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Abstract

Vaccines are among the most impactful public health interventions, preventing millions of new infections and deaths annually
worldwide. However, emerging data suggest that vaccines may not protect all populations equally. Specifically, studies analyzing
variation in vaccine-induced immunity have pointed to the critical impact of genetics, the environment, nutrition, the
microbiome, and sex in influencing vaccine responsiveness. The significant contribution of sex to modulating vaccine-
induced immunity has gained attention over the last years. Specifically, females typically develop higher antibody responses
and experience more adverse events following vaccination than males. This enhanced immune reactogenicity among females is
thought to render females more resistant to infectious diseases, but conversely also contribute to higher incidence of autoimmu-
nity among women. Dissection of mechanisms which underlie sex differences in vaccine-induced immunity has implicated
hormonal, genetic, and microbiota differences across males and females. This review will highlight the importance of sex-
dependent differences in vaccine-induced immunity and specifically will address the role of sex as a modulator of humoral

immunity, key to long-term pathogen-specific protection.
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Introduction

Vaccines are among the most impactful public health in-
terventions, preventing millions of new infections and
deaths annually worldwide [1]. Protection following vac-
cination depends on a coordinated response by multiple
immune arms, collectively giving rise to durable immuni-
ty. While innate immunity and CD4 helper T cell profiles
are linked to the generation of long-lived protective im-
munity and pathogen eradication, antibodies represent the
primary correlate of protection following most clinically
approved vaccines [2]. Antibodies can either directly
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neutralize pathogens or aid in destruction of opsonized
pathogens via phagocytosis, activation of complement,
or the recruitment of natural killer (NK) cells [3]. These
non-neutralizing functions are induced via the binding of
the antibody Fc-domain to Fe-receptors on innate immune
cells, which induce immune functions. The importance of
these non-neutralizing antibody-dependent effector func-
tions has been corroborated across diseases. For example,
the importance of Fc-effector functions was identified as a
correlate of protection against HIV in the first protective
RV 144 vaccine trial, linked to antibody-dependent cellu-
lar cytotoxicity (ADCC) in the absence of neutralization
[4]. Additionally, vaccination against malaria, Bordetella
pertussis, and influenza have shown protection associated
with antibody-dependent effector functions [5-8]. Along
the same lines, while neutralization fails to predict
influenza-vaccine efficacy [9], phagocytosis, activation
of complement system, and cytotoxicity have all been
associated with protection from lethal influenza challenge
in mice, pointing to a broad array of antibody functions in
protection from disease [5, 8, 10, 11]. Thus, while anti-
bodies represent the primary correlate of protection, their
mechanism of action may vary tremendously across dis-
ease and pathogen.
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Despite our growing mechanistic appreciation for the role
of antibodies in protection from infection/disease, emerging
data point to variable vaccine responsiveness across popula-
tions, both with respect to magnitude and quality [12].
Specifically, genetics, race, age, social background, and sex
have all been shown to influence the immune response against
a given vaccine [13]. For example, particular human leuko-
cyte antigens (HLA), involved in antigen presentation to T
cells, have been linked to non-responsiveness to hepatitis B
vaccination (HBV) [14], attributable to compromised T cell
help for the induction of B cell responses. Additionally, poly-
morphisms and epigenetic changes in Toll-like receptor path-
ways, critical for innate sensing and arming the immune sys-
tem, have also been shown to impact vaccine profiles [15].
Moreover, reduced magnitude of vaccine immunity has been
observed with proximity to the equator, hypothesized to be
linked to co-endemic disease burden and health status
resulting in dampened responses to vaccination [16].
However, strikingly, even within the same genetic pool and
environment, significant differences are consistently observed
among the sexes following vaccination.

