ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Molecular Simulation of ab Initio Protein Folding for a Millisecond Folder NTL9(1−39)

View Author Information
Departments of Chemistry and Structural Biology, Stanford University, Stanford, California 94305, and Biophysics Program, Stanford University, Stanford, California 94305
†Department of Chemistry.
‡Department of Structural Biology.
§Biophysics Program.
Cite this: J. Am. Chem. Soc. 2010, 132, 5, 1526–1528
Publication Date (Web):January 13, 2010
https://doi.org/10.1021/ja9090353
Copyright © 2010 American Chemical Society

    Article Views

    8006

    Altmetric

    -

    Citations

    419
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    To date, the slowest-folding proteins folded ab initio by all-atom molecular dynamics simulations have had folding times in the range of nanoseconds to microseconds. We report simulations of several folding trajectories of NTL9(1−39), a protein which has a folding time of ∼1.5 ms. Distributed molecular dynamics simulations in implicit solvent on GPU processors were used to generate ensembles of trajectories out to ∼40 μs for several temperatures and starting states. At a temperature less than the melting point of the force field, we observe a small number of productive folding events, consistent with predictions from a model of parallel uncoupled two-state simulations. The posterior distribution of the folding rate predicted from the data agrees well with the experimental folding rate (∼640/s). Markov State Models (MSMs) built from the data show a gap in the implied time scales indicative of two-state folding and heterogeneous pathways connecting diffuse mesoscopic substates. Structural analysis of the 14 out of 2000 macrostates transited by the top 10 folding pathways reveals that native-like pairing between strands 1 and 2 only occurs for macrostates with pfold > 0.5, suggesting β12 hairpin formation may be rate-limiting. We believe that using simulation data such as these to seed adaptive resampling simulations will be a promising new method for achieving statistically converged descriptions of folding landscapes at longer time scales than ever before.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    Detailed description of simulation methods, results, analysis, and Supporting Figures S1−S7. This material is available free of charge via the Internet at http://pubs.acs.org.

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 419 publications.

    1. Yiming Wang, Kathleen J. Stebe, Cesar de la Fuente-Nunez, Ravi Radhakrishnan. Computational Design of Peptides for Biomaterials Applications. ACS Applied Bio Materials 2024, 7 (2) , 617-625. https://doi.org/10.1021/acsabm.2c01023
    2. Xuyang Liu, Jingya Xing, Haohao Fu, Xueguang Shao, Wensheng Cai. Analyzing Molecular Dynamics Trajectories Thermodynamically through Artificial Intelligence. Journal of Chemical Theory and Computation 2024, 20 (2) , 665-676. https://doi.org/10.1021/acs.jctc.3c00975
    3. Robert M. Raddi, Vincent A. Voelz. Markov State Model of Solvent Features Reveals Water Dynamics in Protein-Peptide Binding. The Journal of Physical Chemistry B 2023, 127 (50) , 10682-10690. https://doi.org/10.1021/acs.jpcb.3c04775
    4. Yunrui Qiu, Michael S. O’Connor, Mingyi Xue, Bojun Liu, Xuhui Huang. An Efficient Path Classification Algorithm Based on Variational Autoencoder to Identify Metastable Path Channels for Complex Conformational Changes. Journal of Chemical Theory and Computation 2023, 19 (14) , 4728-4742. https://doi.org/10.1021/acs.jctc.3c00318
    5. Anthony J. Dominic III, Siqin Cao, Andrés Montoya-Castillo, Xuhui Huang. Memory Unlocks the Future of Biomolecular Dynamics: Transformative Tools to Uncover Physical Insights Accurately and Efficiently. Journal of the American Chemical Society 2023, 145 (18) , 9916-9927. https://doi.org/10.1021/jacs.3c01095
