Application of Artificial Intelligence Techniques to
Economic Planning

PAUL COCKSHOTT
Department of Computer Science, Strathclyde University, Glasgow, Scotland

Abstract

The relevance of computer science to economic planning is defended. An algorithm
for constructing a balanced economic plan is presented and found to be of time order
Nlog(N) in the complexity of the economy. The time taken to perform a complete plan
optimization in natural units for a whole economy is estimated.

Plans and computational costs

This is a paper by a computer scientist that disputes an economic hypothesis. The
hypothesis rests upon certain premises about computation and is therefore open to crit-
icism from outside economics. The hypothesis is that: the complexities involved with
performing the calculations required to optimize an economic plan in natural units are
so great that they are beyond the realms of feasibility and that in consequence all ra-
tional economic calculation must proceed by means of the intermediary of prices. The
hypothesis is an old one. It was originally proposed by Von Mises (1936) between
the wars. In recent years it has been ably restated by Nove (1983) and has gained
circumstantial support from recent developments in the USSR. It is argued here that
computer science has something relevant to say on the topic. It is then argued that
the difficulties experienced in socialist economies with planning in natural units are
partly a consequence of the particular formalism used to express the problem. Finally,
it is argued that techniques developed in artificial intelligence can be applied to solve
planning problems with economically acceptable computational costs.

In what follows it is assumed that planning authorities start out with a pre-given
objective in terms of net output. That is to say they wish to achieve a specified bundle
of output flows at the end of the plan period. If possible they would like this bundle
of outputs to be exceeded, but excesses of some commodities are not desired if they
result in shortfalls in others. In other words these are the classic assumptions proposed
by Kantorovich (Ellman 1972). We do not concern ourselves with how these plan
requirements are arrived at. It is further assumed that the plan authorities have effective
property rights over all means of production and can allocate them between different
productive activities in order to achieve plan goals.

Relevance of computer science

Computation is always a physical process. It is always performed by real physical
mechanisms. These may be humans, humans aided by pen and paper, humans aided by
calculators or electronic computers. At some point in the future these may be replaced

by other physical mechanisms, perhaps based on optics. Whatever the mechanism, it
has an economic cost. Human statisticians must be paid, computers must be built.
There exists a body of laws which describe the costs of computation (Kronso 1987).
The investigation of these laws is the task of computer science. In conjunction with the
disciplines of electronic engineering and software engineering, it develops practical
techniques for the solution of large-scale computations. The computational feasibility
of a problem depends upon the rate at which the number of elementary arithmetic
operations required to solve it grows with the size of the problem. If we label the size
of the problem N then the complexity of a problem is characterized by some function

complexity = F(N)

which defines the least upper bound of the number of elementary arithmetic steps
required. Tractable problems should have polynomial complexity functions. For re-
ally large N it is desirable to have a function of linear or log.linear complexity. These
costs are conventionally expressed in terms of time. They may alternatively be mapped
into costs in terms of space. By physical replication of components it is often possible
to reduce the time taken to perform a computation, but the product of time by space
occupied tends to be invariant for a given algorithmic technique and a given problem.
This has obvious economic implications. The time and space abstractions of complex-
ity theory translate into real economic costs. A computation is not worth doing if the
answer arrives too late to do anything about it. If the cost of the computer required to
solve a problem is greater than the savings to be made from solving it, it is better not
to try.

A large number of problems may be viewed from the standpoint of computation.
We can for instance consider the operation of a market economy as a computational
process. Loosely speaking we would describe the ’problem’ as being defined by the
available physical resources and the demand schedules of the consumers. The ob-
jective of the calculation would be to ’arrive at a set of prices and a distribution of
resources that optimally met the demand schedules. We are justified in thinking of this
as a computational process because of a very powerful theorem of computer science
that any finite physical process may be viewed as a computation and simulated on a
computer (Deutsch 1985) with an appropriate program. A market economy is a rather
slow computer since the basic steps of information transformation (price changes) only
come about by the intermediary of changes in the physical volume of outputs. The
elementary steps in the computation may take months or years, during which the avail-
ability of resources and demand schedules change. As a result the computation does
not terminate.

