skip to main content
10.1145/1654059.1654126acmconferencesArticle/Chapter ViewAbstractPublication PagesscConference Proceedingsconference-collections
research-article

Millisecond-scale molecular dynamics simulations on Anton

Authors Info & Claims
Published:14 November 2009Publication History

ABSTRACT

Anton is a recently completed special-purpose supercomputer designed for molecular dynamics (MD) simulations of biomolecular systems. The machine's specialized hardware dramatically increases the speed of MD calculations, making possible for the first time the simulation of biological molecules at an atomic level of detail for periods on the order of a millisecond---about two orders of magnitude beyond the previous state of the art. Anton is now running simulations on a timescale at which many critically important, but poorly understood phenomena are known to occur, allowing the observation of aspects of protein dynamics that were previously inaccessible to both computational and experimental study. Here, we report Anton's performance when executing actual MD simulations whose accuracy has been validated against both existing MD software and experimental observations. We also discuss the manner in which novel algorithms have been coordinated with Anton's co-designed, application-specific hardware to achieve these results.

References

  1. A. Bhatele, S. Kumar, C. Mei, J. C. Phillips, G. Zheng, and L. V. Kalé. 2008. Overcoming scaling challenges in biomolecular simulations across multiple platforms. In Proc. IEEE Int. Parallel and Distributed Processing Symp. (Miami, FL, 2008).Google ScholarGoogle Scholar
  2. K. J. Bowers, E. Chow, H. Xu, R. O. Dror, M. P. Eastwood, B. A. Gregersen, J. L. Klepeis, I. Kolossváry, M. A. Moraes, F. D. Sacerdoti, J. K. Salmon, Y. Shan, and D. E. Shaw. 2006. Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proc. ACM/IEEE Conf. on Supercomputing (Tampa, FL, 2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  3. K. J. Bowers, R. O. Dror, and D. E. Shaw. 2007. Zonal methods for the parallel execution of range-limited N-body problems. J. Comput. Phys. 221 (1), 303--329. Google ScholarGoogle ScholarDigital LibraryDigital Library
  4. E. Chow, C. A. Rendleman, K. J. Bowers, R. O. Dror, D. H. Hughes, J. Gullingsrud, F. D. Sacerdoti, and D. E. Shaw. 2008. Desmond performance on a cluster of multicore processors. D. E. Shaw Research Technical Report DESRES/TR-2008-01. http://deshawresearch.com.Google ScholarGoogle Scholar
  5. R. O. Dror, D. H. Arlow, D. W. Borhani, M. Ø. Jensen, S. Piana, and D. E. Shaw. 2009. Identification of two distinct inactive conformations of the β2-adrenergic receptor reconciles structural and biochemical observations. Proc. Natl. Acad. Sci. USA 106, 4689--4694.Google ScholarGoogle ScholarCross RefCross Ref
  6. D. L. Ensign, P. M. Kasson, and V. S. Pande. 2007. Heterogeneity even at the speed limit of folding: large-scale molecular dynamics study of a fast-folding variant of the villin headpiece. J. Mol. Biol. 374, 806--16.Google ScholarGoogle ScholarCross RefCross Ref
  7. U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, and L. G. Pedersen. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103 (19), 8577--8593.Google ScholarGoogle ScholarCross RefCross Ref
  8. R. D. Fine, G. Dimmler, and C. Levinthal. 1991. A special purpose, hardwired computer for molecular simulation. Proteins: Struct., Funct., Genet. 11 (4), 242--253.Google ScholarGoogle Scholar
  9. B. G. Fitch, A. Rayshubskiy, M. Eleftheriou, T. J. C. Ward, M. E. Giampapa, M. C. Pitman, J. W. Pitera, W. C. Swope, and R. S. Germain. 2006. Blue Matter: approaching the limits of concurrency for classical molecular dynamics. In Proc. ACM/IEEE Conf. on Supercomputing (Tampa, FL, 2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  10. P. L. Freddolino, F. Liu, M. H. Gruebele, and K. Schulten. 2008. Ten-microsecond MD simulation of a fast-folding WW domain. Biophys. J. 94 (10), L75--L77.Google ScholarGoogle ScholarCross RefCross Ref
  11. R. S. Germain, B. Fitch, A. Rayshubskiy, M. Eleftheriou, M. C. Pitman, F. Suits, M. Giampapa, and T. J. C. Ward. 2005. Blue Matter on Blue Gene/L: massively parallel computation for biomolecular simulation. In Proc. 3rd IEEE/ACM/IFIP Int. Conf. on Hardware/Software Codesign and System Synthesis (New York, NY, 2005). Google ScholarGoogle ScholarDigital LibraryDigital Library