    6. Anupam Anand Ojha, Saumya Thakur, Surl-Hee Ahn, Rommie E. Amaro. DeepWEST: Deep Learning of Kinetic Models with the Weighted Ensemble Simulation Toolkit for Enhanced Sampling. Journal of Chemical Theory and Computation 2023, 19 (4) , 1342-1359. https://doi.org/10.1021/acs.jctc.2c00282
    7. Wangfei Yang, Clark Templeton, David Rosenberger, Andreas Bittracher, Feliks Nüske, Frank Noé, Cecilia Clementi. Slicing and Dicing: Optimal Coarse-Grained Representation to Preserve Molecular Kinetics. ACS Central Science 2023, 9 (2) , 186-196. https://doi.org/10.1021/acscentsci.2c01200
    8. Maaike M. Galama, Hao Wu, Andreas Krämer, Mohsen Sadeghi, Frank Noé. Stochastic Approximation to MBAR and TRAM: Batchwise Free Energy Estimation. Journal of Chemical Theory and Computation 2023, 19 (3) , 758-766. https://doi.org/10.1021/acs.jctc.2c00976
    9. Vangelis Daskalakis. Deciphering the QR Code of the CRISPR-Cas9 System: Synergy between Gln768 (Q) and Arg976 (R). ACS Physical Chemistry Au 2022, 2 (6) , 496-505. https://doi.org/10.1021/acsphyschemau.2c00041
    10. Kye Won Wang, Jumin Lee, Han Zhang, Donghyuk Suh, Wonpil Im. CHARMM-GUI Implicit Solvent Modeler for Various Generalized Born Models in Different Simulation Programs. The Journal of Physical Chemistry B 2022, 126 (38) , 7354-7364. https://doi.org/10.1021/acs.jpcb.2c05294
    11. Dylan Novack, Lei Qian, Gwyneth Acker, Vincent A. Voelz, Richard H. G. Baxter. Oncogenic Mutations in the DNA-Binding Domain of FOXO1 that Disrupt Folding: Quantitative Insights from Experiments and Molecular Simulations. Biochemistry 2022, 61 (16) , 1669-1682. https://doi.org/10.1021/acs.biochem.2c00224
    12. Yi Zhuang, Nikhil Thota, Stephen Quirk, Rigoberto Hernandez. Implementation of Telescoping Boxes in Adaptive Steered Molecular Dynamics. Journal of Chemical Theory and Computation 2022, 18 (8) , 4649-4659. https://doi.org/10.1021/acs.jctc.2c00498
    13. Hengyi Xie, Ana Rojas, Gia G. Maisuradze, George Khelashvili. Mechanistic Kinetic Model Reveals How Amyloidogenic Hydrophobic Patches Facilitate the Amyloid-β Fibril Elongation. ACS Chemical Neuroscience 2022, 13 (7) , 987-1001. https://doi.org/10.1021/acschemneuro.1c00801
    14. S. Kashif Sadiq, Abraham Muñiz Chicharro, Patrick Friedrich, Rebecca C. Wade. Multiscale Approach for Computing Gated Ligand Binding from Molecular Dynamics and Brownian Dynamics Simulations. Journal of Chemical Theory and Computation 2021, 17 (12) , 7912-7929. https://doi.org/10.1021/acs.jctc.1c00673
    15. Kirill A. Konovalov, Ilona Christy Unarta, Siqin Cao, Eshani C. Goonetilleke, Xuhui Huang. Markov State Models to Study the Functional Dynamics of Proteins in the Wake of Machine Learning. JACS Au 2021, 1 (9) , 1330-1341. https://doi.org/10.1021/jacsau.1c00254
    16. Aldo Glielmo, Brooke E. Husic, Alex Rodriguez, Cecilia Clementi, Frank Noé, Alessandro Laio. Unsupervised Learning Methods for Molecular Simulation Data. Chemical Reviews 2021, 121 (16) , 9722-9758. https://doi.org/10.1021/acs.chemrev.0c01195
    17. Veselina Marinova, Laurence Dodd, Song-Jun Lee, Geoffrey P. F. Wood, Ivan Marziano, Matteo Salvalaglio. Identifying Conformational Isomers of Organic Molecules in Solution via Unsupervised Clustering. Journal of Chemical Information and Modeling 2021, 61 (5) , 2263-2273. https://doi.org/10.1021/acs.jcim.0c01387
    18. Tawny N. Fajardo, Matthias Heyden. Dissecting the Conformational Free Energy of a Small Peptide in Solution. The Journal of Physical Chemistry B 2021, 125 (18) , 4634-4644. https://doi.org/10.1021/acs.jpcb.1c00699
    19. Sergio Decherchi, Andrea Cavalli. Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation. Chemical Reviews 2020, 120 (23) , 12788-12833. https://doi.org/10.1021/acs.chemrev.0c00534