A planning bureau in a centrally controlled economy is more obviously a compu-
tational process. In this case the computation is not tied to alterations in the volume
of physical output but proceeds either through the exchange of draft plan proposals be-
tween economists (Kornai 1975) or through the execution of programs on the planning
bureau’s computers. In currently existing planning bureaus a considerable part of the
process is still human mediated, which slows down the computational cycle. It may be
the case that the speed to compute a plan in this way will actually be slower than the
relaxation time of a market. Computer technology has delivered very big increases in
productivity over the last forty years. The speed difference between hand calculation
and doing the same thing on the fastest modern computer is about 10 to the power of
11. No other technology has achieved increases remotely like this. This raises the pos-
sibility that an entirely automatic computer program could perform the computations

necessary for the control and balancing of production far faster than either a market
or a planning bureau. To demonstrate that this is feasible we have to show that the
problem of plan allocation can be cast in a form that is amenable to computer solution
and that the complexity function of this computation has a time/space product that is
economically acceptable.

Limits to the formalism of linear programming

Kantorovich demonstrated that the plan problem as formalized by him was logically
soluble using linear programming techniques. Although it is logically possible to com-
pute the correct allocation of resources to industries by these techniques, their practical
application is hindered by several factors. Among these are the lack of data or poor
quality of data available to the planning authorities in socialist economies and the tech-
nical backwardness of their computing machines. More significant is the question of
computational complexity. Nove emphasises the scale of the problem, saying that there
are 12 million distinct products in the Soviet Economy. He quotes a Soviet Economist
as saying that it would take the whole population of the world millions of years just to
solve the equations required for the plan of the Ukraine.

The cost of solving linear programming problems grows non-linearly with the num-
ber of industries considered. Just to store the technical coefficients as an input/output
matrix for the USSR economy would take around 1000000000000000 bytes of com-
puter memory. At current prices of around $1000 per million bytes, this means the
computer would cost upwards of 100 billion dollars. This alone would rule out apply-
ing a linear program to the whole economy even before we consider the running time
of the program.

To be acceptable the computation period should not exceed a few months, otherwise
decisions arrive too late. Ideally we would like answers the same day. The cost of the
computers and communications networks needed for the process should be less than
the existing computing budget of an advanced economy, so that the computational tail
does not wag the economic dog. We next argue that the problem of creating a balanced
plan is order NlogN and computationally tractable provided that it is cast in terms of a
different optimization model.

Representing the problem

The approach is to construct an internal computer model of the complete production
structure of the economy and of the desired pattern of output. A form of search al-
gorithm is then undertaken to discover a pattern of resource allocation that is close to
optimal. It only gets close to optimal since the type of search procedure used is an
iterative optimization which is terminated once an acceptable level of performance is
achieved. The production structure of an economy is conventionally represented as an
Input/Output matrix from a computational viewpoint. The memory storage require-
ment of a matrix grows as

N2
and the time order of matrix operations is greater than linear. Advantage is taken
of the fact that real input/output matrices will, if expressed in natural rather than value

units, be sparse. This allows the problem to be remodeled. Assume that there exists
an enumerated type PRODUCT in our computational model of the economy such that

the range of values of the type corresponds to the range of real products in the econ-
omy. An implementation of the type might be the bar-code number associated with
each product. The other types used in the model are STOCKS, FLOWS, TECHNOLO-
GIES, and INDUSTRIES. A STOCK is defined to be an ordered pair of type (integer,
PRODUCT) defining a number of units of a product. A FLOW is also of type (integer,
PRODUCT) but is defined to be of dimension

d
dt
By convention we define the consumption of a product to be a negative flow and
the production of a product to be a positive flow (having negative and positive valued
integer parts, respectively).
A TECHNOLOGY is defined to be a function of type (*STOCK — *FLOW). That
is to say it maps a set of stocks to a set of flows. (In what follows the notation *X
will mean the type of a set of X.) The interpretation of this is that the technology will
allow a production process to take place such that: a given set of stocks will cause
a net consumption of some products and a net production of others. Specifically, we
assume that to generate a given net output, stocks of inputs must be combined in fixed
proportions. So that:

(STOCK)

STOCKj = ICj

Where I is the intensity with which a technology operates,

¢j

is a constant, and

STOCK;

is the minimum stock of input j needed to attain this intensity. It is assumed that
the flows induced by the technology will be of the form:

FLOW; = f;I

where the f are constants. An INDUSTRY is characterized by the combination of
a set of stocks with a technology, hence (*STOCK, TECHNOLOGY).' The industry’s
dynamic behaviour is characterized by the application of the technology function to its
stocks.

