09 – 0.22	0.401		
Standardized breakfast meal, compared to ref	ference "UK J	Average"			
High Carbohydrates	1.42	0.52 – 2.33	0.002		
High Fat	-0.86	-1.93 – 0.22	0.119		
High Fiber	-0.57	-1.67 – 0.53	0.311		
High Protein	-1.36	-2.43 – -0.30	0.012		
Metabolic Challenge	0.24	-1.12 – 1.60	0.730		
OGTT	-6.97	-7.95 – -5.98	<0.001		
Others meal-related predictors					
Post-breakfast glucose response	-2.89	-4.40 – -1.39	<0.001		
Latency from sleep offset to breakfast	2.03	1.68 – 2.39	<0.001		
Covariates					
Age	0.39	0.30 – 0.48	<0.001		
DST	2.05	0.29 – 3.81	0.022		
Weekend	-1.66	-2.34 – -0.99	<0.001		
No. observations		6744			
Conditional R ²		0.626			

Sex, BMI, zygosity and sunrise time were included in the model but are not reported here for conciseness since none of them was a significant predictor of morning alertness. Sleep predictors were normalized using person-mean centering. The dependent variable of the model is morning alertness, which is calculated by averaging the alertness ratings that were made within the first

three hours after breakfast start. Family ID and participant ID were defined as nested random effects of the linear mixed model. P-values are based on two-tailed Wald tests (degrees of freedom = 6717) and are not adjusted for multiple comparisons. Significant p-values are reported in bold font. Source data are provided as a Source Data file. L5 = least active 5 hours of the day, M10 = most active 10 hours of the day, OGTT = Oral Glucose Tolerance Test.

Supplementary Table 2. Predictors of day-to-day fluctuations in morning alertness, using sleep onset instead of sleep offset.

Predictors	β	95% CI	р	
Sleep (within-person, i.e. deviation from a person's average)				
Sleep efficiency	2.58	-4.61 – 9.77	0.482	
Sleep duration	1.65	1.27 – 2.03	<0.001	
Sleep onset	0.76	0.34 – 1.17	<0.001	
No. observations		6744		
Conditional R ²		0.626		

Only the sleep predictors are reported here for conciseness. The other predictors are not reported because the significance or direction of the effects did not change compared to the main model (Supplementary Table S1). P-values are based on two-tailed Wald tests (degrees of freedom = 6717) and are not adjusted for multiple comparisons. Significant p-values are reported in bold font. Source data are provided as a Source Data file.

Predictors	β	95% CI	р			
Sleep (within-person, i.e. deviation from a person's average)						
Sleep efficiency	3.95	-3.92 – 11.83	0.325			
Sleep duration	0.89	0.56 – 1.22	<0.001			
Sleep offset	0.45	0.00 – 0.91	0.049			
Physical activity and circadian rhythm						
L5 value	-0.22	-0.37 – -0.06	0.006			
L5 onset	-0.09	-0.33 – 0.15	0.446			
M10 value (prior day)	0.02	-0.00 - 0.04	0.067			
M10 onset (prior day)	-0.06	-0.23 – 0.11	0.478			
Standardized breakfast meal, compared to re	ference "UK	Average"				
High Carbohydrates	1.49	0.60 – 2.38	0.001			
High Fat	-0.71	-1.78 – 0.35	0.188			
High Fiber	-0.52	-1.59 – 0.55	0.340			
High Protein	-1.30	-2.36 – -0.25	0.015			
Metabolic Challenge	0.13	-1.20 – 1.46	0.849			
Others meal-related predictors						
Post-breakfast glucose response	-2.59	-4.32 – -0.87	0.003			
Latency from sleep offset to breakfast	1.66	1.25 – 2.07	<0.001			
Covariates						
Age	0.38	0.29 – 0.47	<0.001			
DST	1.77	-0.02 – 3.55	0.052			
Weekend	-1.88	-2.61 – -1.14	<0.001			
No. observations	5444					
Conditional R ²	0.625					

Supplementary Table 3. Predictors of day-to-day changes in morning alertness, excluding the Oral Glucose Tolerance Test from the standardized breakfast meals.

Sex, BMI, zygosity and sunrise time were included in the model but are not reported here for conciseness since none of them was a significant predictor of morning alertness. Sleep predictors were normalized using person-mean centering. The dependent variable of the model is morning alertness, which is calculated by averaging the alertness ratings that were made within the first three hours after breakfast start. Family ID and participant ID were defined as nested random

effects of the linear mixed model. P-values are based on two-tailed Wald tests (degrees of freedom = 5418) and are not adjusted for multiple comparisons. Significant p-values are reported in bold font. Source data are provided as a Source Data file. L5 = least active 5 hours of the day, M10 = most active 10 hours of the day.

Supplementary Figure 1. The interaction of sleep duration and sleep timing is not significantly associated with next-morning alertness. Timing of sleep was measured using the sleep midpoint, i.e. the midpoint between the sleep onset and sleep offset. The significance of the interaction term and main effects of sleep duration and sleep timing was evaluated using a multilevel model (two-tailed Wald test with 6716 degrees of freedom). All sleep predictors were normalized using a person-mean centering. The main effects of sleep duration and sleep midpoint were both significant ($ps \le 0.001$), however the interaction term was not significant (p=0.792). The interaction plot shows the regression line of sleep duration on morning alertness at different values of the moderator variable sleep midpoint, ranging from -2 hours to +2 hours in increments of 1 hour. All regression lines were significant (p<0.001), indicating that the positive impact of sleep duration on next-morning alertness was not moderated by the timing of sleep. Source data are provided as a Source Data file.

Supplementary Figure 2. Standardised breakfast meal and subsequent morning alertness. Purple dots and translucent rectangles show the estimated marginal means and 95% confidence intervals from the linear mixed effect model (Table S1). Black arrows represent significance, i.e. the degree to which two arrows overlap denotes the significance of the comparison of the two estimates. Two-tailed pairwise comparisons of the estimated marginal means were corrected for multiple comparisons using Tukey's method. Nutritional composition of each meal can be found in Table 1. Source data are provided as a Source Data file. OGTT = oral glucose tolerance test, MCB = Metabolic Challenge Breakfast.

Supplementary Figure 3. Correlation between age and trait daytime alertness. Source data are provided as a Source Data file.

Supplementary Figure 4. Correlation matrix between alertness and trait predictors. Source data are provided as a Source Data file.

Supplementary Figure 5. Trait alertness is lower in participants with ongoing or former diagnosis of mood disorder. Sample sizes are: anxiety disorder (no [0] = 630, yes [1] = 113), depression (no [0] = 640, yes [1] = 93). Box plots show centre line as median, box limits as upper and lower quartiles. The notches represent confidence intervals around the median. The whiskers extend from the box limits by 1x the interquartile range. Source data are provided as a Source Data file.