    20. Jeremy Copperman, Daniel M. Zuckerman. Accelerated Estimation of Long-Timescale Kinetics from Weighted Ensemble Simulation via Non-Markovian “Microbin” Analysis. Journal of Chemical Theory and Computation 2020, 16 (11) , 6763-6775. https://doi.org/10.1021/acs.jctc.0c00273
    21. Serdal Kirmizialtin, Felicia Pitici, Alfredo E. Cardenas, Ron Elber, D. Thirumalai. Dramatic Shape Changes Occur as Cytochrome c Folds. The Journal of Physical Chemistry B 2020, 124 (38) , 8240-8248. https://doi.org/10.1021/acs.jpcb.0c05802
    22. Massimiliano Meli, Giulia Morra, Giorgio Colombo. Simple Model of Protein Energetics To Identify Ab Initio Folding Transitions from All-Atom MD Simulations of Proteins. Journal of Chemical Theory and Computation 2020, 16 (9) , 5960-5971. https://doi.org/10.1021/acs.jctc.0c00524
    23. Maziar Heidari, Helmut Schiessel, Alireza Mashaghi. Circuit Topology Analysis of Polymer Folding Reactions. ACS Central Science 2020, 6 (6) , 839-847. https://doi.org/10.1021/acscentsci.0c00308
    24. Antonija Kuzmanic, Gregory R. Bowman, Jordi Juarez-Jimenez, Julien Michel, Francesco L. Gervasio. Investigating Cryptic Binding Sites by Molecular Dynamics Simulations. Accounts of Chemical Research 2020, 53 (3) , 654-661. https://doi.org/10.1021/acs.accounts.9b00613
    25. Marshall Hutchings, Johnson Liu, Yudong Qiu, Chenchen Song, Lee-Ping Wang. Bond-Order Time Series Analysis for Detecting Reaction Events in Ab Initio Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2020, 16 (3) , 1606-1617. https://doi.org/10.1021/acs.jctc.9b01039
    26. Jacob D. Durrant, Sarah E. Kochanek, Lorenzo Casalino, Pek U. Ieong, Abigail C. Dommer, Rommie E. Amaro. Mesoscale All-Atom Influenza Virus Simulations Suggest New Substrate Binding Mechanism. ACS Central Science 2020, 6 (2) , 189-196. https://doi.org/10.1021/acscentsci.9b01071
    27. Andrew S. Chong, Peter C. Anderson. Molecular Dynamics Simulations of the Hypoxia-Inducible Factor PAS-B Domain Confirm That Internally Bound Water Molecules Function To Stabilize the Protein Core for Ligand Binding. Biochemistry 2020, 59 (4) , 450-459. https://doi.org/10.1021/acs.biochem.9b00872
    28. Junjie Zou, Carlos Simmerling, Daniel P. Raleigh. Dissecting the Energetics of Intrinsically Disordered Proteins via a Hybrid Experimental and Computational Approach. The Journal of Physical Chemistry B 2019, 123 (49) , 10394-10402. https://doi.org/10.1021/acs.jpcb.9b08323
    29. Jingwei Weng, Wenning Wang. Structural Features and Energetics of the Periplasmic Entrance Opening of the Outer Membrane Channel TolC Revealed by Molecular Dynamics Simulation and Markov State Model Analysis. Journal of Chemical Information and Modeling 2019, 59 (5) , 2359-2366. https://doi.org/10.1021/acs.jcim.8b00957
    30. Debabrata Pramanik, Zachary Smith, Adam Kells, Pratyush Tiwary. Can One Trust Kinetic and Thermodynamic Observables from Biased Metadynamics Simulations?: Detailed Quantitative Benchmarks on Millimolar Drug Fragment Dissociation. The Journal of Physical Chemistry B 2019, 123 (17) , 3672-3678. https://doi.org/10.1021/acs.jpcb.9b01813
    31. Upendra Adhikari, Barmak Mostofian, Jeremy Copperman, Sundar Raman Subramanian, Andrew A. Petersen, Daniel M. Zuckerman. Computational Estimation of Microsecond to Second Atomistic Folding Times. Journal of the American Chemical Society 2019, 141 (16) , 6519-6526. https://doi.org/10.1021/jacs.8b10735
    32. Milos Musil, Hannes Konegger, Jiri Hon, David Bednar, Jiri Damborsky. Computational Design of Stable and Soluble Biocatalysts. ACS Catalysis 2019, 9 (2) , 1033-1054. https://doi.org/10.1021/acscatal.8b03613
    33. João Marcelo Lamim Ribeiro, Sun-Ting Tsai, Debabrata Pramanik, Yihang Wang, Pratyush Tiwary. Kinetics of Ligand–Protein Dissociation from All-Atom Simulations: Are We There Yet?. Biochemistry 2019, 58 (3) , 156-165. https://doi.org/10.1021/acs.biochem.8b00977
    34. Maxwell I. Zimmerman, Justin R. Porter, Xianqiang Sun, Roseane R. Silva, Gregory R. Bowman. Choice of Adaptive Sampling Strategy Impacts State Discovery, Transition Probabilities, and the Apparent Mechanism of Conformational Changes. Journal of Chemical Theory and Computation 2018, 14 (11) , 5459-5475. https://doi.org/10.1021/acs.jctc.8b00500
    35. Zahra Shamsi, Kevin J. Cheng, Diwakar Shukla. Reinforcement Learning Based Adaptive Sampling: REAPing Rewards by Exploring Protein Conformational Landscapes. The Journal of Physical Chemistry B 2018, 122 (35) , 8386-8395. https://doi.org/10.1021/acs.jpcb.8b06521
    36. Hiranmay Maity, Aswathy N. Muttathukattil, Govardhan Reddy. Salt Effects on Protein Folding Thermodynamics. The Journal of Physical Chemistry Letters 2018, 9 (17) , 5063-5070. https://doi.org/10.1021/acs.jpclett.8b02220
    37. Zahedeh Bashardanesh, David van der Spoel. Impact of Dispersion Coefficient on Simulations of Proteins and Organic Liquids. The Journal of Physical Chemistry B 2018, 122 (33) , 8018-8027. https://doi.org/10.1021/acs.jpcb.8b05770
    38. Alexandre I. Ilitchev, Maxwell J. Giammona, Carina Olivas, Sarah L. Claud, Kristi L. Lazar Cantrell, Chun Wu, Steven K. Buratto, Michael T. Bowers. Hetero-oligomeric Amyloid Assembly and Mechanism: Prion Fragment PrP(106–126) Catalyzes the Islet Amyloid Polypeptide β-Hairpin. Journal of the American Chemical Society 2018, 140 (30) , 9685-9695. https://doi.org/10.1021/jacs.8b05925
    39. Andrew P. Collins, Peter C. Anderson. Complete Coupled Binding–Folding Pathway of the Intrinsically Disordered Transcription Factor Protein Brinker Revealed by Molecular Dynamics Simulations and Markov State Modeling. Biochemistry 2018, 57 (30) , 4404-4420. https://doi.org/10.1021/acs.biochem.8b00441
    40. Yunhui Ge, Vincent A. Voelz. Model Selection Using BICePs: A Bayesian Approach for Force Field Validation and Parameterization. The Journal of Physical Chemistry B 2018, 122 (21) , 5610-5622. https://doi.org/10.1021/acs.jpcb.7b11871
    41. Brooke E. Husic and Vijay S. Pande . Markov State Models: From an Art to a Science. Journal of the American Chemical Society 2018, 140 (7) , 2386-2396. https://doi.org/10.1021/jacs.7b12191
    42. Brooke E. Husic, Keri A. McKiernan, Hannah K. Wayment-Steele, Mohammad M. Sultan, and Vijay S. Pande . A Minimum Variance Clustering Approach Produces Robust and Interpretable Coarse-Grained Models. Journal of Chemical Theory and Computation 2018, 14 (2) , 1071-1082. https://doi.org/10.1021/acs.jctc.7b01004
    43. Qiang Shao and Weiliang Zhu . How Well Can Implicit Solvent Simulations Explore Folding Pathways? A Quantitative Analysis of α-Helix Bundle Proteins. Journal of Chemical Theory and Computation 2017, 13 (12) , 6177-6190. https://doi.org/10.1021/acs.jctc.7b00726
    44. Hanzhong Liu, Qingzhe Tan, Li Han, and Shuanghong Huo . Observations on AMBER Force Field Performance under the Conditions of Low pH and High Salt Concentrations. The Journal of Physical Chemistry B 2017, 121 (42) , 9838-9847. https://doi.org/10.1021/acs.jpcb.7b07528
    45. Mattia Bernetti, Matteo Masetti, Fabio Pietrucci, Martin Blackledge, Malene Ringkjobing Jensen, Maurizio Recanatini, Luca Mollica, and Andrea Cavalli . Structural and Kinetic Characterization of the Intrinsically Disordered Protein SeV NTAIL through Enhanced Sampling Simulations. The Journal of Physical Chemistry B 2017, 121 (41) , 9572-9582. https://doi.org/10.1021/acs.jpcb.7b08925
    46. Yunhui Ge, Brandon L. Kier, Niels H. Andersen, and Vincent A. Voelz . Computational and Experimental Evaluation of Designed β-Cap Hairpins Using Molecular Simulations and Kinetic Network Models. Journal of Chemical Information and Modeling 2017, 57 (7) , 1609-1620. https://doi.org/10.1021/acs.jcim.7b00132