The term sex is defined as a person’s biological charac-
teristics, such as sex chromosomes, hormone concentra-
tions, and sex organ physiology. Conversely, gender de-
scribes cultural and social qualities that define a person
as a man or woman [17]. The combination of social, cul-
tural, and biological elements factoring into gender differ-
ences makes it difficult to differentiate between biological
mechanisms and sex-specific behavior [18]. Accumulating
data have shown that sex, rather than gender, is a critical
predictor of susceptibility to particular infections and au-
toimmune diseases, but also strongly influences response
to immunization [19]. In general, women are more resistant
to bacterial and viral infections, linked to overall higher
antibody levels as well as greater T cell activation [12].
However, as a consequence of this enhanced immune acti-
vation, women tend to experience more adverse reactions
following vaccination and have a higher incidence of au-
toimmune disease [20]. Conversely, men are more suscep-
tible to infectious diseases due to the hormone-dependent
expression of cell receptors involved in viral entry [19].
Sex hormones, including estrogen, can enhance or reduce
the expression of cell surface molecules used for viral en-
try. For example, estrogen alters the expression of the CC
chemokine receptors C-C motif chemokine receptor
(CCRI1 and 5) involved in HIV infection or the integrin
«V33 that is exploited by adenoviruses for entry [21].
Furthermore, high levels of testosterone have been associ-
ated with low neutralizing antibody titers against influenza
in men [19, 22]. The differences in the pathogenesis of
infectious diseases are therefore known to vary between
sexes, but how these sex-dependent differences emerge to
modulate vaccine responses is less well understood [23].
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Evidence for sex-based differences in vaccine
outcomes

Sex differences in the response to vaccination have been re-
ported both in children and adults [24]. In general, adult fe-
males develop higher magnitude immune responses, with re-
spect to antibody levels, and experience more severe adverse
events following immunization, due to enhanced immune ac-
tivation, compared to their male counterparts [13]. Studies in
adults and children offer unique opportunities to dissect the
impact of sex on vaccine-induced immunity. Specifically,
studies on childhood vaccines enable the assessment of sex-
dependent response differences without the influence of
boosted sex hormones after puberty.

The most common childhood vaccines in the western
world are the Bacillus Calmette-Guerin (BCG) vaccine; the
combination measles, mumps, and rubella (MMR) vaccine;
polio vaccine; and the combination tetanus, diphtheria, and
pertussis (DTP) vaccine [25]. The majority of childhood vac-
cine efficacy studies do not report their findings by sex, so
only few, often with conflicting findings, studies on sex dif-
ferences in infants and children are published [24]. However,
sex differences have been noted in the quality of the vaccine-
induced immune response to MMR and DTP across the sexes.

DTP side effects differ between sexes, with female infants
showing higher rates of hospitalization and mortality after
DTP vaccination [26]. In a combination study with DTP, mea-
sles and oral polio vaccine (OPV), adverse events were more
common in the group receiving all three vaccines, specifically
diarrhea and use of medication were increased among girls
[27]. The measles-mumps-rubella vaccine, containing three
different attenuated virus strains, is administered 12—
15 months after birth [28]. Studies pointed to significantly
elevated vaccine-specific immunoglobulin G (IgG) titers
among girls compared to boys 14 years after vaccination,
highlighting longer-term durability and protection among vac-
cinated girls [29]. Interestingly, another study showed that 2—
4 weeks after vaccination (peak immunogenicity), boys had
higher antibody responses, but this difference waned 10 weeks
post-vaccination [30]. Measles vaccine efficacy against hos-
pitalization was increased in girls as well [31]. In summary,
MMR vaccination induces divergent responses in girls and
boys, marked by differences in vaccine inflammatory re-
sponses and durability. This indicates that differences between
the sexes are already evident before puberty, suggesting other
influences than pubertal sex hormones on immune tuning.