  12. A. Grossfield, M. C. Pitman, S. E. Feller, O. Soubias, and K. Gawrisch. 2008. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin. J. Mol. Biol. 381, 478--486.Google ScholarGoogle ScholarCross RefCross Ref
  13. J. B. Hall and D. Fushman. 2006. Variability of the 15N chemical shielding tensors in the B3 domain of protein G from 15N relaxation measurements at several fields. Implications for backbone order parameters. J. Am. Chem. Soc. 128 (24), 7855--7870.Google ScholarGoogle ScholarCross RefCross Ref
  14. B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. 2008. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput. 4 (2), 435--447.Google ScholarGoogle ScholarCross RefCross Ref
  15. R. W. Hockney and J. W. Eastwood. 1988. Computer Simulation Using Particles. Adam Hilger, Bristol, England, 1988. Google ScholarGoogle ScholarDigital LibraryDigital Library
  16. H. W. Horn, W. C. Swope, J. W. Pitera, J. D. Madura, T. J. Dick, G. L. Hura, and T. Head-Gordon. 2004. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120 (20), 9665--9678.Google ScholarGoogle ScholarCross RefCross Ref
  17. V. Hornak, R. Abel, A. Okur, B. Strockbine, A. Roitberg, and C. Simmerling. 2006. Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins: Struct., Funct., Bioinf. 65, 712--725.Google ScholarGoogle Scholar
  18. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives. 1996. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118 (45), 11225--11236.Google ScholarGoogle ScholarCross RefCross Ref
  19. L. V. Kalé, R. Skeel, M. Bhandarkar, R. Brunner, A. Gursoy, N. Krawetz, J. Phillips, A. Shinozaki, K. Varadarajan, and K. Schulten. 1999. NAMD2: greater scalability for parallel molecular dynamics. J. Comput. Phys. 151 (1), 283--312. Google ScholarGoogle ScholarDigital LibraryDigital Library
  20. F. Khalili-Araghi, J. Gumbart, P.-C. Wen, M. Sotomayor, E. Tajkhorshid, and K. Shulten. 2009. Molecular dynamics simulations of membrane channels and transporters. Curr. Opin. Struct. Biol. 19 (2), 128--137.Google ScholarGoogle ScholarCross RefCross Ref
  21. J. L. Klepeis, K. Lindorff-Larsen, R. O. Dror, and D. E. Shaw. 2009. Long-timescale molecular dynamics simulations of protein structure and function. Curr. Opin. Struct. Biol. 19 (2), 120--127.Google ScholarGoogle ScholarCross RefCross Ref
  22. J. S. Kuskin, C. Young, J. P. Grossman, B. Batson, M. Deneroff, R. O. Dror, and D. E. Shaw. 2008. Incorporating flexibility in Anton, a specialized machine for molecular dynamics simulation. In Proc. 14th Int. Symp. on High-Performance Computer Architecture (Salt Lake City, UT, 2008).Google ScholarGoogle Scholar
  23. R. H. Larson, J. K. Salmon, R. O. Dror, M. M. Deneroff, C. Young, J. P. Grossman, Y. Shan, J. L. Klepeis, and D. E. Shaw. 2008. High-throughput pairwise point interactions in Anton, a specialized machine for molecular dynamics simulation. In Proc. 14th Int. Symp. on High-Performance Computer Architecture (Salt Lake City, UT, 2008).Google ScholarGoogle Scholar
  24. P. Maragakis, K. Lindorff-Larsen, M. Eastwood, R. O. Dror, J. L. Klepeis, I. T. Arkin, M. Ø. Jensen, H. Xu, N. Trbovic, R. A. Friesner, A. G. Palmer III, and D. E. Shaw. 2008. Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J. Phys. Chem. B 112, 6155--6158.Google ScholarGoogle ScholarCross RefCross Ref
  25. K. Martinez-Mayorga, M. C. Pitman, A. Grossfield, S. E. Feller, and M. F. Brown. 2006. Retinal counterion switch mechanism in vision evaluated by molecular simulations. J. Am. Chem. Soc. 128, 16502--16503.Google ScholarGoogle ScholarCross RefCross Ref
  26. J. A. McCammon, B. R. Gelin, and M. Karplus. 1977. Dynamics of folded proteins. Nature 267, 585--590.Google ScholarGoogle ScholarCross RefCross Ref
  27. T. Narumi, Y. Ohno, N. Okimoto, T. Koishi, A. Suenaga, N. Futasugi, R. Yanai, R. Himeno, S. Fujikawa, M. Taiji, and M. Ikei. 2006. A 55 TFLOPS simulation of amyloid-forming peptides from yeast prion Sup35 with the special-purpose computer system MDGRAPE-3. In Proc. ACM/IEEE Conf. on Supercomputing (Tampa, FL, 2006). Google ScholarGoogle ScholarDigital LibraryDigital Library
