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Purpose: Internationally adopted variant interpretation guidelines
from the American College of Medical Genetics and Genomics
(ACMG) are generic and require disease-specific refinement. Here
we developed CardioClassifier (http://www.cardioclassifier.org), a
semiautomated decision-support tool for inherited cardiac condi-
tions (ICCs).

Methods: CardioClassifier integrates data retrieved from multiple
sources with user-input case-specific information, through an
interactive interface, to support variant interpretation. Combining
disease- and gene-specific knowledge with variant observations in
large cohorts of cases and controls, we refined 14 computational
ACMG criteria and created three ICC-specific rules.

Results: We benchmarked CardioClassifier on 57 expertly curated
variants and show full retrieval of all computational data,
concordantly activating 87.3% of rules. A generic annotation tool
identified fewer than half as many clinically actionable variants

(64/219 vs. 156/219, Fisher’s P = 1.1 × 10− 18), with important
false positives, illustrating the critical importance of disease and
gene-specific annotations. CardioClassifier identified putatively
disease-causing variants in 33.7% of 327 cardiomyopathy cases,
comparable with leading ICC laboratories. Through addition of
manually curated data, variants found in over 40% of cardiomyo-
pathy cases are fully annotated, without requiring additional user-
input data.

Conclusion: CardioClassifier is an ICC-specific decision-support
tool that integrates expertly curated computational annotations
with case-specific data to generate fast, reproducible, and interactive
variant pathogenicity reports, according to best practice guidelines.

Genet Med advance online publication 25 January 2018

Key Words: bioinformatics; clinical genomics; inherited cardiac
conditions; next-generation sequencing; variant interpretation

INTRODUCTION
Inherited cardiac conditions (ICCs) represent a major health
burden with a combined prevalence of ~ 1%.1 Genetic testing is
recommended to support the management of many ICCs, with
roles in diagnosis (particularly valuable for identification of at-
risk relatives), prognostication, and therapeutic stratification.
The principal challenge in genetic testing across all diseases is

the interpretation of identified sequence variants. This requires
evaluation of data from diverse sources, including clinical
observations, computational data, and data derived from the
literature. Although existing tools aid collection of some of these
data types, scientists and clinicians must often access multiple
data sources while interpreting a single genetic variant.
The American College of Medical Genetics and Genomics

(ACMG) and the Association for Molecular Pathology (AMP)
recently released guidelines that aim to standardize variant

interpretation.2 These guidelines outline a set of evidence
criteria to assess each variant against, along with how these
might be weighted and combined to reach a classification.
Studies have, however, shown that even when following the
ACMG/AMP guidelines, interpretation can differ between
different laboratories, with discordance in excess of 10%.3 One
key reason for this discordance is the structure of the ACMG/
AMP guidelines, which are deliberately broad and lack
specific thresholds, to allow adoption across the full spectrum
of genetic disorders. As a result, the challenge to individual
disease domains is to incorporate expert gene and disease-
specific knowledge, to optimize variant interpretation and
introduce consensus. Initiatives such as the Clinical Genome
Resource (ClinGen)4 are working to define such disease- and
gene-specific thresholds, although these are currently limited
to pilot phases for specific gene–disease pairs.
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The introduction of guidelines, including the logic behind
reaching each classification, opens the way for new computa-
tional solutions to facilitate their adoption and increase
consistency. Indeed, publication of the guidelines has led to
the emergence of interactive tools;5,6 however, to date only
one of these builds in automation,7 and none incorporate
expert disease-specific knowledge.
Here, we describe CardioClassifier, a powerful new tool

that utilizes the framework outlined by the ACMG/AMP
guidelines, to automatically annotate variants across 17
computational criteria. Each criterion has been individually
parametrized for each gene–disease pair using expert disease-
specific knowledge. Automated data are integrated with
interactively added case-specific information to calculate
variant pathogenicity in a fully interactive Web interface that
represents a comprehensive variant interpretation platform
for ICCs.