In adults, as mentioned above, women experience more ad-
verse reactions (AE) following immunization compared to men
[32]. One example is following the yellow fever virus (YFV)
vaccine, where the subcutaneous application of the live virus is
linked to transient viremia and clinical symptoms [33]. The
application of this vaccine often leads to strong adverse reac-
tions such as local inflammation, fever, pain, headache, and
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fatigue [34]. These AEs occur with a higher frequency in wom-
en and have been speculated to emerge due to enhanced in-
flammatory cytokine and chemokine secretion, including tu-
mor necrosis factor (TNF-a), interleukin (IL)-1b, IL-6, and C-
X-C motif chemokine 10 (CXCL10) from macrophages and
dendritic cells in women [12]. On the other hand, in a second
study comparing YFV-vaccinated individuals in the USA and
UK, the study documented higher antibody titers in male vol-
unteers and no difference in AEs were observed [35]. Thus, the
influence of sex on YFV vaccine-induced AEs and antibody
titers remains controversial. However, the differences in AE
between males and females did not predict vaccine efficacy,
as there was no indication of differences in vaccine-specific
humoral responses or protection among sexes [36]. Yet, women
have been shown to react more strongly to adjuvants compared
to men, potentially related to genetic and hormonal differences
in pattern-sensing receptor expression. For example, Toll-like
receptor (TLR) agonists as adjuvants are dependent on TLR
gene expression, one of which is located on the X chromosome
[37]. Specifically, TLR7 ligands, which interact with X-
chromosome-encoded TLR7, have been shown to induce
higher type 1 IFN production in women, related to differential
TLR7 X-chromosome inactivation in women [15]. Thus, given
the innate sensing and inflammatory differences among women
and men, adjuvant selection may significantly impact future
vaccine design, aimed at simultaneously driving robust immu-
nity in the absence of AEs in women.

Seasonal influenza vaccination offers a unique opportunity to
study sex-driven differences across ages and seasons. Vaccine
efficacy against influenza is measured using a hemagglutination
inhibition (HAI) assay, a proxy for viral neutralization, for which
titers are elevated in women of all ages [38]. In older women,
higher HAI titers have been associated with lower hospitalization
and mortality rates compared to men, suggesting that either fe-
males maintain higher titers or respond more effectively to vac-
cination, thereby experiencing better protection in contrast to
men [39]. Consistent with other studies, local and systemic reac-
tions after vaccination including muscle pain, redness, and fever
were reported to be higher in females [40]. Interestingly, women
receiving half the vaccine dose still generate higher immune
responses compared to men who received a typical dose [41].
Along the same lines, a mouse study with whole-virus trivalent
inactivated influenza vaccine induced higher levels of IgM as
well as HIN1-specific IgG1 responses in female mice compared
to male mice, which could also be attributable to the enhanced
inflammation and AEs observed among females. In conclusion,
women may ultimately benefit from reduced vaccine dosing,
resulting in reduced AEs, while still inducing high antibody
levels.

Interestingly, beyond sex-based vaccine differences, sex
also appears to tune disease progression. For example, sex
has been profoundly implicated in driving differences in
HIV-1 pathogenesis and disease progression [42].

Specifically, even though women have lower plasma viral
loads and higher CD4+ T cell counts than men, women have
a higher risk of progressing to AIDS (acquired immune defi-
ciency syndrome) [42]. This elevated risk of progression has
been linked to elevated immune activation levels in women,
thought in part to be driven by enhanced viral RNA sensing in
women mediated by TLR7 [43]. Women show higher TLR7-
mediated activation of plasmacytoid dendritic cells (pDCs),
theorized to account for enhanced inflammation in women
[44]. Additional sex-driven differences have been noted in
the non-human primate model of HIV. In a simian immuno-
deficiency virus (SIV) vaccine trial, female macaques were
protected more effectively against SIV compared to male an-
imals, and their reduced risk correlated with enhanced muco-
sal B cell responses [45]. One possible explanation for this
difference could be attributable to the elevated IgM and
antibody-dependent complement-mediated lytic activity ob-
served in female animals [45]. Moreover, enhanced protection
was also associated with differential antibody glycosylation
and antibody effector functions across the sexes, pointing to
significant differences in the overall quality of the vaccine
response across the sexes [45]. Thus, differences between
the sexes shape both response to infection and vaccination
and track differentially with protection.

Thus collectively, data across vaccines and infections point
to significant sex-driven differences in immune programming.
The specific immunological cues and mechanisms that selec-
tively result in these immune modulatory effects observed
across the genders are beginning to emerge.

Innate and adaptive immune response
differences across the sexes

Differences in vaccine-induced immunity are evident both at
the innate and the adaptive immune level. The innate response,
our first line of defense against pathogens, is driven by a rep-
ertoire of innate immune cells including granulocytes, mono-
cytes, neutrophils, macrophages, dendritic cells (DCs), and nat-
ural killer (NK) cells as well as the complement system. These
lines of innate immunity act as a non-specific barrier to foreign
invaders and are recruited to the site of infection or inflamma-
tion by the secretion of cytokines including interleukins, inter-
ferons (IFN), and chemokines, where the cells contribute to
pathogen destruction or clearance [22]. Conversely, the adap-
tive immune response develops later, is specific to the patho-
gen, is long-lived, and provides immunological memory [46].
The adaptive immune response is driven by T and B cells, each
contributing to antigen-specific memory through cellular or
antibody-mediated control, respectively.

It is known that a sex bias exists in innate immunity at the
level of inflammatory cytokine production by antigen-
presenting cells like DCs and macrophages [12]. Upon
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recognition of pathogens or vaccine antigens via pattern rec-
ognition receptors like TLRs, pDCs, monocytes, and macro-
phages produce inflammatory cytokines and chemokines, for
example type I interferon to inform the immune system of the
presence of a foreign invader [47]. Importantly, elevated type
1 IFN production has been noted in women following vacci-
nation, associated with autoimmune disease [48], and follow-
ing infection, often linked to TLR7-mediated recognition or
related to sex hormone levels [49].

The effects of sex hormones on DCs have been mostly
studied in mice, with comparable results in few human stud-
ies. Upon exposure to estrogen, immature DCs express elevat-
ed levels of IL-6, IL-8, and monocyte chemoattractant protein-
1 (MCP-1) as well as enhanced stimulation of T-lymphocytes
[50]. Estrogen enhances differentiation of DCs, pro-
inflammatory cytokine production, and enhanced expression
of major histocompatibility complex (MHCII) [50, 51].
Among DCs, pDCs show the greatest differences following
estrogen stimulation between the sexes due to their dominat-
ing TLR7 responsiveness [49]. Similarly, macrophages have
also been shown to be susceptible to estrogen stimulation [13].
In one study, estrogen was shown to inhibit TNF secretion by
monocytes, but this effect was reversed upon stimulation with
lipopolysaccharide (LPS) [52]. On the other hand, peripheral
monocytes isolated from male subjects produced more
TNF-«, IL-1f3, and IL-6 [53] but lower amounts of IL-10
compared to cells from females [54]. Beyond cells of the
myeloid lineage, NK cells are also influenced by sex hor-
mones. NK cell activity is reduced in menopausal women
compared to fertile females [55]. Additionally, contraceptives
have been shown to have a significantly inhibitory effect on
NK cell function [56]. However, across cell-types, the effect
of estrogen on cell activity and cytokine secretion appears to
be highly dependent on concentration, where high hormone
levels are associated with suppressive activity, while low
levels have a limited cytokine stimulatory effect [18].
Conversely, at low hormone levels, females exhibit enhanced
antigen presentation capacity and increased phagocytic activ-
ity in macrophages and neutrophils [57].

As mentioned above, women mount stronger adaptive hu-
moral and cellular immune responses compared to men [19].
For example, women generate higher antibody responses,
marked by higher basal and post-vaccination IgG levels as well
as increased B cell numbers in response to vaccination and viral
infection [24]. Additionally, non-specific markers of cell-
mediated immunity, such as mitogen-stimulated lymphocyte
proliferation and wound healing, are upregulated in females [12].

However, beyond differences in vaccine-induced antibody
magnitude, recently functional non-neutralizing antibodies
have gained importance in vaccinology [2]. Beyond their ca-
pacity to bind and neutralize, as mentioned above, antibodies
have the capacity to recruit innate immune function, via Fc-
and complement receptors present on nearly all immune cells
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[58]. Specifically, upon binding to target antigens, the anti-
body Fc-domain can then leverage the anti-pathogen activity
of diverse innate immune cells, found within tissue localized
compartments to direct pathogen clearance including the re-
cruitment of antibody-dependent cellular cytotoxicity
(ADCC), antibody-dependent cellular phagocytosis by neu-
trophils and monocytes (ADCP), and antibody-dependent
complement deposition (ADCD).