    47. Chuanbiao Zhang, Jin Yu, and Xin Zhou . Imaging Metastable States and Transitions in Proteins by Trajectory Map. The Journal of Physical Chemistry B 2017, 121 (18) , 4678-4686. https://doi.org/10.1021/acs.jpcb.7b00664
    48. Kaifu Gao and Yunjie Zhao . A Network of Conformational Transitions in the Apo Form of NDM-1 Enzyme Revealed by MD Simulation and a Markov State Model. The Journal of Physical Chemistry B 2017, 121 (14) , 2952-2960. https://doi.org/10.1021/acs.jpcb.7b00062
    49. Qiang Shao, Jiye Shi, and Weiliang Zhu . Determining Protein Folding Pathway and Associated Energetics through Partitioned Integrated-Tempering-Sampling Simulation. Journal of Chemical Theory and Computation 2017, 13 (3) , 1229-1243. https://doi.org/10.1021/acs.jctc.6b00967
    50. Brooke E. Husic and Vijay S. Pande . Ward Clustering Improves Cross-Validated Markov State Models of Protein Folding. Journal of Chemical Theory and Computation 2017, 13 (3) , 963-967. https://doi.org/10.1021/acs.jctc.6b01238
    51. Guillermo Pérez-Hernández and Frank Noé . Hierarchical Time-Lagged Independent Component Analysis: Computing Slow Modes and Reaction Coordinates for Large Molecular Systems. Journal of Chemical Theory and Computation 2016, 12 (12) , 6118-6129. https://doi.org/10.1021/acs.jctc.6b00738
    52. Hongbin Wan, Guangfeng Zhou, and Vincent A. Voelz . A Maximum-Caliber Approach to Predicting Perturbed Folding Kinetics Due to Mutations. Journal of Chemical Theory and Computation 2016, 12 (12) , 5768-5776. https://doi.org/10.1021/acs.jctc.6b00938
    53. Victor Ovchinnikov, Kwangho Nam, and Martin Karplus . A Simple and Accurate Method To Calculate Free Energy Profiles and Reaction Rates from Restrained Molecular Simulations of Diffusive Processes. The Journal of Physical Chemistry B 2016, 120 (33) , 8457-8472. https://doi.org/10.1021/acs.jpcb.6b02139
    54. Jagna Witek, Bettina G. Keller, Markus Blatter, Axel Meissner, Trixie Wagner, and Sereina Riniker . Kinetic Models of Cyclosporin A in Polar and Apolar Environments Reveal Multiple Congruent Conformational States. Journal of Chemical Information and Modeling 2016, 56 (8) , 1547-1562. https://doi.org/10.1021/acs.jcim.6b00251
    55. Jeffrey R. Wagner, Christopher T. Lee, Jacob D. Durrant, Robert D. Malmstrom, Victoria A. Feher, and Rommie E. Amaro . Emerging Computational Methods for the Rational Discovery of Allosteric Drugs. Chemical Reviews 2016, 116 (11) , 6370-6390. https://doi.org/10.1021/acs.chemrev.5b00631
    56. Lizhe Zhu, Hanlun Jiang, Fu Kit Sheong, Xuefeng Cui, Xin Gao, Yanli Wang, and Xuhui Huang . A Flexible Domain-Domain Hinge Promotes an Induced-fit Dominant Mechanism for the Loading of Guide-DNA into Argonaute Protein in Thermus thermophilus. The Journal of Physical Chemistry B 2016, 120 (10) , 2709-2720. https://doi.org/10.1021/acs.jpcb.5b12426
    57. Guangfeng Zhou and Vincent A. Voelz . Using Kinetic Network Models To Probe Non-Native Salt-Bridge Effects on α-Helix Folding. The Journal of Physical Chemistry B 2016, 120 (5) , 926-935. https://doi.org/10.1021/acs.jpcb.5b11767
    58. Maxwell I. Zimmerman and Gregory R. Bowman . FAST Conformational Searches by Balancing Exploration/Exploitation Trade-Offs. Journal of Chemical Theory and Computation 2015, 11 (12) , 5747-5757. https://doi.org/10.1021/acs.jctc.5b00737
    59. Athi N. Naganathan and David De Sancho . Bridging Experiments and Native-Centric Simulations of a Downhill Folding Protein. The Journal of Physical Chemistry B 2015, 119 (47) , 14925-14933. https://doi.org/10.1021/acs.jpcb.5b09568
    60. Martin K. Scherer, Benjamin Trendelkamp-Schroer, Fabian Paul, Guillermo Pérez-Hernández, Moritz Hoffmann, Nuria Plattner, Christoph Wehmeyer, Jan-Hendrik Prinz, and Frank Noé . PyEMMA 2: A Software Package for Estimation, Validation, and Analysis of Markov Models. Journal of Chemical Theory and Computation 2015, 11 (11) , 5525-5542. https://doi.org/10.1021/acs.jctc.5b00743
