Skip to main content

A molecular dynamics study of fracture behavior in magnesium single crystal

  • Chapter
Magnesium Technology 2011

Abstract

The analysis of crack growth in magnesium crystals was performed using molecular dynamics simulation with Embedded Atom Method (EAM) potentials. Four specimens with increasing sizes were used to investigate the influences of material length scale on crack growth of magnesium single crystals. Furthermore, the effects of temperature, loading strain rate, and the size of the initial crack were also verified. The specimens were subjected to uniaxial tension strain up to the total strain level of 0.2 with a constant strain rate of 109 s −1 except in the studies of strain rate effects and the uniaxial stress strain curve was monitored. The simulation results show that the specimen size, loading strain rate, temperature, and the size of initial crack strongly influence the yield strength at which the twin nucleated and subsequently the crack grew. The initial slope of the uniaxial stress strain curve is independent of the loading strain rate and temperature. Moreover, high temperatures induce increased atomic mobility, and thereby atom reorganization, which, in turn, releases the stress at the crack tip

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. A. Griffith. The phenomena of rupture and flow in solids. Philosophical Transactions, 221A:163–198, 1920.

    Article  Google Scholar 

  2. T. L. Anderson. Fracture Mechanics Fundamentals and Applications. Boca Raton, FL: CRC Press. 3rd edition., 2005.

    Google Scholar 

  3. C. E. Inglis. Stress in a plate due to the presence of cracks and sharp corners. Transactions of the Institute of Naval Architects, 55: 219, 1913.

    Google Scholar 

  4. F. F. Abraham, D. Brodeck, W. E. Rudge, and X. Xu. A molecular-dynamics investigation of rapid fracture mechanics. Journal of the Mechanics and Physics of Solids, 45:1595–1619, 1997.

    Article  Google Scholar 

  5. J. G. Swadener, M. I. Baskes, and M. Nastasi. Molecular dynamics simulation of brittle fracture in silicon. Physical Review Letter, 89:085503, 2002.

    Article  Google Scholar 

  6. J. A. Hauch, D. Holland, M. P. Marder, and H. L. Swinney. Dynamic fracture in single crystal silicon. Physical Review Letter, 82:3823–3826, 1999.

    Article  Google Scholar 

  7. M. L. Falk. Molecular-dynamics study of ductile and brittle fracture in model noncrystalline solids. Physical Review B, 60:7062, 1999.

    Article  Google Scholar 

  8. F. F. Abraham, D. Schneider, R. A. Rafey, and W. E. Rudge. Instability dynamics in three-dimensional fracture: An atomistic simulation. Journal of the Mechanics and Physics of Solids, 45:1461–1471, 1997.

    Article  Google Scholar 

  9. F. F. Abraham. Unstable crack growth is predictable. Journal of the Mechanics and Physics of Solids, 53:1071–1078, 2005.

    Article  Google Scholar 

  10. Y. Guo, C. Wang, and D. Zhao. Atomistic simulation of crack cleavage and blunting in bccfe. Materials Science and Engineering, 349:29, 2003.

    Article  Google Scholar 

  11. F. Abraham and J. Q. Broughton. Large-scale simulations of brittle and ductile failure in fcc crystals. Computational Materials Science, 10:1–9, 1998.

    Article  Google Scholar 

  12. A. Latapie and D. Farkas. Molecular dynamics simulations of stress-induced phase transformations and grain nucleation at crack tips in fe. Modelling and Simulation in Materials Science and Engineering, 11:745, 2003.

    Article  Google Scholar 

  13. D. Farkas, H. V. Swygenhoven, and P. M. Derlet. Intergranular fracture in nanocrystalline metals. Physical Review B, 66: 060101–1, 2002.

    Article  Google Scholar 

  14. A. Luque, J. Aldazabal, J. M. Martinez-Esnaola, and J. G. Sevillano. Molecular dynamics simulation of crack tip blunting in opposing directions along a symmetrical tilt grain boundary of copper bicrystal. Fatigue Fracture of Engineering Materials and Structure, 30:1008–1015, 2007.

    Article  Google Scholar 

  15. S. J. Zhou, P. S. Lomdahl, A. F. Voter, and B. L. Holian. Three-dimensional fracture via large-scale molecular dynamics. Engineering Fracture Mechanics, 61:173–187, 1998.

    Article  Google Scholar 

  16. H. Rafii-Tabar, H. M. Shodja, M. Darabi, and A. Dahi. Molecular dynamics simulation of crack propagation in fcc materials containing clusters of impurities. Mechanics of Materials, 38:243, 2006.

    Article  Google Scholar 

  17. S. W. Xu and X. M. Deng. Nanoscale void nucleation and growth and crack tip stress evolution ahead of a growing crack in a single crystal. Nanotechnology, 19:115705, 2008.

    Article  Google Scholar 

  18. D. Y. Sun, M. I. Mendelev, C. A. Becker, K. Kudin, T. Haxhimali, M. Asta, and J. J. Hoyt. Crystal-melt interfacial free energies in hcp metals: A molecular dynamics study of mg. Physical Review B, 73:024116, 2006.

    Article  Google Scholar 

  19. C.L. Kelchner, S.J. Plimpton, and J.C. Hamilton. Dislocation nucleation and defect structure during surface indentation. Physical Review B, 58:11085–11088, 1998.

    Article  Google Scholar 

  20. A. Carpinteri. Size effects on strength, toughness, and ductility. Journal of Engineering Mechanics, 115:1375, 1989.

    Article  Google Scholar 

  21. M. F. Horstemeyer, M. I. Baskes, and S. J. Plimpton. Length scale and time scale effects on the plastic flow of fcc metals. Acta Materialia, 49:4363–4374, 2001.

    Article  Google Scholar 

  22. K. J. Zhao, C. Q. Chen, Y. P. Shen, and T. J. Lu. Molecular dynamics study on the nano-void growth in face-centered cubic single crystal copper. Computational Materials Science, 46:749, 2009.

    Article  Google Scholar 

  23. G. P. Potirniche, M. F. Horstemeyer, G. J. Wagner, and P. M. Gullett. A molecular dyanmics study of void growth and coalescence in single crystal nickel. International Journal of Plasticity, 22:257–278, 2006.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 TMS (The Minerals, Metals & Materials Society)

About this chapter

Cite this chapter

Tang, T., Kim, S., Horstemeyer, M.F., Wang, P. (2011). A molecular dynamics study of fracture behavior in magnesium single crystal. In: Sillekens, W.H., Agnew, S.R., Neelameggham, N.R., Mathaudhu, S.N. (eds) Magnesium Technology 2011. Springer, Cham. https://doi.org/10.1007/978-3-319-48223-1_65

Download citation

Publish with us

Policies and ethics