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LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic foot-

print, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions

may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and

predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture se-

quencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 inser-

tion rate of≥1 event per eight births.We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early

primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT)

and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolution-

ary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamen-

tal property of pluripotent embryonic cells in vivo.

[Supplemental material is available for this article.]

Long interspersed element 1 (LINE-1 or L1) is a mobile genetic ele-
ment active in nearly all mammals (Furano 2000). L1 sequences
mobilize via a copy-and-paste mechanism, termed retrotransposi-
tion (Moran et al. 1996), and comprise ∼18% of mouse DNA
(Waterston et al. 2002). Each mouse genome harbors ∼3000 full-
length retrotransposition-competent L1s (RC-L1s) belonging to
threeL1 subfamilies (TF,GF, andA) aswell asnearly600,000L1cop-
ies rendered immobile by 5′ truncation and the accumulationof in-
ternal mutations (Fanning 1983; Loeb et al. 1986; Padgett et al.
1988; Kingsmore et al. 1994; Takahara et al. 1996; DeBerardinis
et al. 1998; Naas et al. 1998; Goodier et al. 2001; Waterston et al.
2002; Sookdeo et al. 2013). The ongoing productionof new, herita-
ble RC-L1 copies is therefore essential to preserve L1 mobility over
evolutionary time. It follows that L1 mRNA and protein are ex-
pressed during germline and early embryonic development
(Martin and Branciforte 1993; Branciforte and Martin 1994;
Trelogan and Martin 1995; Garcia-Perez et al. 2007; Soper et al.
2008; Malki et al. 2014), and numerous host mechanisms regulate
L1 activity during these stages (Yoder et al. 1997; Bourc’his and

Bestor 2004; Watanabe et al. 2006, 2008; Aravin et al. 2008; Soper
et al. 2008; Rowe et al. 2010; Zamudio and Bourc’his 2010;
Wissing et al. 2011; Castro-Diaz et al. 2014; Crichton et al. 2014).

The developmental timing of only two heritable human L1
insertions has been elucidated; one event likely occurred in the fe-
male germline (Brouha et al. 2002), and the other occurred in a
pluripotent embryonic cell and resulted in maternal somatic and
germline mosaicism (van den Hurk et al. 2007). This result is con-
sistent with reports of L1 retrotransposition in cultured human
embryonic stem cells and induced pluripotent stem cells (iPSCs)
(Garcia-Perez et al. 2007; Wissing et al. 2012; Klawitter et al.
2016), although a study ofmouse iPSCs revealed little endogenous
retroelement activity (Quinlan et al. 2011). Studies of transgenic
L1 reporter animals have demonstrated retrotransposition in the
germline (Ostertag et al. 2002; An et al. 2006) and in the early
embryo (Kano et al. 2009). Surprisingly, in the latter study, trans-
mission of engineered L1 insertions frommosaic parental animals
to offspring was never observed, suggesting somatic but not
germline contribution of insertion-harboring embryonic cells
(Kano et al. 2009). Overall, the frequency and developmental
timing of heritable L1 retrotransposition in vivo remain unclear.
Here, we overcome the rarity of phenotype-causing endogenous
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retrotransposition events, and avoid the caveats of transgenic
model systems, by adapting retrotransposon capture sequencing
(RC-seq) (Baillie et al. 2011; Shukla et al. 2013) to detect the follow-
ing presently active mouse endogenous retrotransposons: TF, GF,
and A subfamily L1 elements, B1 and B2 SINEs, and IAP and ETn
long terminal repeat (LTR) elements (mRC-seq) (Supplemental
Fig. S1A; Mager and Stoye 2015; Richardson et al. 2015). We
apply this technology to pedigrees of wild-type C57BL/6J mice
to investigate the rate and developmental timing of heritable L1
insertions.

Results

We bred two- and three-generation pedigrees of C57BL/6J mice
(Fig. 1), a strain known to accommodate recent L1 activity (Akagi
et al. 2008), and used mRC-seq and whole-genome sequencing
(WGS) to identify retrotransposon insertions absent from the
C57BL/6J reference genome andnot previously identified in an ex-
tensive analysis of polymorphic transposable element insertions
across 13 commonly used inbred and four wild-derived mouse
strains (Fig. 1; Supplemental Fig. S1; Methods; Nellaker et al.
2012). After sequencing analyses, we classified 28 L1 and short in-
terspersed element (SINE) insertions present in at least one of the
six “P-generation” animals (SRA/SRB, SRC/SRD, SRE/SRF) and ab-
sent from the C57BL/6J reference genome as polymorphic. Each
“P-generation” animal harbored an overlapping subset of 17–19
polymorphic insertions; the specific polymorphic insertion con-
tent of each animal in the study can be found in Supplemental
Table 2. Transmission of differentially present/absent polymor-
phic insertions was consistent with the known relationships
among mice in our study (Fig. 1; Supplemental Table 2). Using
data frommRC-seq reads and PCR validation followed by capillary
sequencing, we discerned the complete structures of 17 polymor-
phic insertions (Supplemental Fig. S3; Supplemental Tables 2, 3),
comprising 11 L1 TF subfamily insertions, two B1 SINEs, and
four B2 SINEs. Despite efficient detection of reference IAP and
ETn retrotransposons (Supplemental Fig. S1C), we identified no
polymorphic LTR insertions in our mice. This result may reflect
differences in the activity levels of retrotransposon families among
inbred mouse strains, revealed by numerous recent studies (Akagi
et al. 2008, 2010; Quinlan et al. 2010; Keane et al. 2011; Li et al.
2012; Nellaker et al. 2012). For example, themajority of previously
identified de novo IAP insertions arose on the IΔ1 subtype of the
C3H/HeJ mouse strain (Maksakova et al. 2006).