MATERIALS AND METHODS
The development and optimization of CardioClassifier is
described in three sections:

1. Rule selection and optimization—adapting and para-
meterizing ACMG/AMP criteria for ICCs

2. Code and implementation
3. Benchmarking CardioClassifier

Rule selection and optimization
For each rule in the ACMG/AMP framework, we first
evaluated whether the rule was applicable to the ICC under
investigation and, where appropriate, defined more precisely
the circumstances under which the rule would be activated.
For seven computational criteria (PS1, PM4, PM5, PP3, BA1,
BP3, and BP4), parameterization is consistent across all gene–
disease pairs. For the remaining criteria, we have incorporated
expert disease, gene- and variant type–specific knowledge and
data to define thresholds for activation. This includes
determination of robust disease-specific maximum frequency
thresholds taking into account the genetic architecture of each
disease8 (BS1 and PM2; Supplementary Table S1 online), and
using large disease cohorts to define both “mutational
hotspots”9 (PM1; Figure 1a) and variants observed more
frequently in cases when compared with population controls
(PS4). As part of this development process, we compared rule
activation in CardioClassifier to a set of variants manually
curated as part of routine clinical service at the Royal
Brompton Hospital (see Supplementary Materials). Full
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Figure 1 Examples of disease-specific optimization of American College of Medical Genetics and Genomics/Association for Molecular
Pathology rules. (a) Missense variants within a subportion of MYH7, when identified in an HCM patient, have a 97% prior probability of being
pathogenic (etiological fraction; EF = 0.97). We activate PM1 for missense variants in this region. Here we use MYH7:c.2221G> T as an example (black
bar). (b) Truncating variants in TTN are only known to cause DCM when found in exons constitutively expressed in the heart (proportion spliced in
> 0.9). We activate PVS1_strong for these variants. Here we use TTN:c.86641delC as an example (black bar). (c) Variants that have been identified as
pathogenic in paralogous genes may identify residues that are intolerant to variation. We have created two modified rules, PS1_moderate and
PM5_supporting, to incorporate this evidence. Here we use KCNQ1:p.T311I as an example. KCNQ2:p.T276I is associated with Ohtahara syndrome. We
activate PS1_moderate for KCNQ1:p.T311I, which is the equivalent missense change (i.e., same reference and alternate amino acids) in a different
member of the same protein family.
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details of how each rule is parameterized can be found in the
Supplementary Materials.
As most large reference populations, such as ExAC,10 are

not comprehensively screened for health, disease-associated
alleles may be observed at low frequency. This holds true for
ICCs, which can be difficult to detect even with targeted
investigation, as they often manifest later in life and exhibit
incomplete penetrance. We have therefore modified PM2 so
as not to inappropriately discard variants seen at very low
frequencies in these reference data sets.
In addition, we have created extensions to three ACMG/

AMP rules, to enhance interpretation of ICC variants. First,
we have modified PVS1 for the titin (TTN) gene, which has a
role in up to 20% of dilated cardiomyopathy (DCM) cases.11

We have previously shown that only TTN truncating variants
in exons constitutively expressed in the heart are robustly
associated with DCM.10 Additionally, it is unclear that the
mechanism of action for these variants is truly loss of
function. Instead of scoring all TTN truncating variants
equally and assuming an underlying loss-of-function mechan-
ism, we only score TTN truncating variants highly if they are
in constitutive exons (proportion spliced in > 0.9; Figure 1b),
and we reduce the strength of evidence by one level from very
strong to strong (coded as PVS1_strong).
We also extended PS1 and PM5 to utilize known disease-

causing variants in related genes/proteins (paralogues) to
identify residues intolerant to variation12 (Figure 1c). Where
nothing is known about variants at the equivalent residue of
the same gene, we use high confidence variants (i.e., same
reference allele and M-coffee mapping score > 3) as evidence
if they affect the equivalent residue in a paralogue (with the
same reference allele), either with the same substitution (rule
PS1_moderate—Equivalent amino acid change as an
established pathogenic variant in a paralogous gene), or a
different substitution (rule PM5_supporting—Missense
change at an amino acid residue where a pathogenic
missense change has been seen in the equivalent residue of

a paralogous gene). This analysis is currently restricted to the
families of predominantly ion channel proteins associated
with inherited arrhythmia syndromes for which this method
has been previously validated.12,13