The above representation of the problem has the great advantage over linear pro-
gramming approaches that it involves no matrices. In practice the matrix of technical
coefficients of the economy would be very sparse. By using a set representation, the
same information can be encoded much more efficiently. Using a suitable compact set
representation the store required will grow proportionally to the product of the number
of types of goods times the number of direct inputs that go into each distinct good.
Because the mean number of direct inputs to a product is likely to be hundreds not
millions, the memory costs for a representation of an economy are reduced by several
orders of magnitude. A computer of the appropriate size would be expected to cost a
few million dollars rather than hundreds of billions of dollars.

'In the algorithm it is assumed that there is only one technology associated with each product and that
there is no joint production. We are investigating the more general case with multiple alternative technolo-
gies.

The plan problem

The plan problem can be defined as follows: given a set of stocks that exist at the
current time period, and given a desired pattern of consumption of consumer goods,
and a pre-given set of technologies, find the industrial structure that best meets this.
This involves deciding how to allocate the aggregate stock of means of production
between all of the industries.

This can be solved by using techniques borrowed Irom artificial intelligence. Wel-
fare economics is dependent upon the assumption that consumers are capable of chos-
ing an optimal consumption pattern subject to certain constraints. This is a particular
representation within the domain of economics of the ability of neural systems-human
brains-to perform constraint satisfaction computations. Humans carry out constraint
satisfaction computations all the time with our most basic physical movements. When
we walk across the room and pick something up, our brain has solved an enormously
complex constrained cost minimization function that has as its parameters all sorts of
information about the degrees of freedom of our joints, the lengths of our bones, the
impossibility of walking through tables, the fact that energy consumption is minimized
by walking on our feet rather than our knees etc. We are unaware of them because trial
and error during infancy specialized our brains for this sort of calculation.

Economic planning is a problem of constraint satisfaction. Neural systems are con-
sumately effective at constraint satisfaction, so it is beneficial to apply what has been
learned through the study of neural networks to this area. Neural nets can be thought
of as collections of entities with local interactions. The same can be thought of in-
dustries. An industry interacts with its immediate suppliers and customers. A neurone
interacts with the other neurones that supply it with input signals and in turn drives out-
put signals to other neurones. The intensity with which an industry is operated can be
modeled by the frequency with which a neurone fires. A real neural analogue computer
might have a neurone to represent each industry and would be set up with appropriate
weights on its synapses to represent the strength of its coupling to other industries. The
system is then presented with external stimuli representing the desired pattern of output
and the available inputs and is ’trained’ to select a pattern of industry activation that
meets these constraints. In practice we would simulate the neural analogue computer
on one or more digital computers. We end up with a digital computer simulating a
neural computer simulating the total production function of a whole economy. But the
principle of training with positive and negative reinforcement remains.

In order to achieve this we introduce function which we term a Harmony function.
This is loosely based upon the notion of Harmony used in the literature on neural nets
(Smolensky 1986). The notion behind it is that Harmony is a real-valued function that
measures how closely the net output of the economy corresponds with the goal. The
function TotalHarmony(output,goal) where

output,goal : xF LOW

may be evaluated by summing the contributions to TotalHarmony from each prod-
uct. We define the function PartialHarmony(p) where

p: PRODUCT

to take on the value 0 when the output of a product exactly corresponds to the goal;
it becomes steeply negative as output falls below the goal and becomes slightly positive

when output exceeds the goal. This corresponds to the notion that shortfalls are more
important than surpluses. A possible form of the partial harmony function would be:

PartialHarmony (p) = H (scale (out put (p) ,goal (p))) (1)
Where the scale function is of the form:
scale(o,g) = 9”8 2)
g

and the function H takes the form:

H(x){ —x2 ifx<0 3

Since this function has a downwards sloping first derivative it mimics the economists’
notion of diminishing marginal utility. The partial harmony function depends upon
relatively local information: the computed supply and demand for the product of an
individual industry. This makes it suitable for use in a neural-motivated model.