We regarded insertions detected in one or more offspring but
absent from the corresponding parents as potentially de novo
(Supplemental Fig. S1B). Using PCR and capillary sequencing, we
validated 11 de novo L1 insertions (Table 1; Supplemental Table
2). All 11 were TF subfamily elements, consistent with previous re-
ports of disease-causingL1 insertions inmicewherein all insertions
for which sufficient L1 sequencewas present for subfamily distinc-
tion were identified as TF elements (Kingsmore et al. 1994;
Mulhardt et al. 1994; Kohrman et al. 1996; Takahara et al. 1996;
Perou et al. 1997; Naas et al. 1998; Yajima et al. 1999; Cunliffe
et al. 2001). De novo L1 insertions bore hallmarks of L1 retrotrans-
position by target-primed reverse transcription (TPRT), including
insertion at sequences resembling the L1 endonuclease cleavage
motif (5′-TTTT/AA-3′), the presence of 13- to 17-bp target-site du-
plications (TSDs), and 3′ poly(A) tracts (Table 1; Supplemental
Figs. S1E, S4; Singer et al. 1983; Scott et al. 1987; Luan et al. 1993;
Moran et al. 1996; Jurka 1997). The average GC content of de
novo L1 insertion siteswithin a 50-bp and20-kbwindowof the en-

donuclease cleavage position was 30% and 38%, respectively, con-
sistent with a previously described preference of L1 for AT-rich
regions (Supplemental Table 4; Szak et al. 2002; Boissinot et al.
2004; Gasior et al. 2007). One insertion (insertion #5) (Fig. 3A,
below) landed within the gene Ano4, which encodes a brain-ex-
pressed transmembrane protein of unknown function (Picollo
et al. 2015; Petryszak et al. 2016). Consistent with the observation
that intronic L1 insertions in antisense orientation have little im-
pact on RNA polymerase processivity (Han et al. 2004), we did
not observe a decrease inAno4mRNA levels in forebrain of animals
heterozygous for this insertion (Supplemental Fig. S1G). Insertion
#5 also occurredwithin an intronic L1mA5 element, and two addi-
tional intergenic insertions landed within existing L1 repeats
(Supplemental Table 4).

All 11 de novo insertions were 5′ detected by mRC-seq and
thus full-length (containing ≥1 TF monomer), reflecting depletion
of mouse L1 3′ termini observed during Illumina sequencing
(Supplemental Fig. S1D; Supplemental Tables 1, 2), possibly due
to the GC-rich nature of the mouse L1 3′ end sequence
(Chambers et al. 2015). Furthermore, the de novo L1 insertions
had relatively long poly(A) tracts (average ∼64 bp), reducing the
likelihood that L1 3′ end sequence and flanking genomic DNA
would be captured in a single sequencing read. However, 20–30×
WGS,which, in principle, could allowdetection of the 5′ junctions
of 5′ truncated L1 insertions, applied to ninemouse genomes (SRE,
SRF, and offspring SREF15-21) uncovered no 5′ truncated de novo
L1 insertions (Fig. 1; Supplemental Tables 1, 2), and a previous
analysis suggested that TF L1s undergo 5′ truncation less frequent-
ly than other L1 elements (Hardies et al. 2000). Complete internal
sequencing of nine de novo L1 insertions revealed intact ORFs and
the absence of mutations in critical functional domain residues
(Supplemental Fig. S2; Furano 2000).

Next, we used PCR genotyping to investigate the develop-
mental origin of each de novo L1 insertion (Supplemental Fig.
S1B). Insertions #1 and #2 were identified by mRC-seq in mice
SRAB2 and SRAB15, respectively (Fig. 2A; Supplemental Fig. S5A;
Supplemental Table 2). We did not detect these insertions by
PCR genotyping in the somatic tissues of parental mice SRA and
SRB; however, insertions #1 and #2 were detected by PCR in
both testicles of paternal mouse SRB (Fig. 2A; Supplemental Fig.
S5A). Inheritance of each insertion byonly 1/20 offspring, coupled
with their presence in both testicles of the paternal mouse, sug-
gested germline-restricted mosaicism for insertions #1 and #2 in
mouse SRB (Fig. 2B; Supplemental Fig. S5A).