  28. S. Piana-Agostinetti, K. Lindorff-Larsen, P. Maragakis, M. P. Eastwood, R. O. Dror, and D. E. Shaw. 2009. Improving molecular mechanics force fields by comparison of microsecond simulations with NMR experiments. Biophys. J. 96 (3), 406a.Google ScholarGoogle ScholarCross RefCross Ref
  29. S. J. Plimpton, S. Attaway, B. Hendrickson, J. Swegle, C. Vaughan, and D. Gardner. 1996. Transient dynamics simulations: parallel algorithms for contact detection and smoothed particle hydrodynamics. In Proc. ACM/IEEE Conf. on Supercomputing (Pittsburgh, PA, 1996). Google ScholarGoogle ScholarDigital LibraryDigital Library
  30. B. Roux. 2007. A proton-controlled check valve for sodium ion transport. Nature Chem. Bio. 3, 609--610.Google ScholarGoogle ScholarCross RefCross Ref
  31. Y. Shan, J. L. Klepeis, M. P. Eastwood, R. O. Dror, and D. E. Shaw. 2005. Gaussian split Ewald: a fast Ewald mesh method for molecular simulation. J. Chem. Phys. 122, 054101.Google ScholarGoogle ScholarCross RefCross Ref
  32. D. E. Shaw. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. 2005. J. Comput. Chem. 26 (13), 1318--1328.Google ScholarGoogle ScholarCross RefCross Ref
  33. D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, and S. C. Wang. 2007. Anton: a special-purpose machine for molecular dynamics simulation. In Proc. 34th Int. Symp. on Computer Architecture (San Diego, CA, 2007). ACM Press, New York, NY, 1--12. Google ScholarGoogle ScholarDigital LibraryDigital Library
  34. R. D. Skeel. 1999. Symplectic integration with floating-point arithmetic and other approximations. In Proc. NSF/CBMS Regional Conf. on Numerical Analysis of Hamiltonian Differential Equations (Golden, CO, 1999) 29, 3--18. Google ScholarGoogle ScholarDigital LibraryDigital Library
  35. A. Suenaga, T. Narumi, N. Futatsugi, R. Yanai, Y. Ohno, N. Okimoto, and M. Taiji. 2007. Folding dynamics of 10-residue b-hairpin peptide chignolin. Chem. Asian J. 2, 591--598.Google ScholarGoogle ScholarCross RefCross Ref
  36. C. Young, J. A. Bank, R. O. Dror, J. P. Grossman, J. K. Salmon, and D. E. Shaw. 2009. A 32x32x32, spatially distributed 3D FFT in four microseconds on Anton. In Proc. ACM/IEEE Conf. on Supercomputing (Portland, OR, 2009). Google ScholarGoogle ScholarDigital LibraryDigital Library
  37. R. Zhou, E. Harder, H. Xu, and B. J. Berne. 2001. Efficient multiple time step method for use with Ewald and particle mesh Ewald for large biomolecular systems. J. Chem. Phys. 115 (5), 2348--2358.Google ScholarGoogle ScholarCross RefCross Ref

Index Terms

  1. Millisecond-scale molecular dynamics simulations on Anton

                  Recommendations

                  Comments

                  Login options

                  Check if you have access through your login credentials or your institution to get full access on this article.

                  Sign in

                  Full Access

                  • Published in

                    cover image ACM Conferences
                    SC '09: Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis
                    November 2009
                    778 pages
                    ISBN:9781605587448
                    DOI:10.1145/1654059

                    Copyright © 2009 ACM

                    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

                    Publisher

                    Association for Computing Machinery

                    New York, NY, United States

                    Publication History

                    • Published: 14 November 2009

                    Permissions

                    Request permissions about this article.

                    Request Permissions

                    Check for updates

                    Qualifiers

                    • research-article

                    Acceptance Rates

                    SC '09 Paper Acceptance Rate59of261submissions,23%Overall Acceptance Rate1,516of6,373submissions,24%

                  PDF Format

                  View or Download as a PDF file.

                  PDF

                  eReader

                  View online with eReader.

                  eReader