    61. Noelia Ferruz, Matthew J. Harvey, Jordi Mestres, and Gianni De Fabritiis . Insights from Fragment Hit Binding Assays by Molecular Simulations. Journal of Chemical Information and Modeling 2015, 55 (10) , 2200-2205. https://doi.org/10.1021/acs.jcim.5b00453
    62. Kyle A. Beauchamp, Julie M. Behr, Ariën S. Rustenburg, Christopher I. Bayly, Kenneth Kroenlein, and John D. Chodera . Toward Automated Benchmarking of Atomistic Force Fields: Neat Liquid Densities and Static Dielectric Constants from the ThermoML Data Archive. The Journal of Physical Chemistry B 2015, 119 (40) , 12912-12920. https://doi.org/10.1021/acs.jpcb.5b06703
    63. Asghar M. Razavi and Vincent A. Voelz . Kinetic Network Models of Tryptophan Mutations in β-Hairpins Reveal the Importance of Non-Native Interactions. Journal of Chemical Theory and Computation 2015, 11 (6) , 2801-2812. https://doi.org/10.1021/acs.jctc.5b00088
    64. Rahul Banerjee, Honggao Yan, and Robert I. Cukier . Conformational Transition in Signal Transduction: Metastable States and Transition Pathways in the Activation of a Signaling Protein. The Journal of Physical Chemistry B 2015, 119 (22) , 6591-6602. https://doi.org/10.1021/acs.jpcb.5b02582
    65. Lorenzo Sborgi, Abhinav Verma, Stefano Piana, Kresten Lindorff-Larsen, Michele Cerminara, Clara M. Santiveri, David E. Shaw, Eva de Alba, and Victor Muñoz . Interaction Networks in Protein Folding via Atomic-Resolution Experiments and Long-Time-Scale Molecular Dynamics Simulations. Journal of the American Chemical Society 2015, 137 (20) , 6506-6516. https://doi.org/10.1021/jacs.5b02324
    66. Amanda E. Wakefield, William M. Wuest, and Vincent A. Voelz . Molecular Simulation of Conformational Pre-Organization in Cyclic RGD Peptides. Journal of Chemical Information and Modeling 2015, 55 (4) , 806-813. https://doi.org/10.1021/ci500768u
    67. Jacob B. Swadling, David W. Wright, James L. Suter, and Peter V. Coveney . Structure, Dynamics, and Function of the Hammerhead Ribozyme in Bulk Water and at a Clay Mineral Surface from Replica Exchange Molecular Dynamics. Langmuir 2015, 31 (8) , 2493-2501. https://doi.org/10.1021/la503685t
    68. Fu Kit Sheong, Daniel-Adriano Silva, Luming Meng, Yutong Zhao, and Xuhui Huang . Automatic State Partitioning for Multibody Systems (APM): An Efficient Algorithm for Constructing Markov State Models To Elucidate Conformational Dynamics of Multibody Systems. Journal of Chemical Theory and Computation 2015, 11 (1) , 17-27. https://doi.org/10.1021/ct5007168
    69. Vincent A. Voelz, Brandon Elman, Asghar M. Razavi, and Guangfeng Zhou . Surprisal Metrics for Quantifying Perturbed Conformational Dynamics in Markov State Models. Journal of Chemical Theory and Computation 2014, 10 (12) , 5716-5728. https://doi.org/10.1021/ct500827g
    70. Robert B. Best, Wenwei Zheng, and Jeetain Mittal . Balanced Protein–Water Interactions Improve Properties of Disordered Proteins and Non-Specific Protein Association. Journal of Chemical Theory and Computation 2014, 10 (11) , 5113-5124. https://doi.org/10.1021/ct500569b
    71. Anna C. Susa, Chun Wu, Summer L. Bernstein, Nicholas F. Dupuis, Hui Wang, Daniel P. Raleigh, Joan-Emma Shea, and Michael T. Bowers . Defining the Molecular Basis of Amyloid Inhibitors: Human Islet Amyloid Polypeptide–Insulin Interactions. Journal of the American Chemical Society 2014, 136 (37) , 12912-12919. https://doi.org/10.1021/ja504031d
    72. Fan Jiang and Yun-Dong Wu . Folding of Fourteen Small Proteins with a Residue-Specific Force Field and Replica-Exchange Molecular Dynamics. Journal of the American Chemical Society 2014, 136 (27) , 9536-9539. https://doi.org/10.1021/ja502735c