In an inverse approach to identify germline-restricted mosaic
insertions, we performed deep (∼260×) mRC-seq on the germ cell
fraction of each testicle of mouse SRCD14. We detected and PCR-
validated insertion #7 in both testicles and did not detect it in the
somatic tissues of SRCD14 (Fig. 2C,D; Supplemental Table 2). An
insertion-specific genomic DNA qPCR assay targeting the 5′ L1-
genome junction of insertion #7 revealed its prevalence of
∼11% and ∼4% in the germ cell fraction of the left and right tes-
ticle of SRCD14, respectively (Fig. 2E), and subsequent PCR geno-
typing demonstrated transmission of the insertion to 2/65
progeny of SRCD14 (F2-7 and F2-55) (Fig. 1; Supplemental Fig.
S5B). As evidenced by our failure to detect L1 insertions #1, #2,
and #7 from mesoderm-, ectoderm-, and endoderm-derived tis-
sues of the respective paternal mice, we reasoned that these inser-
tions likely arose in early primordial germ cells (PGCs) during
paternal embryonic development, prior to PGC colonization of
the genital ridge and the formation of the testes. Thus, we con-
clude that L1 retrotransposition can occur in early PGCs, resulting
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Figure 1. Origin and transmission of de novo L1 insertions inmouse pedigrees. Above, two-generation pedigree originating fromparentalmice SRA/SRB.
Below, three-generation pedigrees originating from parental mice SRC/SRD and SRE/SRF. F1 animals are designated by the parental pair from which they
arose (AB, CD, EF); F2 animals are so indicated. De novo L1 TF insertions #1–#11 are color coded. In subsequent figures, schematics of each insertion are
likewise color coded. With respect to each insertion, filled shapes indicate heterozygous animals, vertical hatching indicates germlinemosaicism, horizontal
hatching indicates somatic mosaicism, and vertical and horizontal hatching together indicates both somatic and germline mosaicism. Circles represent
female animals; squares represent males. Dashed lines indicate matings. Animals for which mRC-seq was performed on somatic tissue gDNA are indicated
with an asterisk; animals for which whole-genome sequencing (WGS) was performed on somatic tissue gDNA are indicated with a plus sign. For mouse
SRCD14, mRC-seq was performed on somatic tissues as well as the germ cell fraction of the left and right testicles. Polymorphic retrotransposon insertions
are not depicted in this figure.
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in germline-restricted genetic mosaicism and heritable de novo L1
insertions.

To investigate the capacity of de novo L1 insertions for subse-
quent retrotransposition, we cloned insertions #1 and #7 and test-
ed their activity in a cultured cell retrotransposition assay (Fig. 2F;
Moran et al. 1996; Wei et al. 2000). In HeLa cells, insertion #1 and
insertion #7 jumped to ∼97% and ∼205% efficiency, respectively,
relative to L1spa, a previously identified disease causingTF insertion
(Fig. 2G,H; Kingsmore et al. 1994; Mulhardt et al. 1994; Naas et al.
1998). Thus, consistent with previous reports (Naas et al. 1998;
Kimberland et al. 1999), de novo L1 insertions are not only herita-
ble but also have the potential to serve as progenitor elements for
subsequent retrotransposition events.

We traced the developmental timing of six de novo L1 inser-
tions to the early embryo. As an illustrative example, insertion #5
was detected by mRC-seq with a single sequencing read in the
brain of maternal mouse SRE and robustly detected in 4/7 off-
spring (Fig. 1; Supplemental Table 2). PCR genotyping revealed
bands of varying intensity among the somatic tissues and ovaries
of mouse SRE (Fig. 3A,B), and by genomic DNA qPCR, the preva-
lence of insertion #5 ranged from ∼0.2% in brain to ∼1.5% in
the right ovary (Fig. 3C). Similarly, insertions #3 (Supplemental
Fig. S6A,B), #6 (Supplemental Fig. S6C,D), and #11
(Supplemental Fig. S6E) were each identified bymRC-seq inmulti-
ple offspring and genotyped as mosaic in the respective maternal
tissues. Insertions #8 (Supplemental Fig. S6F) and #10
(Supplemental Fig. S6G)were identified bymRC-seq andwere con-
firmed as mosaic in the tissues of mouse SREF17 and mouse F2-
145, respectively, but were not transmitted to the limited offspring
produced by these animals (five and six progeny, respectively)
(Supplemental Fig. S6F,G). Therefore, we can neither confirm
nor rule out the contribution of insertions #8 and #10 to the
germ lineage. Taken together and consistent with previous studies
(Garcia-Perez et al. 2007; van den Hurk et al. 2007; Kano et al.
2009;Wissing et al. 2012; Klawitter et al. 2016), our results demon-
strate that L1 retrotransposition occurs in pluripotent cells of the
early embryo, generates somatic and germline genetic mosaicism,
and can give rise to heritable de novo L1 insertions.

Of the remaining two de novo L1 insertions, insertion #4 like-
ly represented a late germline event. This insertion was identified
by mRC-seq in mouse SREF16, one of seven offspring of parental
mice SRE and SRF, but was not detected in somatic and germ tis-
sues of SRE or SRF (Fig. 4A,B; Supplemental Table 2). Upon crossing

mouse SREF16 to mouse SRCD14, insertion #4 was transmitted to
11/19 offspring (Figs. 1, 4B), consistent with mouse SREF16 being
either consummately heterozygous for the insertion or mosaic
with a high degree of germline prevalence. To distinguish these
possibilities, we used a 5′ L1-genome junction qPCR assay for in-
sertion #4, with heterozygous and wild-type F2 offspring as con-
trols, and found that SREF16 contained ∼1 copy each of
insertion #4 and the genomic empty site across all tissues tested
(Fig. 4C,D). Insertion #4 could not be detected in the gonads of
SRE or SRF, despite sensitivity of the qPCR assay to 0.1% preva-
lence (Supplemental Fig. S7A). We therefore conclude that mouse
SREF16 was heterozygous for insertion #4 and that this insertion
arose sufficiently late during germline development of parental
mouse SRE or SRF to preclude its detection in bulk gonad tissues,
or possibly post-conception in SREF16 at the mature zygote stage.

Finally, insertion #9 was detected in 11/23 offspring of
SRCD11 and SREF20 (Fig. 1; Supplemental Fig. S7B,C; Supplemen-
tal Table 2). This rate of transmission suggested either parental het-
erozygosity or mosaicism with a high degree of germline
prevalence. However, we could not detect insertion #9 by nested
PCR in the gonads of SRCD11 or SREF20 (Supplemental Fig.
S7H). The developmental origins of insertion #9 are therefore un-
clear. We speculate that this event was germline-restricted mosaic
in SRCD11 or SREF20, but that the subset of germ cells carrying in-
sertion #9 was depleted by the time the gonads of these animals
were harvested, at age 39 and 40 wk (Lei and Spradling 2013).

We next sought to identify the progenitor L1 elements re-
sponsible for heritable de novo insertions. During transcription
of an RC-L1 element, the native L1 polyadenylation signal is occa-
sionally bypassed in favor of a downstream genomic polyadenyla-
tion signal, and upon retrotransposition the nascent L1 insertion
incorporates a genomic sequence tag, or 3′ transduction, that
identifies the progenitor L1 element (Holmes et al. 1994; Moran
et al. 1996, 1999; Goodier et al. 2000; Pickeral et al. 2000;
Macfarlane et al. 2013). Two early PGC insertions (#2 and #7)
(Fig. 2C; Supplemental Fig. S8A,C), one early embryonic insertion
(#5) (Supplemental Fig. S8B), and two presumably recent polymor-
phic L1 TF insertions differentially present/absent among our ani-
mals (Poly_L1TF_3 and Poly_ L1TF_4) (Table 1; Supplemental Table
2; Supplemental Figs. S3, S8D,E) carried 3′ transductions, implicat-
ing five distinct full-length L1 TF elements present in the C57BL/6J
reference genome. Thus, we have identified progenitor elements
responsible for de novo heritable L1 insertions.

Table 1. Characteristics of 11 de novo L1 insertions identified in this study

Insertion # Location TF Monomers Cleavage TSD (bp) Poly(A) (bp) Developmental origin Transmission

1 12q 3.5 TCTT/AG 16 ∼100 Male primordial germline 1/20 (5%)
2 2q 1.5 TTTT/AA 16 ∼22∗ Male primordial germline 1/20 (5%)
3 10q 3.5 TTTT/AA 16 ∼100 Female early embryo 5/20 (25%)
4 3q 4 TCTT/AT 16 ∼120 Late germline 11/19 (58%)
5 10q 5 TCTT/GT 14 ∼39∗ Female early embryo 4/7 (57%)
6 14q 2.5 TCTT/AC 17 ∼30 Female early embryo 2/15 (13%)
7 18q 2.5 TTGT/AA 15 ∼40∗ Male primordial germline 2/65 (3%)
8 17q 3 CTTC/AA 13 ∼55 Female early embryo 0/5 (0%)
9 2q 4.5 TGTT/AT 15 ∼40 Late germline 11/23 (48%)
10 3q 4.5 TTAT/GT 13 ∼60 Male early embryo 0/6 (0%)
11 8q 4.5 TCTT/AA 14 ∼100 Female early embryo 8/20 (40%)

All insertions are L1 TF elements. (TF monomers) Number of repetitive promoter units contained by each insertion. Cleavage indicates the L1 endonu-
clease cleavage motif, shown 5′ to 3′, (TSD) target-site duplication length, (Poly[A]) poly(A) tract length. Poly(A) tract lengths were determined by cap-
illary sequencing and should be regarded as estimates. Insertions marked with an asterisk contain a 3′ transduction (see Supplemental Figs. S4, S8 for
details). For each insertion, the deduced developmental origin and the frequency of transmission (i.e., the percentage of siblings heterozygous for the
insertion) are indicated.
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Having observed transmission of
germline-restricted and somatic/germ-
line mosaic insertions in mouse, consis-
tent with previous studies of human
patients (Brouha et al. 2002; van den
Hurk et al. 2007), we next investigated a
previously reported mutagenic human
L1 insertion for which the developmen-
tal timing had not been resolved. The
JH-27 insertion, which occurred in exon
14 of the Factor VIII gene, was identified
in 1988 as the causative mutation in a
case of noninherited hemophilia and
was the first such example exhibiting L1
mobility in modern humans (Supple-
mental Fig. S9A; Kazazian et al. 1988).
We performed a 5′ junction nested PCR
(55 total cycles) specific for the JH-27 in-
sertion on blood genomic DNA from the
afflicted patient and hismother, with pa-
ternal DNA serving as a negative control.
While a robust PCR product was detected
in the patient DNA, the JH-27 insertion
could not be detected in the maternal
sample (Supplemental Fig. S9B). Given
our mouse data indicating each heritable
early embryonic L1 insertion was detect-
able in tissues derived from all three
germ layers (Fig. 3; Supplemental Fig.
S6), we suggest that insertion JH-27 was
very likely maternal germline-restricted.

Discussion

We uncovered 11 de novo L1 insertions
among 85 mouse genomes, providing
an estimate of one new insertion per
eight mice (11/85 = 0.13 or ∼1/8). This
figure is consistent with butmore conser-
vative than previous estimations that a
new L1 insertion may arise in every two
to three mice (Kazazian and Moran
1998; Kazazian 2000) and ismuchhigher
than estimates of one new L1 insertion
per 100 live births in humans (Hancks
and Kazazian 2012). Indeed, the techni-
cal hurdles limiting detection of 3′ L1-ge-
nome junctions may have precluded
identification of additional, 5′ truncated
de novo L1 insertions in our pedigrees.
Furthermore, while 85 genomes consti-
tute the largest cohort of individual
mice examined for de novo L1 insertions
to date, future examination of more ani-
malsmayallow fine-tuningof this rate es-
timate. The structure of our breeding
pedigrees allowed us to observe the trans-
mission of two new L1 insertions, #4 and
#5, from heterozygous animals to their
offspring (Fig. 1). We found that trans-
mission of these insertions to 58% and
52% of offspring, respectively, was not

Figure 2. Retrotransposition and the generation of new active L1 copies in primordial germ cells. (A)
Schematic of insertion #1. Red/white rectangle indicates mRC-seq reads. Red arrows indicate PCR prim-
ers used for genotyping. Triangles within the L1 5′ UTR represent TF monomer units. (An) poly(A) tract,
(TSD) target-site duplication. (B) Genotyping panel for insertion #1. SRA (maternal) and SRB (paternal)
tissues are indicated. (Somatic) Mix of liver, skeletal muscle, and brain genomic DNA; (R.O., L.O.) right
ovary, left ovary; (R.T. and L.T.) right testicle, left testicle. F1 offspring of SRA and SRB (SRAB 1–20) were
analyzed. Genotyping PCR was performed on liver gDNA for SRAB 1–9 and on whole embryo gDNA for
SRAB 10–20. Here and in all subsequent figures, the validation product is marked with an asterisk. (C)
Schematic of insertion #7 and its donor element on Chr 6. Features are annotated as in A; an 84-bp 3′
transduction of gDNA downstream of the Chr 6 donor element is represented in gray. The position of
the donor element within the first intron of the gene Suclg2 on Chr 6 is shown. (D) 5′ junction PCR val-
idation for insertion #7. (E) A quantitative PCR (qPCR) assay for the prevalence of insertion #7. A forward
primer (P1, gray) is situated within flanking genomic DNA, and a reverse primer (P2, gray/red) spans the
junction between the 5′ end of the L1 and the genomic sequence. A hydrolysis probe (green) is situated
within genomic sequence adjacent to the reverse primer and on the same strand. Bottom, left: the qPCR
assay can detect mosaicism for insertion #7. The x-axis indicates the mosaicism standard used. The y-axis
and percentages above each bar show detected percent prevalence, with the heterozygous animal set to
100%. Data are reported as the mean and standard deviation of four technical replicates per reaction. At
right, the qPCR assay applied to somatic tissues (x-axis) and the germ cell fraction from the right and left
testicles of SRCD14. Data are reported as the mean and standard deviation of three independent qPCR
experiments, each comprising four technical replicates per reaction. (F) Rationale of the cultured cell ret-
rotransposition assay (Moran et al. 1996; Wei et al. 2000). (G) Retrotransposition assay in human HeLa-
JVM cells for insertion #1 and insertion #7. JM101 is a retrotransposition-competent human L1 (L1.3);
JM105 is a negative control, consisting of L1.3 with a reverse transcriptase active site mutation. TGF21
is an active GF subfamily mouse L1; L1spa is an active TF subfamily mouse L1. Colony formation indicates
a successful retrotransposition event. (H) Quantification of the retrotransposition assay. L1spa retrotrans-
position efficiency is set to 100%. Data are reported as the mean and standard deviation of three inde-
pendent experiments (biological replicates), each of which comprised three technical replicates.
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significantly different from the expected
transmission rate of 50% (χ2 test with
one degree of freedom, two-tailed P-
values of 0.49 and 0.67, respectively).
Thus, as expected, within a single genera-
tion we observe no evidence for positive
or negative selection on a de novo L1
insertion. However, future studies track-
ing the transmission of de novo L1
insertions through many generations
may reveal evidence for selection on par-
ticular insertions, perhaps dependent on
their genomic locations and functional
consequences.

We established for the first time that
heritable endogenous L1 retrotransposi-
tion events arise in early PGCs, before
the PIWI/piRNA retrotransposon defense
pathway becomes active in male embry-
onic gonads (Aravin et al. 2008), result-
ing in germline-restricted genetic
mosaicism (Fig. 5A). Alternatively, it is
possible that these insertions arose earli-
er during embryonic development, in
cells of the primitive ectoderm that had
been set aside for the germline and did
not contribute to the somatic lineages
(Soriano and Jaenisch 1986). It is worth
noting that all three de novo insertions
traced to early PGCs occurred in male
mice. This correlation may stem from
the relatively small number of insertions

identified, and examination of more ge-
nomes may reveal equivalent events in
female animals.

Consistent with previous studies
(van den Hurk et al. 2007), we traced L1
insertions to the pluripotent cells of the
early embryo and, in contrast to experi-
ments using transgenic L1 reporter mice
(Kano et al. 2009), we demonstrated
germline transmission of four early em-
bryonic insertions (Fig. 5B). All four
transmitted insertions arose in somatic/
germline mosaic female animals; again,
future studies employing more animals
may reveal transmission of similar
events from mosaic males to offspring.
Notably, deep mRC-seq of individual tis-
sues frommosaic maternal mice SRA and
SRE produced few reads (1–2) for inser-
tions #3, #5, and #11 (Table 1;
Supplemental Tables 1, 5), suggesting
that additional mosaic insertions may
have fallen below the detection thresh-
old of mRC-seq. Thus, it is possible that
early embryonic retrotransposition fre-
quently generates low-level somatic-re-
stricted mosaicism (Kano et al. 2009),
as well as low-level somatic and germline
mosaicism for insertions that ultimately
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fail to be transmitted. We therefore hypothesize that the early
mammalian embryo is a complex mosaic incorporating a constel-
lation of de novo retroelement insertions. We speculate that the
contribution of a particular insertion to the germ lineage and ul-
timately its transmission to the next generation are collectively
determined by the dynamics of cell fate specification in the early
embryo, random chance, and perhaps whether the insertion has a
functional impact on germ cell development and fertility. It is
worth noting, for example, that somatic/germline mosaic inser-
tion #5 exhibited a maximum prevalence of ∼1.5% in the right
ovary of mosaic mouse SRE (Fig. 3C) but was transmitted to 4/7
(∼57%) of her offspring (Figs. 1, 3B; Supplemental Table 2).
Thus, early embryonic insertions present at low prevalence in
somatic and germ tissues of a parental mouse nevertheless have
the potential to contribute substantially to genetic diversity in
the next generation, presumably by their fortuitous presence in
a subset of germ cells that ultimately give rise to offspring.

In contrast, insertions arising during later germline develop-
ment (e.g., insertion #4) may contribute a broad spectrum of
genetic diversity to the gamete pool, yet each insertion individual-
ly would have a small likelihood of transmission (Fig. 5C). Indeed,
our experiments were primarily designed to identify transmitted
de novo insertions in heterozygous offspring, and therefore our re-
sults may be biased toward early events (germline or embryonic)
which ultimately are present in multiple gametes and therefore

have a high likelihood of transmission. Thus, while an early em-
bryonic or early PGC retrotransposition event may result in the
same insertion being transmitted to multiple siblings, events oc-
curring later in germline development may potentially produce
more genetic diversity within a single generation.

Denovoheritable L1 retrotransposition is a component of the
ongoing evolutionary interplay between retroelements and mam-
malian genomes, the importance ofwhich is exemplified by recent
studies demonstrating the exaptation of LTR retrotransposon se-
quences and protein products for pluripotency maintenance and
embryonic development (Wang et al. 2014; Grow et al. 2015).
Furthermore, recent publications have implicated somatic retro-
transposition in the brain as a feature of bothnormal neurobiology
and neurological diseases (Muotri et al. 2005, 2010; Coufal et al.
2009, 2011; Baillie et al. 2011; Evrony et al. 2012, 2015; Bundo
et al. 2014; Upton et al. 2015; Erwin et al. 2016). Early embryonic
insertions contributing broad mosaicism to tissues including the
brain likewise represent a component of genetic neurodiversity,
and the prevalence and potential functional consequences of
such insertions compared to those occurring specifically in cells
of the neuronal lineage remain to be determined. Future studies
employing single-cell genomic analyses, and other approaches,
will likely further elucidate the scope and consequences of ongo-
ing retrotransposition in the mammalian germline and early em-
bryo (Malki et al. 2014).

Methods

Animals

All animal breeding and handling procedures were carried out in
compliance with the guidelines set forth by the University of
Queensland Animal Ethics Committee. To establish breeding ped-
igrees, adult wild-type C57BL/6J mice were ordered from the
University of Queensland Biological Resources Facility (UQ-BRF),
which in turn sources animals from the Animal Resources Center
(ARC, Western Australia). The UQ-BRF and ARC provided helpful
information regarding the source and breeding history of the ani-
mals used in this study. The “P-generation” mice used to initiate
the breeding pedigrees in this study were no more than 10 gener-
ations removed from the Jackson Laboratory C57BL6/J strain.

mRC-seq library construction

Genomic DNA from animals and tissues of interest was used
to construct Illumina libraries for mRC-seq as described in
Shukla et al. (2013), except using insert sizes of 450 and 550 bp.
Illumina libraries were constructed using the Illumina TruSeq
DNA LT kit or the Illumina TruSeq Nano DNA LT kit according
to the manufacturer’s instructions (Illumina). A detailed descrip-
tion of library preparation can be found in SupplementalMethods.

mRC-seq hybridization reactions

Hybridization reactions were performed as described in Shukla
et al. (2013), except using a pool of biotinylated capture probes de-
signed against mouse retrotransposons represented by L1 subfam-
ilies TF GF and A, SINEs B1 and B2, and the LTR elements IAP and
ETn (Supplemental Table 1). Illumina libraries were pooled to
achieve a total mass of 1 µg (Supplemental Table 1). A detailed de-
scription of mRC-seq hybridization can be found in Supplemental
Methods.
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Figure 5. Model for the developmental origins of heritable L1 retro-
transposition events. (A) Retrotransposition in the early primordial germ-
line. From left: a retrotransposition event occurring in early PGCs (red)
gives rise to germline-restricted genetic mosaicism in the adult animal.
The L1 insertion is present in both testes and is heritable by subsequent
generations, potentially by multiple F1 siblings. (B) Retrotransposition in
the early embryo. Two retrotransposition events in pluripotent cells are in-
dicated (red and blue). The red event contributes to somatic and germ tis-
sues, while the blue event only contributes to somatic tissues in the adult
animal. The red insertion is heritable by subsequent generations, potential-
ly by multiple F1 siblings. (C) Retrotransposition in the late germline.
Ongoing retrotransposition in adult germ cells, theoretically taking place
at any stage from germline stem cells through mature gametes, may gen-
erate a large amount of diversity with individual insertions present at low
frequency within the gamete pool (multicolored sperm). Each individual
insertion has a low probability of contributing to genetic diversity in sub-
sequent generations.
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Illumina sequencing and mRC-seq analysis

We performed mRC-seq on either pooled genomic DNA from
somatic tissues representative of the three embryonic germ layers
(liver, skeletal or cardiac muscle, and brain) or DNA extracted
from tail tips and ear punches (Supplemental Fig. S1B; Supplemen-
tal Table 1). We performed mRC-seq on the individual somatic tis-
sues and gonads of mice SRA and SRE and the germ cell fraction of
the left and right testicles of SRCD14. We also performed 30×
whole-genome sequencing on P-generation animals SRE and
SRF, and 22× WGS on their F1 offspring SREF15-SREF21, using
pooled somatic tissue genomic DNA (Supplemental Table 1).
Across all DNA sequencing libraries, we detected 92.8%, 97.8%,
and 98.7% of recent reference genome L1 (TF, GF, A), LTR retro-
transposon (IAP, ETn), and SINE (B1, B2) insertions, respectively
(Supplemental Table 1).

A summary of library pooling and sequencing reads per li-
brary is included in Supplemental Table 1. mRC-seq libraries
were sequenced on an Illumina HiSeq 2500 platform (Macrogen),
generating 2×150-bp read pairs and 2×250-bp read pairs. Some li-
braries were also sequenced on an IlluminaMiSeq platform, gener-
ating 2×250-bp and 2×300-bp read pairs. WGS libraries were
sequenced on an Illumina HiSeq 2500 platform (Macrogen), gen-
erating 2×250-bp read pairs. mRC-seq and WGS data were pro-
cessed as follows: read pairs were first trimmed from their 5′ and
3′ ends to remove any bases with quality <10, then assembled
into contigs using FLASH (Magoc and Salzberg 2011) and default
parameters. Two hundred fifty-mer reads from inserts >500 bp in
length failed to form contigs but were retained and analyzed via
the same process applied to contigs. Contigs were aligned to the
mouse reference genome (mm10) using SOAP2 (Li et al. 2009) (pa-
rameters -M 4 -v 2 -r 1 -p 8). Only uniquely aligned reads were re-
tained, and PCR duplicates were removed if they shared the
genomic coordinates of another read. Unmapped reads were
then aligned to a set of potentially active mouse retrotransposon
consensus sequences obtained fromRepbase (L1 TF, GF, and A sub-
families; SINE B1 and SINE B2; IAP LTR and ETn LTR) (Bao et al.
2015), using LAST (Kielbasa et al. 2011) (parameters –s 2 –l 12 –d
30 –q 3 –e 30). Reads aligned at >90% identity to a retrotransposon
consensus sequence were retained if the alignment spanned ≥33
nt of one contig end. Reads passing this filter were then aligned
to mm10 using LAST and formed into clusters following an exist-
ing strategy (Shukla et al. 2013). Clusters with ≥3 reads were then
manually inspected for evidence of chimerism and annotated as
polymorphic if found in an existing database of mouse polymor-
phisms (Nellaker et al. 2012) or in all of the libraries from at least
one founder animal.

Validation and structural characterization of de novo L1 insertions

Putative insertions were called as potentially de novo if they ap-
peared in one or more offspring from the same pedigree and
were absent from the parental mice. In addition, some insertions
were readily detected in offspring and were also detected with 1–
2 reads upon deep sequencing of individual tissues of maternal
mice SRA and SRE. Such insertions were treated as potentially de
novo and chimeric in the maternal mouse. Reads were then man-
ually inspected using SerialCloner (http://serialbasics.free.fr/
Serial_Cloner.html) and the BLAT tool on the UCSC Genome
Browser (Kent 2002). Reads which clearly represented molecular
chimeras and those which could not be manually assigned to a
specific genomic location due to repeat content were disregarded.
For putative insertions passing manual inspection, primers were
designed in the putative 5′ and 3′ flanking genomic DNA (Supple-
mental Table 2). Oligonucleotide primers were ordered from Inte-
grated DNA Technologies (IDT).

Empty-filled validation PCRs were carried out using primers
specific to the 5′ and 3′ genomic sequence flanking putative inser-
tions. Validation PCRs for 5′ and 3′ junctions were carried out us-
ing the appropriate flanking genomic primer paired with a primer
internal to the L1 sequence; where necessary, hemi-nested and ful-
ly nested PCR reactions were carried out using appropriately de-
signed genomic and L1-specific primers (Supplemental Table 2).
The full details of PCR validation can be found in Supplemental
Methods.

Plasmid constructs

pTN201 (Naas et al. 1998), TGF21 (Goodier et al. 2001), pJM101/
L1.3 (Dombroski et al. 1993; Sassaman et al. 1997), and pJM105/
L1.3 (Wei et al. 2000) were described previously. Descriptions of
these constructs can be found in Supplemental Methods.

Generation of mouse L1 reporter constructs

Insertion #1 and insertion #7 were PCR-amplified using the Roche
Expand Long Template PCR system and cloned into retrotranspo-
sition indicator vectors using standard molecular biology tech-
niques. Detailed descriptions of the cloning strategies can be
found in Supplemental Methods.

Cultured cell retrotransposition assay

HeLa-JVM cells were seeded at 2 × 104 cells/well in 6-well plates
and transfected using FuGENE HD Transfection Reagent
(Promega) at a ratio of 3 µL to 1 µg plasmid DNA. G418 selection
(400 µg/mL) was initiated at 72 h post-transfection and carried
out for 10–12 d (Wei et al. 2000).

Assays for transfection efficiency were performed in parallel
by cotransfection of pCAG-EGFP with L1 reporter plasmids. At
48 h post-transfection, cells were subjected to flow cytometry on
a Cyan ADP Analyzer (Beckman-Coulter) at the Translational
Research Institute Flow Cytometry Core. The percentage of EGFP
positive cells for each L1 reporter construct was used to normalize
the G418-resistant colony counts obtained in the retrotrans-
position assay (Wei et al. 2000; Kopera et al. 2016). Full details of
the cultured cell retrotransposition assay can be found in
Supplemental Methods.

Mosaicism analysis qPCR

Quantitative PCR using genomic DNA as template was carried out
using primers and dual-labeled PrimeTime qPCR probes (5′ 6-FAM-
ZEN-3′ Iowa Black FQ) from IDT. Control reactions for DNA input
were performed using a predesigned PrimeTime qPCR assay for the
single-copy mouse gene RPP25 (Mm.PT.58.21641426.g), with a
dual-labeled probe (5′ 6-FAM™-ZEN-3′ Iowa Black FQ). Reactions
were run on a Roche LightCycler 480 II with the following cycling
conditions: 95°C, 5 min, followed by 45 cycles of 95°C for 10 sec,
and 57°C for 1 min, then melt curve (0.11°C per sec from 57°C to
95°C). Ct values were calculated on the LightCycler software using
absolute quantification 2nd derivative max. Details of mosaicism
analysis qPCRs can be found in Supplemental Methods.

Data access

mRC-seq and WGS data from this study have been submitted to
the European Nucleotide Archive (ENA; http://www.ebi.ac.uk/
ena/) under project accession number PRJEB10299. Sanger trace
files from this study have been submitted to the NCBI Trace
Archive (http://www.ncbi.nlm.nih.gov/Traces/home/index.cgi)
with TI numbers TI2344112704–TI234412736 and TI234412752.
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