We have previously shown paralogue annotation to be
informative for over one-third of novel single-nucleotide
variants,13 and independent validation has shown a high
specificity and positive predictive value compared with other
sources of evidence.14,15 To determine the effect of these
criteria on variant classification (before inclusion of any case-
level or functional data that cannot be computationally
predicted) we used 48 clinically curated (i.e., not literature
only or research) missense variants from ClinVar identified
as pathogenic or likely pathogenic for long QT syndrome
from one or more submitter with at least one review status
star, and compared CardioClassifier interpretations with
and without paralogue data. Paralogue data were available
for 11/48 (22.9%) variants and resulted in a potential change
of class from variant of uncertain significance (VUS) to
likely pathogenic for 63.6% (7/11) of these (Supplementary
Table S2).

Code and implementation
CardioClassifier is implemented server-side in perl and PHP.
Uploaded variant data is annotated by the Ensembl Variant
Effect Predictor16 and converted to a table using the
tableize_vcf.py script within LOFTEE (https://github.com/
konradjk/loftee). Protein-altering and splice-site variants
(coding ± 8 bps) are analyzed for a set of 40 genes associated
with inherited cardiac conditions (Table 1). We look to
continuously expand this list, focusing on curated genes
robustly implicated in disease, emerging from community
efforts such as ClinGen.4

The classifier automatically assesses each variant for 17
rules across three distinct data categories, as defined by the
ACMG/AMP guidelines.2 It also consults an internal knowl-
edge base of additional evidence, grouped by ACMG rule,

Table 1 Details of gene–disease pairs currently analyzed by CardioClassifier
Disease Disease class Genes Total genes

DCM Cardiomyopathy LMNA, TNNT2, SCN5A, TTN, TCAP, MYH7, VCL, TPM1, TNNC1, RBM20, DSP, BAG3 12

HCM Cardiomyopathy MYH7, TNNT2, TPM1, MYBPC3, PRKAG2, TNNI3, MYL3, MYL2, ACTC1, CSRP3, PLN, TNNC1,

GLA, FHL1, LAMP2, GAA

16

ARVD/C Cardiomyopathy DSP, PKP2, DSG2, DSC2, JUP 5

RCM Cardiomyopathy TNNI3 1

ncCM Cardiomyopathy MYBPC3, MYH7 2

Noonan syndrome Cardiomyopathy RAF1, SOS1, PTPN11, KRAS 4

Long QT syndrome Arrhythmia KCNQ1, KCNH2, SCN5A, KCNE1, KCNE2 5

Brugada syndrome Arrhythmia SCN5A 1

CPVT Arrhythmia RYR2 1

Marfan syndrome Aortopathy FBN1 1

FH — LDLR 1

CPVT, atecholaminergic polymorphic ventricular tachycardia; DCM, dilated cardiomyopathy; HCM, hypertrophic cardiomyopathy; ARVD/C, arrhythmogenic right ven-
tricular dysplasia/cardiomyopathy; FH, familial hypercholesterolemia; ncCM, non-compaction cardiomyopathy; RCM, restrictive cardiomyopathy.
The disease class column details the larger subpanels relating to broad disorder types that each disease and gene set are within.
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either derived from community curation efforts or manually
curated internally. The output is displayed on a PHP Web
page that allows the user to interact and add (or remove)
additional levels of evidence.