Given the partial harmony function we can construct a total harmony function:

TotalHarmony = ¥, PartialHarmony(p) @)

We redefine the problem as that of finding an algorithm that will adjust the distri-
bution of stocks between industries so as to maximize harmony.

The algorithm

We start off with a random distribution of stocks between all industries, subject only to
the constraint that stocks of a product are only allocated to those industries that use it
as an input.

1. Find the rate-limiting factors

For each industry determine the product for which the input stock acts as a rate limiting
factor. Assume that the production function for the industry in question requires that
the inputs must be combined in fixed proportions. This step will be of order

koNM

where N is the number of industries and Mis the mean number of inputs per indus-
try.

2. Remove non-critical resources

If we have determined the critical resource for a production process and if we have
a linear production function we can determine the stock of each other product that is
required to optimally match the stock of the current critical resource. This is again
subject to the assumption that the inputs must be combined in fixed proportions. We
call this the balancing stock. Given the balancing stock of each non-critical input we
can deduct any excess stocks and assign them to a global reserve. This step will again
be of time order

kiNM

This step does not reduce net production as the resources moved to the central
reserve are defined to be non-essential. In consequence, total harmony is not reduced
by this step.

3. Compute partial harmonies

Evaluate the partial harmony of each product. This involves calculating the net produc-
tion of each product, comparing it with the goal and applying the harmony function.
If this is done by iterating through each industry and evaluating the product flow con-
tributed by that industry the time order of this will be

koNM + hN

where h is the cost of applying the partial harmony function to a single product.

4. Compute mean harmony

Given the partial harmonies, the mean and total harmony can then be computed. This
will be of order N.

5. Sort in order of harmony

We assume that there is only one industry acting as a net producer of each product. The
harmony function originally applies to products; we now associate each industry with
the partial harmony of its product. This enables us to order the industries in terms of
ascending harmony. As a sorting operation this will be of complexity Nlog(N).

6. Reallocate reserves

The stocks in the global pool are reallocated to industries starting with those industries
that are least harmonious. (Note that these are purely notional transfers performed
on the representation of the economy in the computer; no real transfers occur until
the whole computation has terminated.) For each of these industries we calculate the
additional stocks required to bring the industry up to mean harmony and allocate these
to it from the global pool. The time order of this stage will be

ksNMp

where p is the proportion of industries that can have this done to them before stocks
run out. As each industry has resources allocated to it, it is moved into the appropriate
position in the list of industries and the mean harmony is re-evaluated. The cost of this
operation will be of order pN log (N).

7. Reduce harmony peaks

Up to this point all steps have tended to conserve or increase harmony. This is because
they all tend to maintain or increase total production. We now have to alter the com-
position of production towards the most harmonious overall structure. This involves
reassigning resources from those industries with the highest harmony to those with the
lowest. Since the derivative of our harmony function

dH
dx

decreases throughout its range, the system is characterized by diminishing marginal
harmony. In consequence, total harmony can in some circumstances be increased by
moving resources from the production of products with above-average harmony to
those with below-average harmony. Our next step is to transfer resources from the
most harmonious to the least harmonious branches of production.

The set of products that are of above-average harmony is identified, the outputs
of the industries producing them are scaled down until they are producing at average
harmony, and the resources released are allocated to the global reserve. The complexity
of this operation is

kaNMgq

where ¢ is the proportion of products of above-average harmony.

8. Iterate steps 6 and 7 till increase in harmony is small

The crucial point here is how often the process has to be iterated. The limit to the
complexity of the whole operation will be:

R(pN (ksM +1og (N)) 4+ kaNMq)

where R is the number of iterations required. If we assume that the number of
products in an economy is of the order of a million then M may well be greater than
log (N). If we assume that M is of the order of 100 then the number of steps for the
balancing of a million-product economy would be of the order of

Rks108

For an optimized program we might estimate the number of steps to be between
10 billion and 100 billion. Given that the fastest current computers operate at several
billion operations per second (Frenkel 1986), this seems to be well within the bounds
of feasible computation.

Experimental verification

The algorithm was programmed in the C programming language and a series of exper-
imental runs made with simulated economies. The inputs to the program were:

(1) a set of N technologies,

(2) a set of target outputs for each product,

(3) a set of stocks of means of production.