    73. Robert D. Malmstrom, Christopher T. Lee, Adam T. Van Wart, and Rommie E. Amaro . Application of Molecular-Dynamics Based Markov State Models to Functional Proteins. Journal of Chemical Theory and Computation 2014, 10 (7) , 2648-2657. https://doi.org/10.1021/ct5002363
    74. Gregory R. Bowman and Phillip L. Geissler . Extensive Conformational Heterogeneity within Protein Cores. The Journal of Physical Chemistry B 2014, 118 (24) , 6417-6423. https://doi.org/10.1021/jp4105823
    75. Shanshan Li, Bing Xiong, Yuan Xu, Tao Lu, Xiaomin Luo, Cheng Luo, Jingkang Shen, Kaixian Chen, Mingyue Zheng, and Hualiang Jiang . Mechanism of the All-α to All-β Conformational Transition of RfaH-CTD: Molecular Dynamics Simulation and Markov State Model. Journal of Chemical Theory and Computation 2014, 10 (6) , 2255-2264. https://doi.org/10.1021/ct5002279
    76. Asghar M. Razavi, William M. Wuest, and Vincent A. Voelz . Computational Screening and Selection of Cyclic Peptide Hairpin Mimetics by Molecular Simulation and Kinetic Network Models. Journal of Chemical Information and Modeling 2014, 54 (5) , 1425-1432. https://doi.org/10.1021/ci500102y
    77. Abhishek Narayan and Athi N. Naganathan . Evidence for the Sequential Folding Mechanism in RNase H from an Ensemble-Based Model. The Journal of Physical Chemistry B 2014, 118 (19) , 5050-5058. https://doi.org/10.1021/jp500934f
    78. Huei-Jiun Li, Cheng-Tsung Lai, Pan Pan, Weixuan Yu, Nina Liu, Gopal R. Bommineni, Miguel Garcia-Diaz, Carlos Simmerling, and Peter J. Tonge . A Structural and Energetic Model for the Slow-Onset Inhibition of the Mycobacterium tuberculosis Enoyl-ACP Reductase InhA. ACS Chemical Biology 2014, 9 (4) , 986-993. https://doi.org/10.1021/cb400896g
    79. Rahul Banerjee and Robert I. Cukier . Transition Paths of Met-Enkephalin from Markov State Modeling of a Molecular Dynamics Trajectory. The Journal of Physical Chemistry B 2014, 118 (11) , 2883-2895. https://doi.org/10.1021/jp412130d
    80. Yanxin Liu, Maxim B. Prigozhin, Klaus Schulten, and Martin Gruebele . Observation of Complete Pressure-Jump Protein Refolding in Molecular Dynamics Simulation and Experiment. Journal of the American Chemical Society 2014, 136 (11) , 4265-4272. https://doi.org/10.1021/ja412639u
    81. Josh V. Vermaas and Emad Tajkhorshid . A Microscopic View of Phospholipid Insertion into Biological Membranes. The Journal of Physical Chemistry B 2014, 118 (7) , 1754-1764. https://doi.org/10.1021/jp409854w
    82. Stephen J. Klippenstein, Vijay S. Pande, and Donald G. Truhlar . Chemical Kinetics and Mechanisms of Complex Systems: A Perspective on Recent Theoretical Advances. Journal of the American Chemical Society 2014, 136 (2) , 528-546. https://doi.org/10.1021/ja408723a
    83. Nan-jie Deng, Wei Dai, and Ronald M. Levy . How Kinetics within the Unfolded State Affects Protein Folding: An Analysis Based on Markov State Models and an Ultra-Long MD Trajectory. The Journal of Physical Chemistry B 2013, 117 (42) , 12787-12799. https://doi.org/10.1021/jp401962k
    84. Wei Han and Klaus Schulten . Characterization of Folding Mechanisms of Trp-Cage and WW-Domain by Network Analysis of Simulations with a Hybrid-Resolution Model. The Journal of Physical Chemistry B 2013, 117 (42) , 13367-13377. https://doi.org/10.1021/jp404331d
    85. Camilo Andres Jimenez-Cruz and Angel E. Garcia . Reconstructing the Most Probable Folding Transition Path from Replica Exchange Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2013, 9 (8) , 3750-3755. https://doi.org/10.1021/ct400170x
    86. Robert T. McGibbon and Vijay S. Pande . Learning Kinetic Distance Metrics for Markov State Models of Protein Conformational Dynamics. Journal of Chemical Theory and Computation 2013, 9 (7) , 2900-2906. https://doi.org/10.1021/ct400132h
    87. Yoshitaka Matsumura, Masaji Shinjo, Seung Joong Kim, Nobuyuki Okishio, Martin Gruebele, and Hiroshi Kihara . Transient Helical Structure during PI3K and Fyn SH3 Domain Folding. The Journal of Physical Chemistry B 2013, 117 (17) , 4836-4843. https://doi.org/10.1021/jp400167s
