Skip to main content
  • Original Article
  • Published:

Effects of resource availability on condensed tannins and nitrogen in two Quercus species differing in leaf life span

Effets de la disponibilité de la ressource sur les tanins condensés et l’azote chez deux espèces de Quercus différentes pour la durée de vie de leurs feuilles

Abstract

Seedlings of Quercus ilex and Q. cerrioides, an evergreen and a winter-deciduous oak co-occurring in western-Mediterranean forests, were grown at two light regimes (8 and 36% of photosynthetically active radiation), at two water regimes (500 and 800 mm) and with two nutrient availabilities (standard substrate and 7% increase in soil N). The concentrations of soluble condensed tannins (CT) and nitrogen in the leaves were analyzed to test the phenotypic plasticity of these commonly related parameters in two con-generic species with contrasting leaf habit. Q. ilex contains seven times more CT and a few less N than Q. cerrioides. Light increased CT, whereas neither fertilization nor water had an effect on CT. N concentration was decreased by light, increased by fertilization and not affected by water treatment. Plant growth was increased by light but not affected by fertilization or water treatment. CT were negatively correlated with N concentration. CT of the evergreen species exhibited greater plasticity than the deciduous one as reflected by a steeper negative correlation among nitrogen and CT concentrations in Q. ilex. Given the antiherbivory activity of CT, this implies that in less shaded environments, e.g. canopy aperture by disturbances, leaf tissue quality for herbivores will be much more reduced in Q. ilex than in Q. cerrioides. Higher leaf CT in Q. ilex and its higher plasticity to light availability may explain the higher browsing by sheep in Q. cerrioides than in Q. ilex resprouts, as well as the low recruitment rates of seedlings of the former species, reported in other studies.

Résumé

Des semis de Quercus ilex et Quercus cerrioides, une espèce sempervirente et une espèce décidue co-existantes dans les forêts méditerranéennes occidentales, ont été élevés sous deux régimes lumineux (8 et 36 % de PAR), deux régimes d’alimentation hydrique (500 et 800 mm) et avec deux niveaux d’alimentation nutritionnelle (substrat standard et substrat avec une augmentation d’azote de 7 %). Les concentrations des tanins solubles condensés (CT) et d’azote des feuilles ont été analysées pour tester la plasticite phénotypique de ces paramètres couramment rapportés chez deux espèces de même genre ayant des types différents de feuilles. Quercus ilex contient 7 fois plus de CT et un peu moins d’azote que Quercus cerrioides. La lumière accroît CT alors que ni la fertilisation ni l’eau ont eu un effet sur CT. La concentration en azote a diminué avec l’augmentation de la lumière, elle a été augmentée par la fertilisation et n’a pas été affectée par le niveau d’alimentation hydrique. La croissance des semis a été augmentée par l’augmentation du PAR mais n’a pas été affectée par la fertilisation ou le niveau d’alimentation en eau. CT a été corrélée avec la concentration en azote. La CT des espèces sempervirentes présente une plus grande plasticité que les espèces décidues comme cela est reflété par une plus forte corrélation négative entre les concentrations d’azote et de CT chez Quercus ilex. Etant donné l’activité antiherbivore de CT, cela implique que dans les environnements moins ombragés, par exemple dans les ouvertures de la canopée, la qualité des tissus foliaires sera plus diminuée chez Quercus ilex, que chez Quercus cerrioides. Une CT plus élevée chez Quercus ilex, et sa plasticité plus grande à la lumière peuvent expliquer un broutage plus important des rejets par les moutons chez Quercus cerrioides que chez Quercus ilex, de même que le faible taux de recrutement de semis de la premiêre espêce qui est rapportée dans d’autres études.

References

  1. Adams A.S., Rieske L.K., Prescribed fire affects white oak seedling phytochemistry: implications for insect herbivory, For. Ecol. Manage. 176 (2003) 37–47.

    Article  Google Scholar 

  2. Aerts R., The advantages of being evergreen, Trends Ecol. Evol. 10 (1995), 402–407.

    Article  PubMed  CAS  Google Scholar 

  3. Aerts R.J., Barry T.N., McNaab W.C., Polyphenols and agriculture: beneficial effects of proanthocyanidins in forages, Agric. Ecosyst. Environ. 75 (1999) 1–12.

    Article  CAS  Google Scholar 

  4. Belovsky G.E., Schmitz O.J., Mammalian herbivore optimal foraging and the role of plant defenses, in: Palo R.T., Robbins C.T. (Eds.), Plant defenses against mammalian herbivory, CRC, Boca Raton, 1991, pp. 1–28.

    Google Scholar 

  5. Berendse F., Competition between plant populations at low and high nutrient supplies, Oikos 71 (1994) 253–260.

    Article  Google Scholar 

  6. Bernays E.A., Cooper Driver G., Bilgener M., Herbivores and plant tannins, in: Begon M., Fitter A.H., Ford E.D., MacFadyen A. (Eds.), Advances in Ecological Research, Vol. 19. Academic Press, London, 1989, pp. 263–302.