The inputs were prepared by another program that ensured that the technologies
were feasible, i.e. that the Sraffaian (Sraffa 1960) basic sector was capable of producing
a surplus product, and that sufficient stocks of means of production were provided to
meet the goals. The particular details of the technologies, targets, and stocks were,
subject to these constraints, produced by a random-number generator.

It was observed that the algorithm as given above did redistribute the stocks be-
tween industries in order to equalize harmony levels between industries. However it
was found that industries converged upon a mean level of harmony that still left unused
stocks of resources.

There seem to be two alternative interpretations of this tendency to leave excess
stocks. One possibility is that the system gets trapped in a local maximum of harmony

that is below the global optimum such that no small variation in resource allocation
would allow the system to escape from this local maximum. Alternatively, the fault
may lie with the algorithm having an excessive tendency to converge towards the cur-
rent mean harmony level. The problem of local maxima is also encountered in neural
net simulations and it is avoided by using the technique of simulated annealing (Kirk-
patrick et al 1983). In that case, thermal noise is added to ensure that the system moves
towards a global maximum of harmony. The algorithm was thus modified to incorpo-
rate simulated annealing.

In steps 6 and 7 a target output is computed for each industry such that production
at this level would result in the industry being at mean “harmony’:

target; = H(meanharmony) 5)

The target is computed using the inverse harmony function H’ for the industry
concerned.

In order to overcome the strong convergence on the mean and the possibility of
local maxima induced by this formula, an amplification a and a random noise variable
n were added so that the output level was biased upwards:

target; = (1 + n+ a)H (meanharmony) (6)

This also should allow for the system to escape local maxima. With each succes-
sive iteration the bias a and the noise variable n were reduced, allowing the system
to go through two phases. In the first phase the target is dominated by the amplifica-
tion bias, and all industries increase their outputs until resource constraints inhibit this.
During the cooling phase the amplification bias tends towards zero and resources are
gradually redistributed between industries. Monte Carlo type tests were performed on
three versions of the algorithm: version 1 did not use amplification or thermal noise,
version 2 used amplification alone, version 3 used both amplification and noise. A to-
tal of 49 runs of each the three algorithms were made. In all 49 runs the number of
industries, the output goals, the technology, and the available stocks of resources were
held constant. Each run used a different initial allocation of these resources between
industries. For each of these initial allocation patterns the three versions of the algo-
rithm attempted to find a maximally harmonious final resource allocation. The mean
and standard deviations of the harmonies were then recorded for each algorithm on
each run (Cottrell 1989). The results are summarized in Table 1. These seem to show
that there is a statistically significant difference between version 1 and versions 2 and
3. The 95% confidence intervals for mean harmony are non-overlapping. On the other
hand, there is not a significant difference between versions 2 and 3. Although the aver-
age mean harmony is a little higher when thermal noise is added to amplification, the
95% intervals for the populations are substantially overlapping. This implies that we
should fail to reject the null hypothesis of equality between the two population means.
The conclusion is that the addition of thermal noise is not worthwhile.

Table 1. Monte Carlo test results

Algorithm

Ver.sion 1

Version 2

Version 3

Average mean harmony
-0..9473

1.3131

1.3180

Standard error

0..0012

0.0408

0.0406

Top of 95% confidence interval
-0..9498

1.2314

1.2367

Bottom of 95% confidence interval
0..9448

1.3948

1.3994

Verifying that solution is correct

Does the algorithm return the same solution as would have been arrived at by analytic
means? In order to determine this, it was set the problem of computing the maximal
harmony resource allocation for a system for which there was a known analytic solu-
tion. The approach was to define a set of goals and a set of technologies to achieve these
goals, and then to analytically determine the set of resources that were just sufficient to
meet these goals with the given technologies.

Let F be the input output flow matrix, then the net production flow matrix P is
defined by

P=(I-F)

Now let the matrix of capital stocks required to sustain one unit of production for
each industry be denoted by C and the goal vector by g. We can obtain the vector of
stocks s just sufficient to meet the goals from the equation:

s:C-(P*'-g)

If this quantity of stocks is harmoniously allocated between industries then the
mean harmony of the system should be zero. This follows from the definition of har-
mony, which states that it is zero when outputs exactly equal goals. When the plan-
balancing algorithm was presented with a collection of industries whose total stocks
had been calculated in this way, it terminated with a mean harmony of -0.0089. Given
that the analytic solution assumed a real-valued stock vector which was rounded down

10

to integer form for the plan-balancing algorithm, this was taken as evidence that the
solution produced was correct to within rounding errors.

301
%
/

251

201 ca
151 /

/
101 2

/’
/
Z

51 7

/

Ca

ALY

1

30 530 1030 1530 2030 2530 3030 3530

Fig. 1 Run time against number of industries
X axis = number of industries

Y axis = run time in seconds

Solid line M = 13, dotted line M = 25

8.05365

st
—1.94634 /_‘

-11.9463

-21.9463

-31.9463

-41.9463

-51.9463

0 2 4 6 8 10 12 14 16 18 20 22 24

Fig. 2 Harmony on successive iterations
X axis = iteration numbers
Y axis = harmony

Experimentally determined time order

Test runs were done with various numbers of industries. At the lower limit the number
of industries was 30, at the upper limit 3750. In Fig. 1 two plots are shown of the
computation time against number of industries for systems with M = 13 and M = 25,
respectively. It will be observed that the run times are approximately a linear function
of the number of industries. In general it was found that systems with large M con-
verged after slightly fewer iterations than systems with small M and that for a given
value of M the number of iterations was relatively independent of N. Figure 2 shows
the evolution of mean harmony with successive iterations. The two phase development:
rapid expansion followed by equilibration can be clearly seen.

Conclusion

The experimental results confirm the initial complexity analysis of the algorithm. The
computer used for the computation had a floating-point arithmetic performance of less
than 1 million operations per second. It was able to handle a system of 3705 industries
in just over 320 seconds. It seems reasonable to project a similar compute time for
balancing a plan of an entire economy on a modern super-computer. Nove gives an
estimate of 12 million distinct products in the economy of one of the super-powers.
This is an increase in the scale of the problem of about 3 orders of magnitude as com-
pared to the experiment. The latest supercomputers have a throughput of several billion
operations per second. This is again a 3-orders of magnitude improvement. Because

12

the algorithm depends upon local information, it should be suitable for multiproces-
sors. This implies that plan balancing in natural units is approaching the limits of what
can be practically computed. Since computer technology advances quickly, what is at
present marginally possible will soon be routinely possible. Such computations would
only be as valid as the data available. To work they would presuppose the existence of
an automatic data collection network, which relayed up-to-date information on partial
production functions to the computer that performed the optimizations. We have ar-
gued elsewhere (Cockshott and Cottrell 1989) that this is well within the capabilities of
current microcomputer and telecoms technology. We conclude that automated resource
allocation by computer constitutes a third economic alternative to market allocation or
bureaucratic allocation.

References

COCKSHOTT W. P. and COTTRELL A. (1989). ’Labour values and socialist eco-
nomic calculation’, Economy and Society, in press.

COTTRELL A. (1989). ’Analysis of the Monte Carlo test of the planbalancing algo-
rithm’, private communication.

DEUTSCH D. (1985). ’Quantum theory, the Church-Turing principle and the universal
quantum computer’, Proc. R. Soc. Lond. A400 97-117.

ELLMAN MICHAEL. (1972). Soviet planning today (Cambridge University Press,
Cambridge).

FRENKEL KAREN A. (1986). ’Evaluating two massively parallel machines’, Com-
munications of the ACM 9 (August).

KIRKPATRICK S. JR., GELATT C. D. and VECCHI M. (1983). ’Optimization by
simulated annealing’, Science 220, 671-680.

KORNALIFE (1975). Mathematical planning of structural decisions (Akademiai Kiado,
Budapest).

KRONSO LYDIA. (1987). Algorithms: their complexity and efficiency (Wiley).
MISES L. VON. (1936). Socialism: an economic and sociological analysis (Jonathan
Cape, London, trans. J. Kahane).

NOVE ALEC. (1983). Economics of feasible socialism (Allen & Unwin).
SMOLENSKY P. (1986). "Information processing in dynamical systems: foundations
of harmony theory’, in Rumelhart, David, Parallel distributed processing, vol. 1 (MIT
Press).

SRAFFA P. (1960). Production of commodities by means of commodities (Cambridge
University Press, Cambridge).

13