Benchmarking
Data sets
To test CardioClassifier extensively we used data from the
following sources:

1. ClinVar—all variants identified as pathogenic or likely
pathogenic by multiple submitters with no conflicting
data (i.e., no reports of benign, likely benign, or
uncertain significance) for hypertrophic cardiomyopathy
(HCM; n = 158), dilated cardiomyopathy (DCM;
n = 16), long QT syndrome (n = 18), catecholaminer-
gic polymorphic ventricular tachycardia (n = 1), Bru-
gada syndrome (n = 4), or arrhythmogenic right
ventricular cardiomyopathy (n = 22) were extracted
from the 20161201 release of ClinVar17 using publicly
available scripts.18

2. Fifty-seven protein-altering variants in MYH7 that have
been expertly curated by the ClinGen Inherited Cardi-
omyopathy expert panel (https://www.ncbi.nlm.nih.gov/
clinvar/submitters/506161/).

3. A prospective data set of 327 HCM cases and 625
healthy volunteers recruited to the National Institute for
Health Research Royal Brompton cardiovascular biome-
dical research unit, all phenotypically characterized using
cardiac magnetic resonance imaging. Samples were
sequenced using the Illumina (San Diego, USA) TruSight
Cardio Sequencing Kit1 on the Illumina (San Diego,
USA) NextSeq platform. This study had ethical approval
(REC: 09/H0504/104+5) and informed consent was
obtained for all subjects.

Comparison with existing resources
We compared the performance of CardioClassifier against the
generic tool InterVar,7 to assess the importance of our
disease-specific annotations. We used the ClinVar data set of
219 variants described above as a test data set.
InterVar scripts were downloaded from GitHub (https://

github.com/WGLab/InterVar) and individually run for each
disease using an engineered VCF file. To ensure a fair
comparison, we edited the “disorder_cutoff” to be equivalent
to the thresholds used to activate BS1 in CardioClassifier. All
other settings were left as default and no additional evidence
was uploaded. We compared both the final classifications and
the individual rules that were activated by each tool.

Code and tool availability
CardioClassifier is available at http://www.cardioclassifier.org,
with a free license for noncommercial use. The code and data
used to produce this manuscript are available at https://github.
com/ImperialCardioGenetics/CardioClassifierManuscript.

RESULTS
Semiautomation leads to high-quality and reproducible
variant interpretation
CardioClassifier provides a simple-to-use Web interface that
takes as input either individual variant details or a single
sample VCF (Supplementary Figure S1). Users select one of
11 cardiac disorders, and this determines which prespecified
validated disease genes are analyzed. Where a diagnosis
is uncertain (e.g., sudden cardiac death or complex
cardiomyopathy), a wider analysis can be performed for
genes associated with a broader phenotype (e.g., all
cardiomyopathies, or all arrhythmia syndromes; Table 1),
or for all 40 ICC genes parameterized. Details of the key
features of CardioClassifier can be found in Table 2.
Each variant is annotated for up to 17 computational

criteria, with results output to a grid representing the ACMG/
AMP framework (Figure 2). The variant report is interactive,
allowing a user to add additional case-level evidence to
generate and refine a final classification (Supplementary
Figure S2). The report is transparent, with all supporting
evidence displayed along with links out to eight external
resources that are commonly used for interpretation of ICC
variants: the ExAC browser,19 Ensembl, the University of
California–Santa Cruz Genome Browser, ClinVar, PubMed,
Google, the Beacon Network (https://beacon-network.org),
and the Atlas of Cardiac Genetic Variation.9

Highly curated data sets of disease cases and healthy
controls aid annotation and filtering
As well as publicly available data for both cases and
population controls, CardioClassifier incorporates data from
three highly curated in-house data sets sequenced with the
Illumina TruSight Cardio sequencing panel.1 Counts from
877 DCM, 327 HCM cases, and 1,383 healthy volunteers, all
rigorously phenotyped using cardiac magnetic resonance
imaging, are used to annotate variants in genes associated
with these disorders.
Some genomic regions, especially those that are repetitive or

with high GC content, are not fully covered by standard
exome sequencing used by major reference data sets.
Specifically, 12.5% of sample bases across our 40 ICC genes
are covered at o20 × (Supplementary Figure S3) in the
ExAC data set. In contrast, our control set has 99.9% of
sample bases covered at > 20 × , allowing accurate
identification of common and low-frequency variants and
platform-specific errors, across all regions of interest (rule
BS1). As this data set is derived from the Illumina TruSight
Cardio sequencing panel, users uploading variants derived
from different sequencing panels should consider comparison
with a local data set to identify platform-specific errors.
In addition to these in-house data, we display counts from

published clinical cohorts for HCM,9,20 DCM,9,21 long QT
syndrome,22 and Brugada syndrome.23 These data are also
used to assess individual variants for enrichment in cases over
controls (rule PS4).
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Results show high concordance with manually curated and
gold-standard data
We compared CardioClassifier with 57 gold-standard,
manually curated protein-altering variants in MYH7 that
have been expertly curated by the ClinGen Inherited
Cardiomyopathy Expert Panel.24 Of 222 rules activated by
ClinGen for these 57 variants, 157 represented computation-
ally accessible data (from 9 ACMG/AMP rules) that were fully
retrieved by CardioClassifier. CardioClassifier concordantly
activated 137/157 rules (87.3%; Figure 3a; Supplementary
Table S3). The discrepancies fall across 3 rules: PP3 (in silico
prediction algorithms; n = 12), PS4 (prevalence in affected
individuals statistically increased over controls; n = 7), and
PM5 (same amino acid residue as known pathogenic variant;
n = 1). CardioClassifier imposes a more stringent threshold
on PP3 (allowing only one of eight in silico prediction
algorithms to be discordant), and differences in PS4 and PM5
are due to the increased availability of proband data to the
ClinGen team (not available from public repositories). In all
cases, CardioClassifier successfully returned all available data.
We then tested the ability of the links within the

CardioClassifier report to inform activation of the 61 case-
level data points activated by the ClinGen team. These links
allowed us to manually collate 50/61 (82.0%) individual data

points (Supplementary Table S3) with differences again in
the availability of proband data (6 PS4_supporting, 1
PS4_moderate, 1 PS2, 1 BS4, and 2 PP1_moderate). After
addition of this clinical data, we reached an identical
classification to the ClinGen team for 50/57 (87.7%)
variants (Figure 3a).

CardioClassifier has higher sensitivity and specificity than
nonspecific interpretation tools
In February 2017 InterVar, and its companion Web server
winterVar, became the first tools to automatically populate
criteria from the ACMG/AMP guidelines.7 While these tools
were crucial steps forward in application of the framework,
they aim to support interpretation across the full spectrum of
human genes and disorders.
To determine the added value of the disease- and gene-

specific annotations included in CardioClassifier, we com-
pared CardioClassifier with InterVar using a set of 219
variants identified as pathogenic or likely pathogenic on
ClinVar, with high confidence, across six ICCs. Based on
automatically retrieved data only, InterVar identified 64/219
(29.2%) variants as likely pathogenic or pathogenic, while
CardioClassifier identified over double this number as
clinically actionable (156/219) with a sensitivity of 71.2%

Table 2 Key features of CardioClassifier
Feature Description CardioClassifier Alamut InterVar ClinGen

pathogenicity
calculator

Collates data from multiple sources CardioClassifier retrieves data from multiple

databases/resources including ExAC, ClinVar,

ACGV, and dbNSFP as well as internally derived

data

✓ ✓ ✓ —

Takes a standard VCF or variant details as

input and annotates with effect on

sequence and protein

The Ensembl Variant Effect Predictor is used to

annotate all variants according to protein

consequence

✓ ✓ ✓ —

ACMG/AMP rules parameterized through

expert curation according to specific gene

and disease

We have developed expertly curated gene- and

disease-specific thresholds for 14 computational

ACMG/AMP criteria in addition to 3 specifically

created ICC-specific rules

✓ — — —

Computational data used to activate

ACMG/AMP rules

Each variant is automatically assessed against 17

computational criteria

✓ — ✓ —

Interactive refinement of rules and

addition of case-level data

Users can interactively add or remove evidence

pertaining to any of the ACMG/AMP rules

✓ — ✓ ✓

Integration of automated annotations and

case-level interactive additions to calculate

a classification according to the ACMG

logic

The logic from the ACMG/AMP guidelines is used

to provide a final classification

✓ — ✓ ✓

Evidence used to generate classification

displayed

The thresholds and data used in CardioClassifier is

transparent and printed on the report

✓ — — —

Knowledge base of case-level annotations We have created a “knowledge base” whereby

manually curated case-level evidence is stored and

used to populate variant reports

✓ — — —

ACGV, Atlas of Cardiac Genetic Variation; ACMG/AMP, American College of Medical Genetics and Genomics/Association for Molecular Pathology; ICC, inherited cardiac
condition.
Included are details of each key feature and which of three currently available tools (Alamut, InterVar, and the ClinGen pathogenicity calculator) also includes each
feature.
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confirmed)
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alternate cause
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variant
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PM4 - Protein length
changing variant

PVS1_strong - TTNtv in
constitutively expressed
exon (PSI>0.9)

PS3 - Well established
functional studies show a
deleterious effect

PS2 - De novo (paternity
and maternity confirmed)

PM5 - Novel missense at
an amino acid residue
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pathogenic variant
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variant in a gene where
LOF is a known
mechanism of disease

PM2 - Low frequency in
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SUPPORTING EVIDENCE
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Manually curated data:
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The following references are derived from ClinVar (PubMed IDs given): 12707239, 17125710, 18076673, 20394946, 20800588, 22260945, 23549607, 23690394,

ADDITIONAL EVIDENCE

PP1 - Segregated with disease in 5 affected relatives from 3 families (HCM; ClinVar;SCV000199202.3);

Functional data:

PM1 - Variant is within the HCM cluster of MYH7 where variants, when found in a case, are highly likely to be pathogenic (EF*=0.97).

SIFT
Damaging Disease-causing

MutationTaster
Medium impact
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–
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35
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PP3 - 7 out of 7 algorithms predict this variant will adversely affect protein function:

Population controls (light green, allele counts), Healthy controls (dark green, sample counts), Disease cases (red, sample counts). See Appendix for details.

ExAC (~120000)

– – – – – 1 7
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PM2 - Variant frequency in ExAC is < 0.000040.

PS4 - Variant is statistically increased in cases (n=7) over controls (n=0: P=5.417e-8).

Computational data
predictive data

Strong Supporting Supporting

PP3 - Multiple lines of
computational evidence
support a deleterious
effect on gene/gene
product

Moderate Strong Very strong

PATHOGENIC

This variant report includes manual curations from ClinVar and the literature

This variant is in ClinVar, click here to see the record

c.2302G>A p.G768R HetMYH7 chr14:23894612

Gene Variant type Coding HGVS Protein HGVS Genomic position Zygosity

Figure 2 Example variant report output by CardioClassifier. A grid is output for each individual variant. Rules highlighted in color are activated for the
variant and rules in gray on a white background are assessed but not activated. A user can click on a rule to manually add or remove a piece of evidence. All
evidence used to assess the variant is displayed under the grid along with links out to external resources. An overall classification for the variant using the
American College of Medical Genetics and Genomics/Association for Molecular Pathology logic is displayed in the top left corner. EF, etiological fraction (the
prior probability that a variant, identified in a case, is pathogenic).9 CADD, combined annotation dependent depletion; HCM, hypertrophic cardiomyopathy;
HGVS, Human Genome Variation Society; LOF, loss of function; MAF, minor allele frequency; CGG, Imperial Cardiovascular Genetics and Genomics; ESP, NHLBI
Exome Sequencing Project; FH, Family history; PSI, Proportion spliced in; FATHMM, Functional analysis through Hidden Markov Models..
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(Supplementary Table S4). For both tools, sensitivity would
be increased further through user addition of clinical and
functional data.
Despite the lower sensitivity of InterVar, there are occasions

where the tool activates rules inappropriately in the absence of
gene-specific knowledge. First, InterVar activates PVS1 in the
TTN gene, regardless of protein location, when it is recognized
that truncating variants in exons not constitutively expressed in
the heart are not associated with DCM, and are commonly
found in demonstrably healthy controls.11 Consequently,
InterVar will categorize rare variants in these regions as likely
pathogenic when they are highly unlikely to be disease-causing.
Second, InterVar activates rule PP5 (reputable source

identifies the variant as pathogenic) for 89.5% of the variants

as they are reported as pathogenic in ClinVar. The ACMG
guidelines state that this rule should only be activated when
the evidence supporting the classification is unavailable, yet
this evidence is often contained within the appropriate
ClinVar submission. Full details of the rules activated by
both tools are shown in Figure 3b.
To ensure the higher sensitivity of CardioClassifier was not

due to overactivating rules, we also tested a set of 67 benign
and likely benign variants from ClinVar across the same six
ICCs. CardioClassifier identified 61/67 (91.0%) of these as
benign and the remaining 6 as VUS. Conversely, InterVar
identified 41/67 (61.2%) as benign with 22 as likely benign
and 4 as VUS. Here InterVar activates BS2 when a variant is
seen in the 1000 Genomes data set, which we believe is
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Figure 3 Validation of CardioClassifier. (a) Comparing CardioClassifier to a set of 57 MYH7 expert panel curated variants. Rules were split into
those that can be computationally annotated and those that are “case-level” and require manual input. CardioClassifier was run using an “All
Cardiomyopathy” test to reflect the spectrum of phenotypes caused by variants in MYH7. *Of the computational rules, 3 were removed from the
comparison as they represent draft modifications to the American College of Medical Genetics and Genomics framework by the ClinGen Cardiovascular
Domain Working Group that were not published at the time of this work, and not yet implemented in CardioClassifier. Specifically, truncating variants
in MYH7 activate a new rule, PVS1_moderate. Additionally, for variants classified as benign by frequency alone (BA1) CardioClassifier does not assess
any further rules, leading us to remove an additional data point from the comparison as we would not expect it to be retrieved. (b) Counts of
individual rules activated by CardioClassifier and InterVar for 219 variants identified as pathogenic or likely pathogenic in ClinVar. Only pathogenic
evidence rules and rules activated by one of the tools at least once are shown.
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inappropriate for ICCs that do not fit the important caveat of
“full penetrance expected at an early age.” We do acknowl-
edge, however, that InterVar was developed for severe
congenital and very early–onset developmental disorders with
nearly 100% penetrance.

Diagnostic yield in HCM cases matches previous reports
To investigate the clinical utility of CardioClassifier we used a
data set of 327 HCM cases. In 66 cases (20.2%) we identified a
pathogenic (n = 11) or likely pathogenic (n = 55) variant,
with a further 76 cases (23.2%) harboring a VUS. To
determine the proportion of these VUS likely to become
clinically actionable after the addition of case-level data, we
calculated the excess of VUS in cases over the background
level of rare and presumably benign VUS in 625 healthy
volunteers. Based on a background level of 9.7%, we calculate
a case excess of VUS of 13.5%. Combining this with the 20.2%
of cases with a pathogenic or likely pathogenic variant,
overall, 33.7% of cases have a potentially clinically relevant
variant (Supplementary Figure S4a), comparable with
previous reports.20

Manual curation of known variants
In addition to automatic retrieval of computational data,
CardioClassifier will store curated case-level data entered by
users, or prepopulated by active curation. We have primed
this “knowledge base” with data from 120 fully curated
cardiomyopathy variants, comprising the 57 expert panel
curated MYH7 variants and the most commonly observed
variants for the major cardiomyopathies: HCM, DCM, and
arrhythmogenic right ventricular cardiomyopathy, defined as
those occurring six or more times in the Atlas of Cardiac
Genetic Variation resource (reflecting a HCM case frequency
of ~ 1/1,000).9 There were 84 such recurrent variants in the
Atlas, together representing 39.5% (1,258/3,186) of all
identified variants. We curated 63 that had not already been
assessed by the expert panel.
After manual curation of the literature and ClinVar for

reports of segregation, de novo occurrence, and functional
characterization, 34 variants were classified as pathogenic, 13
as likely pathogenic, and 7 as VUS (Supplementary Table S5;
Supplementary Figure S4b). The annotations for these 120
variants, accounting for at least 40% of variants identified in
Caucasian cardiomyopathy cases, are stored in
CardioClassifier, ensuring these variants are correctly
classified without further user input.

DISCUSSION
We describe CardioClassifier, an automated and interactive
Web tool to aid clinical variant interpretation across a wide
range of ICCs. To the best of our knowledge this represents a
unique disease-specific solution that automates data retrieval,
incorporates gene- and disease-specific knowledge to refine
rule application, is preloaded with curated data on prior
observations (in health or disease), and integrates evidence
according to the widely adopted framework from ACMG/AMP.

The tool is transparent, with all the information incorporated
into interpreting each variant displayed along with the final
classification. It is also flexible, and designed to be fully
interactive, with the user able to add and remove evidence
specific to the patient/family of interest.
The strength of CardioClassifier is its disease specificity.

The ACMG/AMP rules are intentionally nonspecific to allow
adoption in any disease domain. To harness the full power of
this framework, the rules need to be applied in a disease- and
gene-specific manner.25 We have defined criteria and thresh-
olds for each ACMG/AMP rule that are specific to the
disorder of interest, and demonstrate the power and
effectiveness of this approach over a recently released
genome-wide interpretation interface. Incorporation of
disease-specific knowledge is limited by current data, and
the power of this tool will increase over time as new data
become available.
Ongoing community initiatives, such as the Clinical

Genome Resource (ClinGen), are defining consensus disease-
and gene-specific standards for modifications to the ACMG/
AMP guidelines, and it is our intention to continue to develop
CardioClassifier to utilize these standards as they become
available.
We believe the main limitation to the effectiveness of any

computational solution is the retrieval of clinical and patient-
specific data that is seldom available as fully structured data
for programmatic retrieval. CardioClassifier combines pre-
populated computational data with interactive addition of
case- and variant-specific evidence in a structured format to
overcome this hurdle. Our growing variant knowledge base
will add to available structured representation of this crucial
case-level data. Future development of CardioClassifier will
streamline data-sharing, expanding our knowledge base and
sharing it with the community via submission to the ClinVar
database. This increasing knowledge base relies on researchers
and clinicians in the field supporting data-sharing initiatives,
and facilitating direct ClinVar submission from CardioClas-
sifier for the benefit of the ICC community is a development
priority.
A further limitation to CardioClassifier in its current form

is the restricted prediction of impact on splicing. This arises
for two main reasons. First, CardioClassifier uses the Ensembl
Variant Effect Predictor to annotate variants, which annotates
bases within 8 base-pairs of the exon/intron boundary as
splice site, but will miss more distal bona fide splice-site
variants. Second, we currently have not incorporated any in
silico splice-site prediction algorithms, due to limitations
around availability, licensing, and accuracy. These issues will
be addressed in a future release.
CardioClassifier is designed to work seamlessly with data

from any sequencing platform in standard VCF format,
whether targeted sequencing (e.g., Illumina TruSight
Cardio1), or targeted analysis of exome-/genome-wide data.
This is a crucial step in broadening the availability of genetic
testing for ICCs, and standardizing variant interpretation in
this field. Furthermore, we hope that in demonstrating the
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clinical utility of our disease-specific approach, we will
encourage others to develop similar tools across other disease
specialties.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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