    Chapter  Google Scholar 

  7. Bryant J.P., Chapin III F.S., Klein D.R., Carbon/nutrient balance of boreal plants in relation to vertebrate herbivory, Oikos 40 (1983) 357–368.

    Article  CAS  Google Scholar 

  8. Burns A.E., Gleadow R.M., Woodrow I.E., Light alters the allocation of nitrogen to cyanogenic glycosides in Eucalyptus cladocalyx, Oecologia 133 (2002) 288–294.

    Article  Google Scholar 

  9. Bussotti F., Bettini D., Grossoni P., Mansuino S., Nibbi R., Soda C., Tani C., Structural and functional traits of Quercus ilex in response to water availability, Environ. Exp. Bot. 47 (2002) 11–23.

    Article  Google Scholar 

  10. Cabiddu A., Decandia M., Sitzia M., Molle G., A note on chemical composition and tannin content of some Mediterranean shrubs browsed by Sarda goats, Cah. Options Médit. 52 (2000) 175–178.

    Google Scholar 

  11. Canham C.D., Different responses to gaps among shade-tolerant tree species, Ecology 70 (1989) 548–550.

    Article  Google Scholar 

  12. Carter E.B., Theodorou M.K., Morris P., Responses of Lotus corniculatus to environmental change. 2. Effect of elevated CO2, temperature and drought on tissue digestion in relation to condensed tannin and carbohydrate accumulation, J. Sci. Food Agric. 79 (1999) 1431–1440.

    Article  CAS  Google Scholar 

  13. Castro-Díez P., Villar-Salvador P., Pérez-Rontomé C., Maestro-Martínez M., Montserrat-Martí G., Leaf morphology and leaf chemical composition in three Quercus (Fagaceae) species along a rainfall gradient in NE Spain, Trees 11 (1997) 127–134.

    Google Scholar 

  14. Cortés P., Distribución y dinámica de un Quercus caducifolio (Q. cerrioides Wilk et Costa) y uno perennifolio (Q. ilex L.) en Catalunya. Análisis de la ecología de la reproducción, la respuesta de las plántulas a factores ambientales y la respuesta a las perturbaciones, M.Sc. thesis, Universitat Autònoma de Barcelona, Barcelona, 2003.

    Google Scholar 

  15. Coley P.D., Bryant J.P., Resource availability and plant antiherbivore defense, Science 230 (1985) 895–899.

    Article  PubMed  CAS  Google Scholar 

  16. Damesin C., Rambal S., Joffre R., Co-occurrence of trees with different leaf habit: a functional approach on Mediterranean oaks, Acta Oecol. 19 (1998) 195–204.

    Article  Google Scholar 

  17. Denslow J., Tropical rainforest gaps and tree species diversity, Annu. Rev. Ecol. Syst. 18 (1987) 431–451.

    Article  Google Scholar 

  18. Eamus D., Ecophysiological traits of deciduous and evergreen woody species in the seasonally dry tropics, Trends Ecol. Evol. 14 (1999) 11–16.

    Article  PubMed  Google Scholar 

  19. Espelta J.M., Riba M., Retana J., Patterns of seedling recruitment in West Mediterranean Quercus ilex L. forests as influenced by canopy development, J. Veg. Sci. 6 (1995) 645–672.

    Article  Google Scholar 

  20. Espelta J.M., Cortes P., Mangiron M., Retana J., Differences in biomass partitioning, leaf nitrogen content, and water use efficiency (delta C-13) result in similar performance of seedlings of two Mediterranean oaks with contrasting leaf habit, Ecoscience 12 (2005) 447–454.

    Article  Google Scholar 

  21. Espelta J.M., Habrouk A., Retana J., Response to natural and simulated browsing of two Mediterranean oaks with contrasting leaf habit after a wildfire, Ann. For. Sci. 63 (2006) 441–447.

    Article  Google Scholar 

  22. Glyphis J.P., Puttick G.M., Phenolics, nutrition and insect herbivory in some garrigue and maquis plant species, Oecologia 78 (1989) 259–263.

    Article  Google Scholar 

  23. Harborne J.B., Role of phenolic secondary metabolites in plants and their degradation in nature, in: Cadisch G., Giller K.E. (Eds.), Driven by nature. Plant litter quality and decomposition, CABI Publishing, Oxon, 1999, pp. 67–74.

    Google Scholar 

  24. Herms D.A., Mattson W.J., The dilemma of plants: to grow or defend, Q. Rev. Biol. 67 (1992) 283–335.

    Article  Google Scholar 

  25. Heuze P., Schnitzler A., Klein F., Consequences of increased deer browsing winter on silver fir and spruce regeneration in the Southern Vosges mountains: Implications for forest management, Ann. For. Sci. 62 (2005) 175–181.

    Article  Google Scholar 

  26. Horner J.D., Nonlinear effects of water deficits on foliar tannin concentration, Biochem. Syst. Ecol. 18 (1990) 211–213.

    Article  CAS  Google Scholar 

  27. Kinney K.K., Lindroth R.L., Jung S.M., Nordheim E.V., Effects of CO2 and NO 3 availability on deciduous trees: phytochemistry and insect performance, Ecologia 78 (1997) 215–230.

    Google Scholar 

  28. Koricheva J., Larsson S., Haukioja E., Keinänen M., Regulation of woody plant secondary metabolism by resource availability: hypothesis testing by means of meta-analysis, Oikos 83 (1998) 212–226.

    Article  CAS  Google Scholar 

  29. Kouki M., Manetas Y., Resource availability affects differentially the levels of gallotannins and condensed tannins in Ceratonia siliqua, Biochem. Syst. Ecol. 30 (2002) 631–639.

    Article  CAS  Google Scholar 

  30. Makkar H.P.S., Goodchild A.V., Quantification of tannins: a laboratory manual. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, 1996.

  31. Makkar H.P.S., Dawra R.K., Singh S., Tannin levels in leaves of some oak species at different stages of maturity, J. Sci. Food. Agric. 54 (1991) 513–519.

    Article  CAS  Google Scholar 

  32. Martin J.S., Martin M.M., Tannin assays in ecological studies: lack of correlation between phenolics, proanthicyanidins and protein-precipitating constituents in mature foliage of six oak species, Oecologia 54 (1982) 205–211.

    Article  Google Scholar 

  33. Narjisse H., Elhonsali L.A., Olsen J.D., Effects of oak (Quercus ilex) on digestion and nitrogen balance in sheep and goats, Small Rumin. Res. 18 (1995) 201–206.

    Article  Google Scholar 

  34. Peñuelas J., Estiarte M., Can elevated CO2 affect secondary metabolism and ecosystem function? Trends Ecol. Evol. 13 (1998) 20–24.

    Article  PubMed  Google Scholar 

  35. Porter L.J., Hrstich L.N., Chan B.G., The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin, Phytochem. 25 (1986) 223–230.

    Article  CAS  Google Scholar 

  36. Quézel P., Médail F., Écologie et biogéographie des forêts du bassin méditerranéen, Elsevier SAS, Paris, 2003.

    Google Scholar 

  37. Rebolé A., Fiber and tannins of some agricultural and forest byproducts. Inclusion of these parameters in the prediction of in vitro digestibility, J. Agric. Food Chem. 42 (1994) 739–743.

    Article  Google Scholar 

  38. Retana J., Espelta J.M., Gracia M., Riba M., Seedling recruitment, in: Rodà F., Retana J., Gracia C.A., Bellot J. (Eds.), Ecology of Mediterranean evergreen oak forests, Springer Verlag, Berlin, 1999, pp. 89–101.

    Google Scholar 

  39. Rieske L.K., Wildfire alters oak growth, foliar chemistry, and herbivory, For. Ecol. Manage. 168 (2002) 91–99.

    Article  Google Scholar 

  40. Rieske L.K., Housman H.H., Arthur M.A., Effects of prescribed fire on canopy foliar chemistry and suitability for an insect herbivore, For. Ecol. Manage. 160 (2002) 177–187.

    Article  Google Scholar 

  41. Sardans J., Rodà F., Peñuelas J., Phosphorus limitation and competitive capacities of Pinus halepensis and Quercus ilex subsp. rotundifolia on different soils, Plant Ecol. 174 (2004) 305–317.

    Google Scholar 

  42. Silanikove N., Gilboa N., Nir I., Perevolotsky A., Nitsan Z., Effect of daily supplementation of polyethylene glycol on intake and digestion of tannin-containing leaves (Quercus calliprinos, Pistacia lentiscus and Ceratonia siliqua) by goats, J. Agric. Food Chem. 44 (1996) 199–205.

    Article  CAS  Google Scholar 

  43. Specht R.L., Structure and functional response of ecosystems in the Mediterranean climate of Australia, in: Di Castri F., Mooney H.A. (Eds.), Mediterranean-type ecosystems: Origen and structure, Chapman & Hall, London, 1973, pp. 113–120.

    Google Scholar 

  44. Sterner R.W., Elser J.J., Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere, Princeton University Press, Princeton, 2002.

    Google Scholar 

  45. Tognetti R., Johnson J.D., Michelozzi M., Raschi A., Response of foliar metabolism in mature trees of Quercus pubescens and Quercus ilex to long-term elevated CO2, Env. Exp. Bot. 39 (1998) 233–245.

    Article  CAS  Google Scholar 

  46. Vila B., Guibal F., Torre F., Martin J.L., Can we reconstruct deer browsing history and how? Lessons from Gaultheria shallon Pursh, Ann. For. Sci. 62 (2005) 153–162.

    Article  Google Scholar 

  47. Zavala M.A., Espelta J.M., Retana J., Constraints and trade-offs in Mediterranean plant communities: The case of holm oak-Aleppo pine forests, Bot. Rev. 66 (2000) 119–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Estiarte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estiarte, M., De Castro, M. & Espelta, J.M. Effects of resource availability on condensed tannins and nitrogen in two Quercus species differing in leaf life span. Ann. For. Sci. 64, 439–445 (2007). https://doi.org/10.1051/forest:2007021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1051/forest:2007021