Interestingly, significant differences in antibody-
mediated functions have been noted across the sexes
[59]. Specifically, with respect to antibody response ele-
ments, males exhibit enhanced complement activity [60]
as well as overall elevated NK cell frequencies [61]. In
contrast, females possess more highly phagocytic neutro-
phils and macrophages [62]. However, differences in anti-
body activity across the sexes have most carefully been
noted following monoclonal therapeutic treatment that re-
quires innate immune system killing to achieve a therapeu-
tic benefit [63]. Specifically, monoclonal antibody (mAb)-
mediated immune depletion of B cells has become a central
therapeutic approach both in lymphomas and in several
autoimmune conditions [64]. Rituximab, a CD20 monoclo-
nal IgG1 antibody, drives B cell depletion in an Fec-
receptor-dependent manner [65]. In the oncological space,
one study showed that female patients benefit considerably
from rituximab treatment compared to standard therapy
due to their more active innate responses and their slower
therapeutic clearance, and thus longer half-life [66].
Conversely, in the context of rituximab therapy for the
treatment of the autoimmune disease, rheumatoid arthritis,
men exhibited a better response to rituximab due to re-
duced inflammation and faster reduction of disease activity
compared to women [67]. Thus, sex differences clearly
exist in antibody-mediated effector functions across wom-
en and men, tuned by sex-dependent differences in re-
sponse to antibody effector function.

In the setting of vaccination and infection, decreased
measles-specific ADCC activity was observed in females,
linked to lower sex-specific survival rates [68]. Moreover,
elevated ADCC has been linked to slower progression to
HIV [69], and HIV-infected cohort studies have shown that
HIV-infected men tend to generate higher levels of ADCC
than women [69, 70]. Additionally, female mice exhibit lower
classical and alternative complement pathway activity [71].
Interestingly, while no sex-dependent differences in concen-
trations of C1q, mannose-binding lectin (MBL-A), or C3 were
found, terminal pathway components, C6 and C9, were re-
duced in women [71], resulting in differential capacity to ac-
tivate complement. Moreover, in HIV infection, the ability to
generate antibodies able to recruit multiple antibody functions
(ADCC, ADCP, and complement) varied between the sexes
[45], further highlighting divergence in polyclonal antibody
functional activity.
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Fc-effector functions can be modulated by subclass selec-
tion or via changes in glycosylation of the Fc-domain of the
antibody, both of which affect antibody interactions with Fc-
receptors [58, 72]. Previous studies have shown that subclass
selection varies across the sexes. For example, females infect-
ed with human cytomegalovirus (HCMV) elicit higher levels
of IgG3, our most functional antibody subclass, compared to
men [73]. Female mice immunized with whole-virus trivalent
inactivated influenza vaccine (TIV) generate a more robust
IgG2a (most functional) response compared to male mice that
generate a more balanced IgG2a/IgG1 subclass response [74].
Additionally, female mice also generate a more robust I[gM
response than males [74]. Along the same lines, IgG subclass
profiles in humans against pertussis toxin (PT) and filamen-
tous hemagglutinin (FHA) following pertussis vaccination
show higher levels of the poorly functional IgG4 antibody
subclass among antigen-specific responses in men [75].
Thus, beyond titer differences, females generate humoral im-
mune responses composed of more inflammatory and func-
tional antibody subclass profiles.

However, in addition to isotype/subclass differences across
the sexes, antibody glycosylation also changes dramatically
across the sexes [76]. Specifically, galactosylation levels,
key to the inflammatory function of antibodies, increase with
menopause in women [77], resulting in the generation of less
inflammatory antibodies. In contrast, these changes are not
observed in men [78]. These data are further supported by
the fact that estrogen agonists increase antibody
galactosylation (reduced inflammatory agalactosylated anti-
body levels) [76], highlighting the hormonal dependence of
these changes. Moreover, more striking changes in antibody
glycosylation occur during pregnancy, at which point the
amount of inflamed agalactosylated (GO) antibodies declines
during the second and third trimesters of pregnancy. These
changes reverse rapidly following birth and have been tightly
linked to hormonal changes during the course of pregnancy
[79]. Thus collectively, accumulating data point to significant
differences in both innate and adaptive immune response
across the sexes, including striking differences across the
sexes in antibody-mediated functions that may be key to path-
ogen control and clearance.

Beyond sex, the impact of pregnancy
on humoral immunity

As mentioned above, hormonal changes in pregnancy have
been shown to profoundly influence vaccine-induced anti-
body quality. Critically, immunity shifts to a toleragenic
state in the context of pregnancy, critical for the establish-
ment of the fetal graft and maintenance of pregnancy [80].
This shift is manifested as a reduction of inflammatory Th1
responses, resulting in reduced production of IFN-y and

IL-2 [81]. Additionally, within the humoral immune re-
sponse, pregnancy-related immune changes are accompa-
nied by overall changes in Fc-IgG glycosylation, resulting
in increased galactosylation and sialylation, thought to be
less inflammatory [77]. Moreover, in addition to the shift
in Fe-glycosylation, pregnancy-associated antibody chang-
es are accompanied by a unique increase in the antibody
antigen-binding domain (Fab) glycosylation [77].
Specifically, an increased fraction of Fabs are glycosylated
during pregnancy, marked by elevated levels of high-
mannose structure addition and less mono-sialylated struc-
tures [77]. These changes are hypothesized to be mainly
caused by elevated levels of progesterone during pregnan-
cy [82] that may lead to unique B cell receptor evolution-
ary selection. Additionally, changes in glycosylation have
also been noted in IgA antibodies, associated with in-
creased IgA bisection during pregnancy whereas IgG bi-
section is stable, indicating different biological roles of the
glycosylated isotypes [83].

Given the observed changes in subclass, isotype, and gly-
cosylation in the humoral immune response, studies have
been performed to investigate the overall impact of these
changes on disease susceptibility in pregnancy. Studies have
demonstrated that pregnant women are more susceptible to
infection with influenza virus and are at higher risk for the
development of more severe complications such as hospital-
ization and respiratory illness after infection [84]. This sus-
ceptibility has largely been linked to the more attenuated
humoral immune profile generated during pregnancy, large-
ly geared towards maintaining the fetal graft. However, the
unborn baby relies on the maternal immune response for the
transfer of immunity, as maternal antibodies transferred via
the placenta represent the primary systemic barrier to infec-
tion in early life [80]. While IgGs are the dominant isotype
transferred from mother to child, low levels of IgM, IgE, and
IgA are transported via the placenta as well. Fetal IgG titers
increase over the course of pregnancy, with the most signif-
icant increase occurring in the third trimester [85]. Thus,
vaccine campaigns aimed at boosting immunity in neonates
have empirically focused on vaccination of pregnant
mothers, largely in the third trimester of pregnancy [86].
However, given the anti-inflammatory nature of the
pregnancy-influenced response, and our limited understand-
ing for the rules by which the placenta sieves antibodies [80],
it is uncertain whether traditional vaccine approaches are
effectively able to boost the required immunity in neonates.
However, next-generation studies aimed at exploring the use
of particular adjuvants during pregnancy, aimed at boosting
protective antibody titers, linked to our evolving understand-
ing for the mechanisms underlying placental transfer, offer
exciting new prospects for the development of custom vac-
cine approaches to enhance protection of both mothers and
their neonates during their time of immune vulnerability.
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Sex-based genetic influences on humoral
immune profiles

Beyond the direct influence of sex hormones, gene expression
off of the X and Y chromosomes has also been shown to drive
immunologic differences in vaccine-induced immunity across
the sexes [87]. The X chromosome expresses ten times more
genes than the Y chromosome, and many genes on the X
chromosome are known to influence immunity [22].
Polymorphisms in Y chromosome genes have been linked to
sex-dependent differences in susceptibility to autoimmune
diseases like experimental allergic encephalomyelitis, associ-
ated with changes in macrophages and NK cell properties
[88]. Additionally, epistatic sex-driven differences in HLA
allele gene expression have also been linked to higher anti-
body responses following measles vaccination in girls as com-
pared to boys [88]. Moreover, cytokine gene polymorphisms
have also been associated with vaccine response differences
across the sexes. Specifically, differences in IL-10 and IL4AR
gene expression, due to gender-specific polymorphisms, have
been associated with changes in antibody responses [13].
Chromosomal mosaicism, caused by random X-
chromosome inactivation, is one mechanism by which the
female immune response can be shifted due to allele differ-
ences. Therefore, the immune response upon X-chromosome
silencing in females can vary from males, even within the
same family and even across related females [87]. Moreover,
many of the genes involved in modulating pathogen- and
vaccine-specific immunity are located on the X chromosome
or can be modulated in a sex-dependent manner due to estro-
gen response elements (EREs) in their promotors [19]. These
genes include the X-encoded viral sensor TLR7, the T/B cell
co-stimulator CD40L, and T regulatory marker FOXP3, all of
which play a role in the development of both autoimmunity
and pathogen-defense. In X-linked immunodeficiency with
hyper-IgM (HIGM1), which is a rare disorder, individuals
experience recurring infections associated with very low
levels of IgG and IgA and elevated IgM serum titers. This
association is explained by a TNF-related activation protein
(TRAP), located on the X chromosome, which interacts with
its ligand -CD40 on B cells [89]. The resulting failure of
TRAP to interact with CD40 on B cells causes the observed
immunoglobulin isotype defect in HIGM1 [90], highlighting a
unique sex-dependent change in humoral immunity.
Therefore, antibody subclass switch and consequently anti-
body titers are tightly linked to differential X-chromosome
expression [91].

Moreover, from a molecular point of view, the X chromo-
some contains a large number of micro RNAs (miRNAs),
known to modulate immunity, while the Y chromosome con-
tains only two. It has been shown that these X-specific
miRNAs play a critical role in the development of autoim-
mune diseases such as lupus, rheumatoid arthritis, and
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multiple sclerosis—diseases that occur more frequently among
women [92]. For example, two specific miRNAs are associ-
ated with the induction of the inflammatory cytokine IL-17 as
well as upregulation of Tregs and NF-kB signaling pathways
in autoimmune diseases [22, 92]. Additionally, CD4+ T cells
from female lupus patients express 18 times the normal levels
of X-chromosome-linked miRNAs compared to males, indi-
cating an over-activation of T cells in females [48]. Given the
known pathogenic role of inflamed antibodies in these auto-
immune diseases, it is likely that these inflammatory changes
and T cell alterations result in antibody modifications that
contribute to disease.

Microbiome influences on humoral profiles

Finally, another factor that has been linked to altered vaccine
and natural-infection humoral profiles is the microbiome [24].
Recent studies have shown that there are sex-specific relation-
ships between the microbiome and the immune response [22].
Moreover, commensal microbial communities can alter sex
hormone levels which then regulate autoimmune disease fate
and immunological responses to vaccination [93]. Microbes
colonize the human gut, skin, oral cavity, and genital area and
are well tolerated by the immune system [94]. Diet, age, cul-
tural circumstances, and geographical location all influence
our microbiome composition. Specifically, sex hormones im-
pact microbiome composition, as bacteria can metabolize
these hormones [95]. Studies on germ-free mice have shown
a significant reduction in secretory IgA levels due to the lack
of an intestinal microflora, which provides a tonic antigenic
stimulus [96]. Likewise, sensing of symbiotic bacteria has
been implicated in the induction of IgA class switching as well
as localized B cell class switching [97]. Strikingly, response to
intra-muscular influenza vaccination in both humans and mice
has been linked to immune sampling of microbiome-derived
antigens/adjuvants (flagellin) [98], pointing to an intimate in-
teraction between the systemic IgG response to vaccination
and the gut microflora. Moreover, probiotics have been shown
to boost antibody responses to oral vaccines against salmonel-
1a[99] and rotavirus [100]. Given that the microbiome of male
and female mice diverge largely after puberty due to hormonal
shifts, it is likely that significant differences in the microbiome
between the sexes may contribute dominantly to vaccine/
pathogen immunity in adult life [12, 95].

Conclusions and future directions

Mounting evidence has shown that sex profoundly influ-
ences the immune response and that these sex differences
can affect the outcome of vaccinations (Fig. 1). In general,
females induce stronger immune functions and higher
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Fig. 1 Factors that influence sex-specific humoral immunity to vaccina-
tion. Immune response in males and females differ. Females generate
higher overall antibody levels, more adverse events, have higher B cell
frequencies, exhibit elevated innate immune cell phagocytic activity, etc.
(pink box). Males possess increased NK cell numbers, enhanced type-1
immune responses, etc. (blue box). Genetic chromosomal differences,

antibody levels, composed of more functional antibodies,
but also experience more adverse reactions to vaccination,
linked to a higher probability of developing autoimmune
disease. Some of these differences can be linked to hor-
monal differences, particularly to the level of estrogen,
but the lack of age-related differences prior to puberty that
exist among the sexes points to additional factors such as
miRNAs or other genetic/epigenetic differences between
males and females that could influence humoral immunity.

Vaccine efficacy studies often target unique popula-
tions determined by geographical location. For example,
HIV studies specifically often focus attention on either
high-risk group such as (1) men who have sex with men
or (2) women in developing countries. While investigators
often focus on geographic differences or level of risk,
most fail to evaluate responses by sex. Since it has been
shown that women have higher immunogenicity and
reactogenicity following immunization, and men have
higher expression of immune-related proteins, cross-com-
parisons, a more detailed than simple interrogation of
overall magnitude of immunity, might be needed.
Refocusing on qualitative differences that have emerged
as key mechanistic predictors of protective immunity may
pave the way for more effective next-generation sex-spe-
cific vaccine design. Yet, despite the growing body of
work to support the influence on sex differences on the
immune response, most vaccine studies fail to stratify
their data by sex. The smaller proportion of women rep-
resented in these trials as well as the absence of extensive
meta-analysis on sex differences makes it difficult to fur-
ther investigate differences impacted by sex, as well as the
mechanistic underpinnings of these differences. Lack of

immune
responses
enriched
genetics upon
vaccination NK cell counts
CD40L +—Foxp3 ADCC in HIV infection
Complement activation
TLR7 CD8 T-cell numbers
Regulatory T cell numbers
/ Th1,Th2, and Th17 expression
TRAP

hormone levels, miRNA expression, sex hormones, and gender-specific
differences in the microbiome are among some of the factors that underlie
differential humoral immunity following vaccination (gray box on the
left). However, how these parameters all interact to shape immunity and
how they may be harnessed in next generation is incompletely understood

sufficient statistical power due to limited group size, error
rates, and reporting bias of adverse reactions and dietary
changes further hamper the research in this field [101].
However, given the differences in AEs and overall im-
mune responses in women, as well as our emerging ap-
preciation for the strong differences in vaccine-induced
immune response quality in both pregnant and non-
pregnant women, comprehensive dissection of the con-
tributors to these shifts may lead to next generation of
rational “sex-specific” vaccine design. These sex-specific
vaccine strategies may provide enhanced protection for
females in the absence of adverse events and take sub-
groups such as pregnant women and their unborn children
in their first months of life into account while still induc-
ing strong immune reactions in male vaccinees.

Therefore, considering the importance of sex in vaccine
response and outcome studies may play a critical part in
the design of future vaccine trials. Moreover, understand-
ing the qualitative changes in the humoral immune re-
sponse among the sexes may provide enhanced resolution
of the key vaccine design approaches that may enhance
immunity across the hormonal spectrum. Given the pro-
found sex differences across the sexes, it is plausible that
unique sex-specific correlates of immunity may even ex-
ist. If so, further research may help adapt custom-vaccines
for the sexes and improve sex-specific health. Currently,
most vaccines are tailored based on a male-dominated
participant pool and the same set of vaccines is adminis-
tered to everyone. Personalized vaccines, customized to
address sex-immune profile variation, may offer greater
protection against both infectious as well as non-
infectious targets [102, 103].
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