    88. Jeffrey K. Weber, Robert L. Jack, and Vijay S. Pande . Emergence of Glass-like Behavior in Markov State Models of Protein Folding Dynamics. Journal of the American Chemical Society 2013, 135 (15) , 5501-5504. https://doi.org/10.1021/ja4002663
    89. Christian R. Schwantes and Vijay S. Pande . Improvements in Markov State Model Construction Reveal Many Non-Native Interactions in the Folding of NTL9. Journal of Chemical Theory and Computation 2013, 9 (4) , 2000-2009. https://doi.org/10.1021/ct300878a
    90. Yasuaki Komuro, Naoyuki Miyashita, Takaharu Mori, Eiro Muneyuki, Takashi Saitoh, Daisuke Kohda, and Yuji Sugita . Energetics of the Presequence-Binding Poses in Mitochondrial Protein Import Through Tom20. The Journal of Physical Chemistry B 2013, 117 (10) , 2864-2871. https://doi.org/10.1021/jp400113e
    91. Gurpreet Singh and D. Peter Tieleman . Atomistic Simulations of Wimley–White Pentapeptides: Sampling of Structure and Dynamics in Solution. Journal of Chemical Theory and Computation 2013, 9 (3) , 1657-1666. https://doi.org/10.1021/ct3008217
    92. Paolo Marracino, Francesca Apollonio, Micaela Liberti, Guglielmo d’Inzeo, and Andrea Amadei . Effect of High Exogenous Electric Pulses on Protein Conformation: Myoglobin as a Case Study. The Journal of Physical Chemistry B 2013, 117 (8) , 2273-2279. https://doi.org/10.1021/jp309857b
    93. Martin Held, Petra Imhof, Bettina G. Keller, and Frank Noé . Modulation of a Ligand’s Energy Landscape and Kinetics by the Chemical Environment. The Journal of Physical Chemistry B 2012, 116 (46) , 13597-13607. https://doi.org/10.1021/jp3006684
    94. C. Ruben Vosmeer, Ariën S. Rustenburg, Julia E. Rice, Hans W. Horn, William C. Swope, and Daan P. Geerke . QM/MM-Based Fitting of Atomic Polarizabilities for Use in Condensed-Phase Biomolecular Simulation. Journal of Chemical Theory and Computation 2012, 8 (10) , 3839-3853. https://doi.org/10.1021/ct300085z
    95. Marc van Dijk, Tsjerk A. Wassenaar, and Alexandre M.J.J. Bonvin . A Flexible, Grid-Enabled Web Portal for GROMACS Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2012, 8 (10) , 3463-3472. https://doi.org/10.1021/ct300102d
    96. Michael C. Baxa, Esmael J. Haddadian, Abhishek K. Jha, Karl F. Freed, and Tobin R. Sosnick . Context and Force Field Dependence of the Loss of Protein Backbone Entropy upon Folding Using Realistic Denatured and Native State Ensembles. Journal of the American Chemical Society 2012, 134 (38) , 15929-15936. https://doi.org/10.1021/ja3064028
    97. Elizabeth H. Kellogg, Oliver F. Lange, and David Baker . Evaluation and Optimization of Discrete State Models of Protein Folding. The Journal of Physical Chemistry B 2012, 116 (37) , 11405-11413. https://doi.org/10.1021/jp3044303
    98. Elio A. Cino, Wing-Yiu Choy, and Mikko Karttunen . Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. Journal of Chemical Theory and Computation 2012, 8 (8) , 2725-2740. https://doi.org/10.1021/ct300323g
    99. David W. Wright, S. Kashif Sadiq, Gianni De Fabritiis, and Peter V. Coveney . Thumbs Down for HIV: Domain Level Rearrangements Do Occur in the NNRTI-Bound HIV-1 Reverse Transcriptase. Journal of the American Chemical Society 2012, 134 (31) , 12885-12888. https://doi.org/10.1021/ja301565k
    100. Vincent A. Voelz, Marcus Jäger, Shuhuai Yao, Yujie Chen, Li Zhu, Steven A. Waldauer, Gregory R. Bowman, Mark Friedrichs, Olgica Bakajin, Lisa J. Lapidus, Shimon Weiss, and Vijay S. Pande . Slow Unfolded-State Structuring in Acyl-CoA Binding Protein Folding Revealed by Simulation and Experiment. Journal of the American Chemical Society 2012, 134 (30) , 12565-12577. https://doi.org/10.1021/ja302528z
    Load more citations

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect