Skip to main content

Advances in Body Surface Potential Mapping (BSPM) Instrumentation

  • Chapter
Pediatric and Fundamental Electrocardiography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 56))

Abstract

Body surface potential mapping (BSPM) is a non-invasive technique providing a spatiotemporal representation of the electrical activity of the heart. As a result of the electrical activity of the heart, electrical potentials appear at all points of the body surface. The aim of the BSPM instrument is to provide a time-coherent recording of ECG’s from a relatively large number of electrodes placed on the body surface. The recorded data are displayed in a graphical form for clinical analysis to diagnose cardiac abnormalities. In addition, the availability of the potential distribution over the complete torso permits, in principle, the non-invasive reconstruction of epicardial potentials from the BSPM data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lux RL. Electrocardiographic body surface potential mapping. CRC Crit Rev Biomed Eng 8:253, 1982.

    CAS  Google Scholar 

  2. Yamada K, Harumi K, Musha T. (eds.) Advances in Body Surface Potential Mapping. The University of Nagoya Press, 1983.

    Google Scholar 

  3. Yamada K, Toyama J, Wada M, Sugiyama S, Sugenoya J, Toyoshima H, Mizumo Y, Sotohata I, Kibayashi M. Body surface isopotential mapping in Wolff-Parkinson-White syndrome: Noninvasive methods to determine the localization of accessory atrioventricular pathway. Am Heart J 92:721, 1975.

    Article  Google Scholar 

  4. De Ambroggi L, Taccardi B, Macchi E. Body surface maps of heart potentials: tentative localization of preexcited area of forty-two Wolff-Parkinson-White patients. Circulation 54:251, 1976.

    PubMed  Google Scholar 

  5. Benson PW, Gallagher JJ, Spach MS, Barr RC, Edwards SB, Olkham HN. Accessory atrioventricular pathway in an infant: Prediction of localization with body surface maps and ablation with cryosurgery. J Pediatr 96:41, 1980.

    Article  PubMed  Google Scholar 

  6. Abildskov JA, Burgess MJ, Millar CK, Vincent GM, Wyatt RF, Lux RL, Distribution of body surface potentials with experimentally induced multiple cardiac generators. In Advances in Cardiology, Vol. 10. S Rush and E Lepeschkin (eds.), Basel: S. Karger, 1974, p. 69.

    Google Scholar 

  7. Liebman J, Rudy Y, Diaz P, Thomas CW, Plonsey R. Electrocardiographic body surface potential maps in advanced right bundle branch block. Advances in Body Surface Potential Mapping. In K Yamada, K Harumi, T Musha (eds.), The University of Nagoya Press, 1983, pp. 217–226.

    Google Scholar 

  8. Taccardi B, de Ambroggi L, Riva D. Chest maps of heart potentials in right bundle branch block. J Electrocardiol 2:109, 1969.

    Article  PubMed  CAS  Google Scholar 

  9. Niimi N, Sugiyama S Wada M, Sugenoya J, Oguri H, Toyama J, Okajima M, Yamada K. Genesis of body surface potential distributions in right bundle branch block. J Electrocardiol 10:257, 1977.

    Article  PubMed  CAS  Google Scholar 

  10. Flowers NC, Horan LG, Gorbachan SS, Hand RC, Johnson JC. New evidence for inferoposterior myocardial infarction on body surface potential maps. Am J Cardiol 38:576, 1976.

    Article  PubMed  CAS  Google Scholar 

  11. Flowers NC, Horan LG, Johnson JC. Anteroinfero changes occuring during mid and late ventricular activation detectable by surface mapping techniques. Circulation 54:906, 1976.

    PubMed  CAS  Google Scholar 

  12. Vincent GM, Abildskov JA, Burgess MJ, Millar CK Lux RL, Wyatt RF. Diagnosis of old inferior myocardial infarction by body surface isopotential mapping. Am J Cardiol 39:510, 1977.

    Article  PubMed  CAS  Google Scholar 

  13. Yamada K, Toyama J, Sugenoya J, Wada M, Sugiyama S. Body surface isopotential maps: Clinical application to the diagnosis of myocardial infarction. Jpn Heart J 19:28, 1978.

    Article  PubMed  CAS  Google Scholar 

  14. Ohta T, Kinoshita A, Ohsugi J, Isomura S, Takatsu F, Ishikawa H, Toyama J, Nagaya T, Yamada, K, Correlation between body surface isopotential maps and left ventriculograms in patients with old inferioposterior myocardial infarction. Am Heart J 104:1262, 1982.

    Article  PubMed  CAS  Google Scholar 

  15. Osugi J, Ohta T, Toyama J, Takatsu F, Nagaya T, Yamada K. Body surface isopotential maps in old inferior myocardial infarction undetectable by 12 lead electrocardiogram. J ELectrocardiol 17(1), 55, 1984.

    Article  PubMed  CAS  Google Scholar 

  16. Spach MS, Barr RC, Lanning CF, Tucek PC. Origin of body surface QRS and T wave potentials from epicardial potential distributions in the intact chimpanzee. Circulation 55:268, 1977.

    PubMed  CAS  Google Scholar 

  17. Spach MS, Barr RC, Lanning CF. Experimental basis QRS and T wave potential distributions in the intact chimpanzee. Circ Res 42:103, 1978.

    PubMed  CAS  Google Scholar 

  18. Ramsey M III, Barr RC, Spach MS. Comparison of measured torso potentials with those simulated from epicardial potentials for ventricular depolarization and repolarization in the intact dog. Circ Res 41:660, 1977.

    PubMed  Google Scholar 

  19. King TD, Barr RC, Hermann-Giddens GS, Boaz DE, Spach MS. Isopotential body surface maps and their relationship to atrial potentials in the dog. Circ Res 20:393, 1972.

    Google Scholar 

  20. Rudy Y, Plonsey R. A comparison of volume conductor and source geometry effects on body surface and epicardial potentials. Circ Res 46:283, 1980.

    PubMed  CAS  Google Scholar 

  21. Rudy Y, Plonsey R, Liebman J. The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circ Res 44:104, 1979.

    PubMed  CAS  Google Scholar 

  22. Spach MS, King TD, Barr RC, Boaz DE, Morrow MN, Herman-Giddens S. electrical potential distribution surrounding the atria during depolarization and repolarization in the dog. Circ Res 24:857, 1969.

    PubMed  CAS  Google Scholar 

  23. Space MS. Barr RC. Ventricular intramural and epicardial potential distributions during ventricular activation and repolarization in the intact dog. Circ Res 37:243, 1975a.

    Google Scholar 

  24. Spach MS, Barr RC. Analysis of ventricular activation and repolarization from intramural and epicardial potential distributions for ectopic beats in the intact dog. Circ Res 37:830, 1975b.

    PubMed  CAS  Google Scholar 

  25. Spach MS, Barr RC. Origin of epicardial ST-T wave potentials in the intact dog. Circ Res 39:475, 1976.

    PubMed  CAS  Google Scholar 

  26. Rudy Y, Plonsey R, Liebman J. The effects of variations in conductivity and geometrical parameters on the electrocardiogram, using an eccentric spheres model. Circ Res 44:104, 1979.

    PubMed  CAS  Google Scholar 

  27. Ko WH, Hynecek J. Biomedical electrode technology. In HA Miller and DC Harrison (eds.), Dry Electrodes and Electrode Amplifiers, New York: Academic Press, 1974, pp. 169–181.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Martinus Nijhoff Publishing

About this chapter

Cite this chapter

Kavuru, M.S., Vesselle, H., Thomas, C.W. (1987). Advances in Body Surface Potential Mapping (BSPM) Instrumentation. In: Liebman, J., Plonsey, R., Rudy, Y. (eds) Pediatric and Fundamental Electrocardiography. Developments in Cardiovascular Medicine, vol 56. Springer, Boston, MA. https://doi.org/10.1007/978-1-4613-2323-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4613-2323-5_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4612-9428-3

  • Online ISBN: 978-1-4613-2323-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics