ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Enhanced Modeling via Network Theory: Adaptive Sampling of Markov State Models

View Author Information
Biophysics Program and Department of Chemistry, Stanford University, Stanford, California 94305
* Corresponding author e-mail: [email protected]
†Biophysics Program.
‡Department of Chemistry.
Cite this: J. Chem. Theory Comput. 2010, 6, 3, 787–794
Publication Date (Web):February 17, 2010
https://doi.org/10.1021/ct900620b
Copyright © 2010 American Chemical Society

    Article Views

    2574

    Altmetric

    -

    Citations

    174
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Computer simulations can complement experiments by providing insight into molecular kinetics with atomic resolution. Unfortunately, even the most powerful supercomputers can only simulate small systems for short time scales, leaving modeling of most biologically relevant systems and time scales intractable. In this work, however, we show that molecular simulations driven by adaptive sampling of networks called Markov State Models (MSMs) can yield tremendous time and resource savings, allowing previously intractable calculations to be performed on a routine basis on existing hardware. We also introduce a distance metric (based on the relative entropy) for comparing MSMs. We primarily employ this metric to judge the convergence of various sampling schemes but it could also be employed to assess the effects of perturbations to a system (e.g., determining how changing the temperature or making a mutation changes a system’s dynamics).

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Figures S1 and S2. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 174 publications.

    1. Diego E. Kleiman, Hassan Nadeem, Diwakar Shukla. Adaptive Sampling Methods for Molecular Dynamics in the Era of Machine Learning. The Journal of Physical Chemistry B 2023, 127 (50) , 10669-10681. https://doi.org/10.1021/acs.jpcb.3c04843
    2. Nara Lee Chon, Natalie Jean Schultz, Hongjin Zheng, Hai Lin. Anion Pathways in the NarK Nitrate/Nitrite Exchanger. Journal of Chemical Information and Modeling 2023, 63 (16) , 5142-5152. https://doi.org/10.1021/acs.jcim.3c00295
    3. Daniel Nagel, Sofia Sartore, Gerhard Stock. Toward a Benchmark for Markov State Models: The Folding of HP35. The Journal of Physical Chemistry Letters 2023, 14 (31) , 6956-6967. https://doi.org/10.1021/acs.jpclett.3c01561
    4. Artur Meller, Soumendranath Bhakat, Shahlo Solieva, Gregory R. Bowman. Accelerating Cryptic Pocket Discovery Using AlphaFold. Journal of Chemical Theory and Computation 2023, 19 (14) , 4355-4363. https://doi.org/10.1021/acs.jctc.2c01189
    5. Diego E. Kleiman, Diwakar Shukla. Active Learning of the Conformational Ensemble of Proteins Using Maximum Entropy VAMPNets. Journal of Chemical Theory and Computation 2023, 19 (14) , 4377-4388. https://doi.org/10.1021/acs.jctc.3c00040
    6. Jonas Dittrich, Milana Popara, Jakub Kubiak, Mykola Dimura, Bastian Schepers, Neha Verma, Birte Schmitz, Peter Dollinger, Filip Kovacic, Karl-Erich Jaeger, Claus A. M. Seidel, Thomas-Otavio Peulen, Holger Gohlke. Resolution of Maximum Entropy Method-Derived Posterior Conformational Ensembles of a Flexible System Probed by FRET and Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2023, 19 (8) , 2389-2409. https://doi.org/10.1021/acs.jctc.2c01090
    7. Hao Tian, Xi Jiang, Sian Xiao, Hunter La Force, Eric C. Larson, Peng Tao. LAST: Latent Space-Assisted Adaptive Sampling for Protein Trajectories. Journal of Chemical Information and Modeling 2023, 63 (1) , 67-75. https://doi.org/10.1021/acs.jcim.2c01213
    8. Kirill Shmilovich, Marc Stieffenhofer, Nicholas E. Charron, Moritz Hoffmann. Temporally Coherent Backmapping of Molecular Trajectories From Coarse-Grained to Atomistic Resolution. The Journal of Physical Chemistry A 2022, 126 (48) , 9124-9139. https://doi.org/10.1021/acs.jpca.2c07716
    9. Diego E. Kleiman, Diwakar Shukla. Multiagent Reinforcement Learning-Based Adaptive Sampling for Conformational Dynamics of Proteins. Journal of Chemical Theory and Computation 2022, 18 (9) , 5422-5434. https://doi.org/10.1021/acs.jctc.2c00683
    10. Hao Zhang, Duan Ni, Jigang Fan, Minyu Li, Jian Zhang, Chen Hua, Ruth Nussinov, Shaoyong Lu. Markov State Models and Molecular Dynamics Simulations Reveal the Conformational Transition of the Intrinsically Disordered Hypervariable Region of K-Ras4B to the Ordered Conformation. Journal of Chemical Information and Modeling 2022, 62 (17) , 4222-4231. https://doi.org/10.1021/acs.jcim.2c00591
    11. Soumajit Dutta, Balaji Selvam, Diwakar Shukla. Distinct Binding Mechanisms for Allosteric Sodium Ion in Cannabinoid Receptors. ACS Chemical Neuroscience 2022, 13 (3) , 379-389. https://doi.org/10.1021/acschemneuro.1c00760
    12. S. Kashif Sadiq, Abraham Muñiz Chicharro, Patrick Friedrich, Rebecca C. Wade. Multiscale Approach for Computing Gated Ligand Binding from Molecular Dynamics and Brownian Dynamics Simulations. Journal of Chemical Theory and Computation 2021, 17 (12) , 7912-7929. https://doi.org/10.1021/acs.jctc.1c00673
    13. Kirill A. Konovalov, Ilona Christy Unarta, Siqin Cao, Eshani C. Goonetilleke, Xuhui Huang. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning. JACS Au 2021, 1 (9) , 1330-1341. https://doi.org/10.1021/jacsau.1c00254
    14. Austin T. Weigle, Matthew Carr, Diwakar Shukla. Impact of Increased Membrane Realism on Conformational Sampling of Proteins. Journal of Chemical Theory and Computation 2021, 17 (8) , 5342-5357. https://doi.org/10.1021/acs.jctc.1c00276
    15. Ernesto Suárez, Rafal P. Wiewiora, Chris Wehmeyer, Frank Noé, John D. Chodera, Daniel M. Zuckerman. What Markov State Models Can and Cannot Do: Correlation versus Path-Based Observables in Protein-Folding Models. Journal of Chemical Theory and Computation 2021, 17 (5) , 3119-3133. https://doi.org/10.1021/acs.jctc.0c01154
    16. Alexander-Maurice Illig, Birgit Strodel. Performance of Markov State Models and Transition Networks on Characterizing Amyloid Aggregation Pathways from MD Data. Journal of Chemical Theory and Computation 2020, 16 (12) , 7825-7839. https://doi.org/10.1021/acs.jctc.0c00727
    17. Eugen Hruska, Vivekanandan Balasubramanian, Hyungro Lee, Shantenu Jha, Cecilia Clementi. Extensible and Scalable Adaptive Sampling on Supercomputers. Journal of Chemical Theory and Computation 2020, 16 (12) , 7915-7925. https://doi.org/10.1021/acs.jctc.0c00991
    18. Shuting Yan, Jason M. Peck, Muslum Ilgu, Marit Nilsen-Hamilton, Monica H. Lamm. Sampling Performance of Multiple Independent Molecular Dynamics Simulations of an RNA Aptamer. ACS Omega 2020, 5 (32) , 20187-20201. https://doi.org/10.1021/acsomega.0c01867
    19. Juanrong Zhang, Haipeng Gong. Frontier Expansion Sampling: A Method to Accelerate Conformational Search by Identifying Novel Seed Structures for Restart. Journal of Chemical Theory and Computation 2020, 16 (8) , 4813-4821. https://doi.org/10.1021/acs.jctc.0c00064
    20. Fabian Paul, Yilin Meng, Benoît Roux. Identification of Druggable Kinase Target Conformations Using Markov Model Metastable States Analysis of apo-Abl. Journal of Chemical Theory and Computation 2020, 16 (3) , 1896-1912. https://doi.org/10.1021/acs.jctc.9b01158
    21. Faisal Aldukhi, Aniket Deb, Chuankai Zhao, Alexander S. Moffett, Diwakar Shukla. Molecular Mechanism of Brassinosteroid Perception by the Plant Growth Receptor BRI1. The Journal of Physical Chemistry B 2020, 124 (2) , 355-365. https://doi.org/10.1021/acs.jpcb.9b09377
    22. Kevin J. Cheng, Balaji Selvam, Li-Qing Chen, Diwakar Shukla. Distinct Substrate Transport Mechanism Identified in Homologous Sugar Transporters. The Journal of Physical Chemistry B 2019, 123 (40) , 8411-8418. https://doi.org/10.1021/acs.jpcb.9b08257
    23. Balaji Selvam, Ya-Chi Yu, Li-Qing Chen, Diwakar Shukla. Molecular Basis of the Glucose Transport Mechanism in Plants. ACS Central Science 2019, 5 (6) , 1085-1096. https://doi.org/10.1021/acscentsci.9b00252
    24. Yuanchao Liu, David P. Hickey, Shelley D. Minteer, Alex Dickson, Scott Calabrese Barton. Markov-State Transition Path Analysis of Electrostatic Channeling. The Journal of Physical Chemistry C 2019, 123 (24) , 15284-15292. https://doi.org/10.1021/acs.jpcc.9b02844
    25. Giulia Morra, Massimiliano Meli, Giorgio Colombo. How the Ligand-Induced Reorganization of Protein Internal Energies Is Coupled to Conformational Events. Journal of Chemical Theory and Computation 2018, 14 (11) , 5992-6001. https://doi.org/10.1021/acs.jctc.8b00195
    26. Maxwell I. Zimmerman, Justin R. Porter, Xianqiang Sun, Roseane R. Silva, Gregory R. Bowman. Choice of Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of Conformational Changes. Journal of Chemical Theory and Computation 2018, 14 (11) , 5459-5475. https://doi.org/10.1021/acs.jctc.8b00500
    27. Zahra Shamsi, Kevin J. Cheng, Diwakar Shukla. Reinforcement Learning Based Adaptive Sampling: REAPing Rewards by Exploring Protein Conformational Landscapes. The Journal of Physical Chemistry B 2018, 122 (35) , 8386-8395. https://doi.org/10.1021/acs.jpcb.8b06521
    28. Mithun Biswas, Benjamin Lickert, Gerhard Stock. Metadynamics Enhanced Markov Modeling of Protein Dynamics. The Journal of Physical Chemistry B 2018, 122 (21) , 5508-5514. https://doi.org/10.1021/acs.jpcb.7b11800
    29. Yilin Meng, Cen Gao, David K. Clawson, Shane Atwell, Marijane Russell, Michal Vieth, Benoît Roux. Predicting the Conformational Variability of Abl Tyrosine Kinase using Molecular Dynamics Simulations and Markov State Models. Journal of Chemical Theory and Computation 2018, 14 (5) , 2721-2732. https://doi.org/10.1021/acs.jctc.7b01170
    30. Alberto Perez, Florian Sittel, Gerhard Stock, Ken Dill. MELD-Path Efficiently Computes Conformational Transitions, Including Multiple and Diverse Paths. Journal of Chemical Theory and Computation 2018, 14 (4) , 2109-2116. https://doi.org/10.1021/acs.jctc.7b01294
    31. Brooke E. Husic and Vijay S. Pande . Markov State Models: From an Art to a Science. Journal of the American Chemical Society 2018, 140 (7) , 2386-2396. https://doi.org/10.1021/jacs.7b12191
    32. Brooke E. Husic, Keri A. McKiernan, Hannah K. Wayment-Steele, Mohammad M. Sultan, and Vijay S. Pande . A Minimum Variance Clustering Approach Produces Robust and Interpretable Coarse-Grained Models. Journal of Chemical Theory and Computation 2018, 14 (2) , 1071-1082. https://doi.org/10.1021/acs.jctc.7b01004
    33. Yang Cao, Xuehan Jiang, and Wei Han . Self-Assembly Pathways of β-Sheet-Rich Amyloid-β(1–40) Dimers: Markov State Model Analysis on Millisecond Hybrid-Resolution Simulations. Journal of Chemical Theory and Computation 2017, 13 (11) , 5731-5744. https://doi.org/10.1021/acs.jctc.7b00803
    34. Asmit Bhowmick, David H. Brookes, Shane R. Yost, H. Jane Dyson, Julie D. Forman-Kay, Daniel Gunter, Martin Head-Gordon, Gregory L. Hura, Vijay S. Pande, David E. Wemmer, Peter E. Wright, and Teresa Head-Gordon . Finding Our Way in the Dark Proteome. Journal of the American Chemical Society 2016, 138 (31) , 9730-9742. https://doi.org/10.1021/jacs.6b06543
    35. Ernesto Suárez, Joshua L. Adelman, and Daniel M. Zuckerman . Accurate Estimation of Protein Folding and Unfolding Times: Beyond Markov State Models. Journal of Chemical Theory and Computation 2016, 12 (8) , 3473-3481. https://doi.org/10.1021/acs.jctc.6b00339
    36. Jeffrey R. Wagner, Christopher T. Lee, Jacob D. Durrant, Robert D. Malmstrom, Victoria A. Feher, and Rommie E. Amaro . Emerging Computational Methods for the Rational Discovery of Allosteric Drugs. Chemical Reviews 2016, 116 (11) , 6370-6390. https://doi.org/10.1021/acs.chemrev.5b00631
    37. S. Doerr, M. J. Harvey, Frank Noé, and G. De Fabritiis . HTMD: High-Throughput Molecular Dynamics for Molecular Discovery. Journal of Chemical Theory and Computation 2016, 12 (4) , 1845-1852. https://doi.org/10.1021/acs.jctc.6b00049
    38. Martín Carballo-Pacheco and Birgit Strodel . Advances in the Simulation of Protein Aggregation at the Atomistic Scale. The Journal of Physical Chemistry B 2016, 120 (12) , 2991-2999. https://doi.org/10.1021/acs.jpcb.6b00059
    39. Guangfeng Zhou and Vincent A. Voelz . Using Kinetic Network Models To Probe Non-Native Salt-Bridge Effects on α-Helix Folding. The Journal of Physical Chemistry B 2016, 120 (5) , 926-935. https://doi.org/10.1021/acs.jpcb.5b11767
    40. Maxwell I. Zimmerman and Gregory R. Bowman . FAST Conformational Searches by Balancing Exploration/Exploitation Trade-Offs. Journal of Chemical Theory and Computation 2015, 11 (12) , 5747-5757. https://doi.org/10.1021/acs.jctc.5b00737
    41. Noelia Ferruz, Matthew J. Harvey, Jordi Mestres, and Gianni De Fabritiis . Insights from Fragment Hit Binding Assays by Molecular Simulations. Journal of Chemical Information and Modeling 2015, 55 (10) , 2200-2205. https://doi.org/10.1021/acs.jcim.5b00453
    42. F. Vitalini, F. Noé, and B. G. Keller . A Basis Set for Peptides for the Variational Approach to Conformational Kinetics. Journal of Chemical Theory and Computation 2015, 11 (9) , 3992-4004. https://doi.org/10.1021/acs.jctc.5b00498
    43. Baron Peters . Common Features of Extraordinary Rate Theories. The Journal of Physical Chemistry B 2015, 119 (21) , 6349-6356. https://doi.org/10.1021/acs.jpcb.5b02547
    44. Diwakar Shukla, Carlos X. Hernández, Jeffrey K. Weber, and Vijay S. Pande . Markov State Models Provide Insights into Dynamic Modulation of Protein Function. Accounts of Chemical Research 2015, 48 (2) , 414-422. https://doi.org/10.1021/ar5002999
    45. Matthew C. Zwier, Joshua L. Adelman, Joseph W. Kaus, Adam J. Pratt, Kim F. Wong, Nicholas B. Rego, Ernesto Suárez, Steven Lettieri, David W. Wang, Michael Grabe, Daniel M. Zuckerman, and Lillian T. Chong . WESTPA: An Interoperable, Highly Scalable Software Package for Weighted Ensemble Simulation and Analysis. Journal of Chemical Theory and Computation 2015, 11 (2) , 800-809. https://doi.org/10.1021/ct5010615
    46. Vincent A. Voelz, Brandon Elman, Asghar M. Razavi, and Guangfeng Zhou . Surprisal Metrics for Quantifying Perturbed Conformational Dynamics in Markov State Models. Journal of Chemical Theory and Computation 2014, 10 (12) , 5716-5728. https://doi.org/10.1021/ct500827g
    47. Badi’ Abdul-Wahid, Haoyun Feng, Dinesh Rajan, Ronan Costaouec, Eric Darve, Douglas Thain, and Jesús A. Izaguirre . AWE-WQ: Fast-Forwarding Molecular Dynamics Using the Accelerated Weighted Ensemble. Journal of Chemical Information and Modeling 2014, 54 (10) , 3033-3043. https://doi.org/10.1021/ci500321g
    48. Robert D. Malmstrom, Christopher T. Lee, Adam T. Van Wart, and Rommie E. Amaro . Application of Molecular-Dynamics Based Markov State Models to Functional Proteins. Journal of Chemical Theory and Computation 2014, 10 (7) , 2648-2657. https://doi.org/10.1021/ct5002363
    49. Robert T. McGibbon, Christian R. Schwantes, and Vijay S. Pande . Statistical Model Selection for Markov Models of Biomolecular Dynamics. The Journal of Physical Chemistry B 2014, 118 (24) , 6475-6481. https://doi.org/10.1021/jp411822r
    50. Asghar M. Razavi, William M. Wuest, and Vincent A. Voelz . Computational Screening and Selection of Cyclic Peptide Hairpin Mimetics by Molecular Simulation and Kinetic Network Models. Journal of Chemical Information and Modeling 2014, 54 (5) , 1425-1432. https://doi.org/10.1021/ci500102y
    51. S. Doerr and G. De Fabritiis . On-the-Fly Learning and Sampling of Ligand Binding by High-Throughput Molecular Simulations. Journal of Chemical Theory and Computation 2014, 10 (5) , 2064-2069. https://doi.org/10.1021/ct400919u
    52. Andrew P. Jallouk and Peter T. Cummings . Audibilization: Data Analysis by Ear. Journal of Chemical Theory and Computation 2014, 10 (4) , 1387-1394. https://doi.org/10.1021/ct401105x
    53. Yanxin Liu, Maxim B. Prigozhin, Klaus Schulten, and Martin Gruebele . Observation of Complete Pressure-Jump Protein Refolding in Molecular Dynamics Simulation and Experiment. Journal of the American Chemical Society 2014, 136 (11) , 4265-4272. https://doi.org/10.1021/ja412639u
    54. Stephen J. Klippenstein, Vijay S. Pande, and Donald G. Truhlar . Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances. Journal of the American Chemical Society 2014, 136 (2) , 528-546. https://doi.org/10.1021/ja408723a
    55. Robert T. McGibbon and Vijay S. Pande . Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics. Journal of Chemical Theory and Computation 2013, 9 (7) , 2900-2906. https://doi.org/10.1021/ct400132h
    56. Jean K. Chung, Megan C. Thielges, and Michael D. Fayer . Conformational Dynamics and Stability of HP35 Studied with 2D IR Vibrational Echoes. Journal of the American Chemical Society 2012, 134 (29) , 12118-12124. https://doi.org/10.1021/ja303017d
    57. Martin Senne, Benjamin Trendelkamp-Schroer, Antonia S.J.S. Mey, Christof Schütte, and Frank Noé . EMMA: A Software Package for Markov Model Building and Analysis. Journal of Chemical Theory and Computation 2012, 8 (7) , 2223-2238. https://doi.org/10.1021/ct300274u
    58. Andreas Vitalis and Amedeo Caflisch . Efficient Construction of Mesostate Networks from Molecular Dynamics Trajectories. Journal of Chemical Theory and Computation 2012, 8 (3) , 1108-1120. https://doi.org/10.1021/ct200801b
    59. Thomas J. Lane, Gregory R. Bowman, Kyle Beauchamp, Vincent A. Voelz, and Vijay S. Pande . Markov State Model Reveals Folding and Functional Dynamics in Ultra-Long MD Trajectories. Journal of the American Chemical Society 2011, 133 (45) , 18413-18419. https://doi.org/10.1021/ja207470h
    60. Kyle A. Beauchamp, Gregory R. Bowman, Thomas J. Lane, Lutz Maibaum, Imran S. Haque, and Vijay S. Pande . MSMBuilder2: Modeling Conformational Dynamics on the Picosecond to Millisecond Scale. Journal of Chemical Theory and Computation 2011, 7 (10) , 3412-3419. https://doi.org/10.1021/ct200463m
    61. Bettina Keller, Philippe Hünenberger, and Wilfred F. van Gunsteren . An Analysis of the Validity of Markov State Models for Emulating the Dynamics of Classical Molecular Systems and Ensembles. Journal of Chemical Theory and Computation 2011, 7 (4) , 1032-1044. https://doi.org/10.1021/ct200069c
    62. Gregory R. Bowman, Vincent A. Voelz, and Vijay S. Pande . Atomistic Folding Simulations of the Five-Helix Bundle Protein λ6−85. Journal of the American Chemical Society 2011, 133 (4) , 664-667. https://doi.org/10.1021/ja106936n
    63. Anh T. P. Nguyen, Austin T. Weigle, Diwakar Shukla. Functional regulation of aquaporin dynamics by lipid bilayer composition. Nature Communications 2024, 15 (1) https://doi.org/10.1038/s41467-024-46027-y
    64. Fernando D. Prieto-Martínez, Yelzyn Galván-Ciprés, Blanca Colín-Lozano. Molecular Simulation in Drug Design: An Overview of Molecular Dynamics Methods. 2023, 202-257. https://doi.org/10.2174/9789815179934123010009
    65. Chung F. Wong. 15 Years of molecular simulation of drug-binding kinetics. Expert Opinion on Drug Discovery 2023, 18 (12) , 1333-1348. https://doi.org/10.1080/17460441.2023.2264770
    66. Soumajit Dutta, Diwakar Shukla. Distinct activation mechanisms regulate subtype selectivity of Cannabinoid receptors. Communications Biology 2023, 6 (1) https://doi.org/10.1038/s42003-023-04868-1
    67. Hana Zupan, Frederick Heinz, Bettina G. Keller. Grid-based state space exploration for molecular binding. Canadian Journal of Chemistry 2023, 101 (9) , 710-724. https://doi.org/10.1139/cjc-2022-0282
    68. Idowu Olaposi Omotuyi, Oyekanmi Nash, Samuel Damilohun Metibemu, G. Chiamaka Iwegbulam, Olusina M. Olatunji, Emmanuel Agbebi, C. Olufunke Falade. Dihydroartemisinin binds human PIK-β affinity pocket and forces flat conformation in P-loop MET: A molecular dynamics study. Computational Toxicology 2023, 27 , 100281. https://doi.org/10.1016/j.comtox.2023.100281
    69. Vincent A. Voelz, Vijay S. Pande, Gregory R. Bowman. Folding@home: Achievements from over 20 years of citizen science herald the exascale era. Biophysical Journal 2023, 122 (14) , 2852-2863. https://doi.org/10.1016/j.bpj.2023.03.028
    70. Xuenan Mi, Emily K. Desormeaux, Tung T. Le, Wilfred A. van der Donk, Diwakar Shukla. Sequence controlled secondary structure is important for the site-selectivity of lanthipeptide cyclization. Chemical Science 2023, 14 (25) , 6904-6914. https://doi.org/10.1039/D2SC06546K
    71. Richard L. Zschau, Martin Zacharias. Mechanism of β ‐hairpin formation in AzoChignolin and Chignolin. Journal of Computational Chemistry 2023, 44 (9) , 988-1001. https://doi.org/10.1002/jcc.27059
    72. Prateek D. Bansal, Soumajit Dutta, Diwakar Shukla. Activation mechanism of the human Smoothened receptor. Biophysical Journal 2023, 122 (7) , 1400-1413. https://doi.org/10.1016/j.bpj.2023.03.007
    73. Ashfaq Ur Rehman, Beenish Khurshid, Yasir Ali, Salman Rasheed, Abdul Wadood, Ho-Leung Ng, Hai-Feng Chen, Zhiqiang Wei, Ray Luo, Jian Zhang. Computational approaches for the design of modulators targeting protein-protein interactions. Expert Opinion on Drug Discovery 2023, 18 (3) , 315-333. https://doi.org/10.1080/17460441.2023.2171396
    74. Ilona Christy Unarta, Eshani C. Goonetilleke, Dong Wang, Xuhui Huang. Nucleotide addition and cleavage by RNA polymerase II: Coordination of two catalytic reactions using a single active site. Journal of Biological Chemistry 2023, 299 (2) , 102844. https://doi.org/10.1016/j.jbc.2022.102844
    75. Tomonori Ogane, Daisuke Noshiro, Toshio Ando, Atsuko Yamashita, Yuji Sugita, Yasuhiro Matsunaga, . Development of hidden Markov modeling method for molecular orientations and structure estimation from high-speed atomic force microscopy time-series images. PLOS Computational Biology 2022, 18 (12) , e1010384. https://doi.org/10.1371/journal.pcbi.1010384
    76. Kun Xi, Lizhe Zhu. Automated Path Searching Reveals the Mechanism of Hydrolysis Enhancement by T4 Lysozyme Mutants. International Journal of Molecular Sciences 2022, 23 (23) , 14628. https://doi.org/10.3390/ijms232314628
    77. Simon Olsson. Markov State Models of Protein–Protein Encounters. 2022, 163-193. https://doi.org/10.1002/9783527830503.ch9
    78. Austin T. Weigle, Jiangyan Feng, Diwakar Shukla. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Physical Chemistry Chemical Physics 2022, 24 (43) , 26371-26397. https://doi.org/10.1039/D2CP02883B
    79. Moritz Schäffler, Mohammed Khaled, Birgit Strodel. ATRANET – Automated generation of transition networks for the structural characterization of intrinsically disordered proteins. Methods 2022, 206 , 18-26. https://doi.org/10.1016/j.ymeth.2022.07.013
    80. Hao Zhang, Guojun Chu, Gaoming Wang, Min Yao, Shaoyong Lu, Ting Chen. Mechanistic Understanding of the Palmitoylation of Go Protein in the Allosteric Regulation of Adhesion Receptor GPR97. Pharmaceutics 2022, 14 (9) , 1856. https://doi.org/10.3390/pharmaceutics14091856
    81. Katya Ahmad, Andrea Rizzi, Riccardo Capelli, Davide Mandelli, Wenping Lyu, Paolo Carloni. Enhanced-Sampling Simulations for the Estimation of Ligand Binding Kinetics: Current Status and Perspective. Frontiers in Molecular Biosciences 2022, 9 https://doi.org/10.3389/fmolb.2022.899805
    82. Lianghui Zhang, Soumajit Dutta, Shiqin Xiong, Matthew Chan, Kui K. Chan, Timothy M. Fan, Keith L. Bailey, Matthew Lindeblad, Laura M. Cooper, Lijun Rong, Anthony F. Gugliuzza, Diwakar Shukla, Erik Procko, Jalees Rehman, Asrar B. Malik. Engineered ACE2 decoy mitigates lung injury and death induced by SARS-CoV-2 variants. Nature Chemical Biology 2022, 18 (3) , 342-351. https://doi.org/10.1038/s41589-021-00965-6
    83. Matthew C. Chan, Balaji Selvam, Heather J. Young, Erik Procko, Diwakar Shukla. The substrate import mechanism of the human serotonin transporter. Biophysical Journal 2022, 121 (5) , 715-730. https://doi.org/10.1016/j.bpj.2022.01.024
    84. Reza Esmaeeli, Benedict Andal, Alberto Perez. Searching for Low Probability Opening Events in a DNA Sliding Clamp. Life 2022, 12 (2) , 261. https://doi.org/10.3390/life12020261
    85. Hanlin Gu, Wei Wang, Siqin Cao, Ilona Christy Unarta, Yuan Yao, Fu Kit Sheong, Xuhui Huang. RPnet: a reverse-projection-based neural network for coarse-graining metastable conformational states for protein dynamics. Physical Chemistry Chemical Physics 2022, 24 (3) , 1462-1474. https://doi.org/10.1039/D1CP03622J
    86. Andreas Mardt, Frank Noé. Progress in deep Markov state modeling: Coarse graining and experimental data restraints. The Journal of Chemical Physics 2021, 155 (21) https://doi.org/10.1063/5.0064668
    87. Gabriel V. Pereira, Ahmed M. Abdel-Hamid, Soumajit Dutta, Corina N. D’Alessandro-Gabazza, Daniel Wefers, Jacob A. Farris, Shiv Bajaj, Zdzislaw Wawrzak, Haruyuki Atomi, Roderick I. Mackie, Esteban C. Gabazza, Diwakar Shukla, Nicole M. Koropatkin, Isaac Cann. Degradation of complex arabinoxylans by human colonic Bacteroidetes. Nature Communications 2021, 12 (1) https://doi.org/10.1038/s41467-020-20737-5
    88. Hao Tian, Xi Jiang, Francesco Trozzi, Sian Xiao, Eric C. Larson, Peng Tao. Explore Protein Conformational Space With Variational Autoencoder. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.781635
    89. Trayder Thomas, Benoît Roux. Tyrosine kinases: complex molecular systems challenging computational methodologies. The European Physical Journal B 2021, 94 (10) https://doi.org/10.1140/epjb/s10051-021-00207-7
    90. Shantenu Jha, Allen D. Malony. Dynamic and Adaptive Monitoring and Analysis for Many-task Ensemble Computing. 2021, 637-641. https://doi.org/10.1109/Cluster48925.2021.00095
    91. Jiangyan Feng, Balaji Selvam, Diwakar Shukla. How do antiporters exchange substrates across the cell membrane? An atomic-level description of the complete exchange cycle in NarK. Structure 2021, 29 (8) , 922-933.e3. https://doi.org/10.1016/j.str.2021.03.014
    92. Juan J. Perez, Roman A. Perez, Alberto Perez. Computational Modeling as a Tool to Investigate PPI: From Drug Design to Tissue Engineering. Frontiers in Molecular Biosciences 2021, 8 https://doi.org/10.3389/fmolb.2021.681617
    93. Jiang Wang, Nicholas Charron, Brooke Husic, Simon Olsson, Frank Noé, Cecilia Clementi. Multi-body effects in a coarse-grained protein force field. The Journal of Chemical Physics 2021, 154 (16) https://doi.org/10.1063/5.0041022
    94. Théo Jaffrelot Inizan, Frédéric Célerse, Olivier Adjoua, Dina El Ahdab, Luc-Henri Jolly, Chengwen Liu, Pengyu Ren, Matthieu Montes, Nathalie Lagarde, Louis Lagardère, Pierre Monmarché, Jean-Philip Piquemal. High-resolution mining of the SARS-CoV-2 main protease conformational space: supercomputer-driven unsupervised adaptive sampling. Chemical Science 2021, 12 (13) , 4889-4907. https://doi.org/10.1039/D1SC00145K
    95. Birgit Strodel. Amyloid aggregation simulations: challenges, advances and perspectives. Current Opinion in Structural Biology 2021, 67 , 145-152. https://doi.org/10.1016/j.sbi.2020.10.019
    96. Andreas Bittracher, Christof Schütte. A probabilistic algorithm for aggregating vastly undersampled large Markov chains. Physica D: Nonlinear Phenomena 2021, 416 , 132799. https://doi.org/10.1016/j.physd.2020.132799
    97. Yunhui Ge, Vincent A. Voelz. Markov State Models to Elucidate Ligand Binding Mechanism. 2021, 239-259. https://doi.org/10.1007/978-1-0716-1209-5_14
    98. Outi M. H. Salo-Ahen, Ida Alanko, Rajendra Bhadane, Alexandre M. J. J. Bonvin, Rodrigo Vargas Honorato, Shakhawath Hossain, André H. Juffer, Aleksei Kabedev, Maija Lahtela-Kakkonen, Anders Støttrup Larsen, Eveline Lescrinier, Parthiban Marimuthu, Muhammad Usman Mirza, Ghulam Mustafa, Ariane Nunes-Alves, Tatu Pantsar, Atefeh Saadabadi, Kalaimathy Singaravelu, Michiel Vanmeert. Molecular Dynamics Simulations in Drug Discovery and Pharmaceutical Development. Processes 2021, 9 (1) , 71. https://doi.org/10.3390/pr9010071
    99. Jayvee R. Abella, Dinler Antunes, Kyle Jackson, Gregory Lizée, Cecilia Clementi, Lydia E. Kavraki. Markov state modeling reveals alternative unbinding pathways for peptide–MHC complexes. Proceedings of the National Academy of Sciences 2020, 117 (48) , 30610-30618. https://doi.org/10.1073/pnas.2007246117
    100. Raudah Lazim, Donghyuk Suh, Sun Choi. Advances in Molecular Dynamics Simulations and Enhanced Sampling Methods for the Study of Protein Systems. International Journal of Molecular Sciences 2020, 21 (17) , 6339. https://doi.org/10.3390/ijms21176339
    Load all citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect