

Food waste from Danish households: Generation and composition

Edjabou, Maklawe Essonanawe; Petersen, Claus; Scheutz, Charlotte; Astrup, Thomas Fruergaard

Published in: Waste Management

Link to article, DOI: 10.1016/j.wasman.2016.03.032

Publication date: 2016

Document Version Peer reviewed version

Link back to DTU Orbit

Citation (APA): Edjabou, M. E., Petersen, C., Scheutz, C., & Astrup, T. F. (2016). Food waste from Danish households: Generation and composition. *Waste Management*, *52*, 256-268. https://doi.org/10.1016/j.wasman.2016.03.032

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Published in Waste Management
2	
3	Food waste generation and
4	composition from Danish households
5	
6	Maklawe Essonanawe Edjabou ¹ *, Claus Petersen ² , Charlotte
7	Scheutz ¹ , Thomas Fruergaard Astrup ¹
8	
9	1) Department of Environmental Engineering, Technical
10	University of Denmark, 2800 Kgs. Lyngby, Denmark
11	2) Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen, Denmark
12	
13	
14	
15	*) Corresponding author: <u>vine@env.dtu.dk</u> ;
16	Phone number: +45 4525 1498
17	
18	
19	

20 Abstract

21	Sustainable solutions for reduction of food waste require good
22	understanding of food waste generation and composition,
23	including avoidable and unavoidable food waste. We analysed
24	12 tonnes of residual household waste collected from 1474
25	households, without source segregation of organic waste. Food
26	waste was divided into six fractions according to avoidability,
27	suitability for home composting and whether or not the food
28	waste was cooked, prepared or had been served at within the
29	household. The results showed that the residual household
30	waste generation rate was 434±18 kg per household per year, of
31	which 183±10 kg per year was food waste. Unavoidable food
32	waste amounted to 80 ± 6 kg per household per year, and
33	avoidable food waste was 103±9 kg per household per year.
34	The mass of food waste was influenced significantly by the
35	number of occupants per household (household size) and the
36	housing type. The results also indicated that avoidable food
37	waste occurred in 97% of the households, suggesting that a
38	most of Danish households could avoid or at least reduce food
39	waste generation. Moreover, food waste including avoidable
40	and unavoidable was more likely to be found in houses
41	containing more than one person than households containing
42	only one person.

- 43
- 44

45 Keywords:

- 46 Household food waste
- 47 Avoidable food waste
- 48 Unavoidable food waste
- 49 Food waste generation
- 50 Bootstrap and confidence interval
- 51

1 Introduction

53	Food production and distribution exert increasing
54	pressure on natural resources such as land, water and energy;
55	however, one-third of the total mass of food produced is either
56	wasted or lost (Gustavsson et al., 2011). Thus, the resolution of
57	the European Parliament on resource efficiency calls on the
58	European Union (EU) Commission (EC) to set a target to
59	reduce by at least 30% the mass of food wastage in EU member
60	states by 2020 (European Parliament, 2015). Food is wasted
61	and lost throughout the food supply chain. In EU member
62	states, food waste from households is relatively higher
63	compared to other parts of the food supply chain (Brautigam et
64	al., 2014; Monier et al., 2010). For this reason, reducing food
65	waste from households may contribute significantly to meeting
66	the reduction target, as well as provide financial and energy
67	savings (Dana, 2012; WRAP, 2009). Initiatives and efforts to
68	change household behaviours related to food waste require a
69	detailed understanding of the quantities and composition of
70	what is discarded. However, although previous studies have
71	measured food waste occurring throughout the food supply
72	chain as well as from households, most of these studies have
73	provided only average data, making the description of the food
74	waste generation between households impossible. Moreover,
75	existing studies have diverse scopes and differ in their
76	definitions, metrics (e.g. mass, calories) and measurement Page 4 of 42

77	protocols (e.g. sampling) (HLPE, 2014), making the
78	comparison of food waste data between studies challenging.
79	Therefore, there is a need to estimate accurately and
80	consistently the food waste generation and composition from
81	households (Halloran et al., 2014).
82	The lack of a consensus methodology for food waste
83	data collection has led to the development of various food
84	waste estimation methods, such as questionnaire surveys
85	(Abeliotis et al., 2014; Parizeau et al., 2014, Tucker and
86	Farrelly, 2015), kitchen diaries (Langley et al., 2010;
87	Silvennoinen et al., 2014; Williams et al., 2012) and literature
88	reviews based on waste statistics from public authorities
89	(Beretta et al., 2013; Brautigam et al., 2014; Gustavsson et al.,
90	2011; Monier et al., 2010). The reliability and accuracy of data
91	from these methods may be hampered by various limitations
92	and inherent errors (Hallström and Börjesson, 2013). First,
93	kitchen diaries and questionnaire surveys require a good
94	memory and the honesty of the participants, which can hardly
95	be documented (Hallström and Börjesson, 2013). Second, a
96	general ethical consideration associated with food can influence
97	the response of participants (Fessler and Navarrete, 2003). As
98	an example, Parizeau et al. (2014) reported that households in
99	Canada overestimated home cooking because it is less socially
100	acceptable "to be identified as someone who does not cook but

101	relies on pre-packaged foods." Similarly, Quested et al. (2011)
102	estimated that food waste generation data from kitchen diaries
103	were 40% lower than when based on waste stream analysis in
104	the UK. Third, national waste statistics may be prone to
105	significant uncertainties, due to (i) varying definitions of food
106	waste and (ii) the calculation methods and assumptions applied
107	(Brautigam et al., 2014; HLPE, 2014). Therefore, waste stream
108	analysis is recommended to obtain reliable data on food waste
109	generation and composition (Dahlén and Lagerkvist, 2008;
110	Monier et al., 2010).
111	The disadvantage of the waste stream analysis is that
112	only food waste entering the municipal waste stream is
113	analysed. Thus, the waste steam analysis may exclude the food
114	waste that is fed to animals, home composted or disposed via
115	the sewer system (WRAP, 2009). Langley et al. (2010) argued
116	that the waste stream analysis characterises waste that age
117	could affect the degradation of some food products making
118	their separation and identification awkward. However, several
119	methods for characterisation of municipal solid waste
120	suggested to analyse at least one full week of waste because the
121	waste generation during weekends may differ compared to
122	weekdays (Dahlén and Lagerkvist, 2008). The degradation of
123	waste including food waste is significantly minimised when the
124	waste is sorted within a week from the sampling day (European

125	Commission, 2004; Nordtest, 1995), which has been confirmed
126	by practical experience (Edjabou et al., 2015).

127	An additional limitation of existing food waste studies
128	is that they focus mainly on avoidable food waste (Halloran et
129	al., 2014). To provide a consistent basis for new initiatives
130	targeting households, the detailed relationship between both
131	unavoidable and avoidable food waste needed to be understood
132	(Halloran et al., 2014).
133	A number of studies on this subject have found a
134	correlation between the mass of avoidable food waste and the
135	number of occupants per household. However, these studies
136	had relatively small sample sizes (Langley et al., 2010;
137	Parizeau et al., 2014). Moreover, issues such as uncertainty
138	related to the influence of household size as well as
139	geographical and periodic variations on avoidable and
140	unavoidable food waste have not been systematically
141	investigated. Consequently, the statistical uncertainties related
142	to the generation of food waste and potential influencing
143	factors are poorly documented. The uncertainty related to
144	temporal variation could be reduced by sampling in different
145	periods (Dahlén and Lagerkvist, 2008).
146	The prevention of food waste has the highest
147	environmental benefits (Gentil et al., 2011). However, a
148	biological treatment of food waste (e.g. home composting, Page 7 of 42

 or prevented (e.g. unavoidable food waste) generates variants benefits, such as: (1) reduction of environmental impacts as emission of greenhouse gases, surface and groundwate 	such r
	r
152 as emission of greenhouse gases, surface and groundwate	
	ante
153 contamination, and soil pollution, (2) generation of nutrie	JIIIS
154 that will be returned to food production system, (3) produced	uction
155 of biogas (Andersen et al., 2010; Raven and Gregersen, 2	007;
156 WRAP, 2009), and (4) financial incentives due to high tar	xes on
157 landfilling and incineration (Danish Government, 2013).	
158 Currently, one of the challenges facing biogas pla	nts
159 (e.g. in Denmark) is a reliable availability of organic mate	erial
160 (Raven and Gregersen, 2007). Therefore, availability of f	ood
161 waste constitutes one of the key parameters for feasible	
162 economic operation of biogas plants (Raven and Gregerse	en,
163 2007). Generally, the availability of waste materials from	
164 household are also considered for planning of waste source	ce-
165 segregation systems, and development of collection scher	nes
166 (Nilsson and Christensen, 2010). The availability of food	waste
167 can be estimated by analysing the occurrence of food was	ste
168 from households (US EPA, 2002). Despite the importance	e of
169 these data, they were not attempts to analyse food waste	
170 occurrence from households, thereby hindering our ability	y to
accurately map resources and develop food waste treatme	ent
172 technologies.	

173	The overall objective of this study was to estimate the
174	occurrence, the mass, and composition of discarded food
175	fractions from Danish households. The study also aimed at
176	evaluating and estimating the influence of the following
177	factors: (1) geographical variations (city, municipalities and
178	region), (2) periodic variations, and (3) household size, on the
179	mass and the occurrence of individual food waste fractions.
180	2-Materials and methods
181	2.1 Definitions and classification of food waste
182	In this study, food waste includes food, drinks and
183	beverages that are avoidable and unavoidable (FUSIONS,
184	2014; WRAP, 2009). We applied the food waste classification
185	described by Edjabou et al. (2015), WRAP (2009) and
186	FUSIONS (2014). Initially, food waste was subdivided into
187	animal-derived products and vegetable products. Vegetable
188	food waste estimates the potential mass of food waste from
189	households that could be home composted, provided that in
190	home composting schemes, animal-derived may be, excluded
191	because of the risk of attracting flies, rats and other pests as
192	well as undesired odours (Christensen and Matsufuji, 2010).
193	The two food waste fractions (animal-derived and vegetable)
194	were further grouped into avoidable and unavoidable food
195	waste (FUSIONS, 2014; Koivupuro et al., 2012; Lebersorger
196	and Schneider, 2011; WRAP, 2009). Unavoidable food waste is

197	defined as "food that is not and has not been edible under
198	normal circumstances"(WRAP, 2009), e.g. bones, carcasses,
199	egg shells, peels, fruit skin, apple cores, coffee grounds, etc.
200	(Table 1 & Table SM 1), while avoidable food waste refers to
201	edible food that could have been eaten but instead is disposed
202	off regardless of the reason (FUSIONS, 2014). Finally,
203	avoidable food waste was split into two further fractions. The
204	first covered "food and drinks that have been cooked, prepared
205	or served in the home"(WRAP, 2009), characterised as
206	avoidable processed food waste, while the second covered
207	"purchased food that has been discarded" (WRAP, 2009) such
208	as discarded food that has not been cooked, prepared or served
209	as a meal (avoidable unprocessed food waste). As a result, we
210	had six detailed fractions: (1) "avoidable unprocessed vegetable
211	food waste" (AUVFW), (2) "avoidable processed vegetable
212	food waste" (APVFW), (3) "unavoidable vegetable food waste"
213	(UVFW), (4) "avoidable unprocessed animal-derived food
214	waste" (AUAFW), (5) "avoidable processed animal-derived
215	food waste" (APAFW) and (6) "unavoidable animal-derived
216	food waste" (UAFW) (Table 1 and Table SM 1). Table 1
217	provides an overview of what was included in these categories,
218	while Table SM 1 shows how they were grouped. For
219	comparison purposes, these categories were grouped into 11
220	food categories adapted from WRAP (2009) and Lebersorger
221	and Schneider (2011), as shown in Table 1 (2^{nd} column) and in Page 10 of 42

Table SM 2. We differentiated between avoidable food waste and unavoidable food waste based on the general food habit and tradition in this study area. Thus, this classification may change according to the food habit of the area (e.g. country, region) with respect to culture, tradition, and religion. The reason is there are some "food that some people eat and others do not" (Beretta et al., 2013; FUSIONS, 2014; WRAP, 2009)

229 2.2 Study area

230 Residual household waste was sampled in five 231 municipalities in Denmark, namely Gladsaxe, Helsingør, 232 Odense, Viborg and Kolding, as shown in Table 2. In these 233 municipalities, food waste was neither source-segregated nor 234 accepted at recycling stations. Instead, along with other residual 235 waste (e.g. tissues papers, nappies, beverage cartons, plastic 236 film, metal cans, etc.), it was disposed of in residual waste bins. 237 However, gardening waste, paper, board, glass, waste electrical 238 and electronic equipment (WEEE) and batteries, household 239 hazardous waste and bulky waste were source-segregated. 240 Residual household waste management and collection 241 varied according to housing type. In single-family house areas, an individual waste bin for each house was used to collect 242

residual waste, whereas, in multi-family areas, people living in

the same apartment block used a joint full-service collection

point system, with many of them sharing the same waste bin. In

246	single-family house areas, residual waste bins consisted of
247	paper sacks and plastic bags between 110 and 240 L in
248	capacity, whereas in the multi-family house areas, wheeled
249	containers of 400 to 750 L were used. Residual household
250	waste was collected every week in the multi-family house areas
251	and every two weeks in the single-family house areas. This
252	difference between the two types of household explains the
253	waste sampling and sorting procedures applied in this study.
254	To encourage home composting, especially in the
255	single-family house areas, municipal authorities have provided
256	home composting units to those interested in doing it.
257	Additionally, the municipality of Viborg has provided these
258	composters for free, whereas other municipalities charge a fee.
259	2.3 Sampling of residual household waste
259 260	2.3 Sampling of residual household waste Table 2 provides an overview of the waste sampling
260	Table 2 provides an overview of the waste sampling
260 261	Table 2 provides an overview of the waste sampling campaign in terms of numbers of households and total mass of
260 261 262	Table 2 provides an overview of the waste sampling campaign in terms of numbers of households and total mass of residual household waste analysed. In total, 1,474 households
260 261 262 263	Table 2 provides an overview of the waste sampling campaign in terms of numbers of households and total mass of residual household waste analysed. In total, 1,474 households were included in this study, and the number of households
260 261 262 263 264	Table 2 provides an overview of the waste sampling campaign in terms of numbers of households and total mass of residual household waste analysed. In total, 1,474 households were included in this study, and the number of households investigated in each area varied between 100 and 200, as
260 261 262 263 264 265	Table 2 provides an overview of the waste sampling campaign in terms of numbers of households and total mass of residual household waste analysed. In total, 1,474 households were included in this study, and the number of households investigated in each area varied between 100 and 200, as recommended by Nordtest (1995). Overall, a total of 12 tonnes
260 261 262 263 264 265 266	Table 2 provides an overview of the waste sampling campaign in terms of numbers of households and total mass of residual household waste analysed. In total, 1,474 households were included in this study, and the number of households investigated in each area varied between 100 and 200, as recommended by Nordtest (1995). Overall, a total of 12 tonnes of residual household waste was collected and manually sorted.

Page 12 of 42

270 Gladsaxe in May 2011, October 2011 and March 2012.

271	The households involved in this sampling campaign were
272	selected by the municipal authorities responsible for solid waste
273	management, with the aim of ensuring that these homes were
274	representative of the investigated area (Table SM 3). Before
275	sampling began, the selected households were asked if they
276	would like to participate in three waste sampling campaigns in
277	the future, without indicating the exact dates. This was done by
278	telephone and mail. First, the telephone interview was used to
279	obtain the consent of households to participate to waste
280	sampling campaign. After obtaining the consent, a confirmation
281	letter was sent to households that accepted to participate to the
282	waste sampling campaign. Based on this method, we obtained
283	up to 80% of interviewed households that accepted to
284	participate to the sampling campaign. This method was applied
285	in order to comply with Danish waste regulations (Danish EPA,
286	2014) and also to avoid any potential changes in household
287	behaviour, which could hamper the reliability of the results.
288	Thus, one week or two weeks' residual household waste was
289	collected from those households enjoying weekly existing
290	collection schedule. After sampling, the waste was transported
291	using non-compacting tipping trucks to the sorting facility. The
292	residual household waste was sorted within a week from the
293	sampling day to minimise the degradation of food products

(Edjabou et al., 2015).

295 **2.4 Food waste sorting**

The residual household waste (Table 2) was sorted into six food waste fractions and other waste material fractions. The six food waste fractions were further sorted into detailed fractions, which in turn were grouped into 11 food categories (Table SM2).

301 Although the six food waste fractions were clearly 302 defined and illustrated by examples, we encountered some 303 difficulties that were overcome by sorting consistently these 304 food products throughout the sorting campaign. A food 305 product naturally composed of inseparable avoidable and 306 unavoidable components was considered as avoidable food 307 waste. For examples, a whole chicken, containing both meat 308 (avoidable) and bones (unavoidable) was sorted as 309 avoidable food waste. Similarly, whole fish, banana, etc. 310 were sorted as avoidable food waste. We differentiated 311 between processed and unprocessed food waste as follow: 312 food waste is unprocessed when the whole food product was 313 disposed with or not packaging, whereas discarded food 314 products that were partly eaten or destroyed was sorted as 315 processed food waste. Skin and peels of fruit and vegetables 316 that were removed prior disposal were sorted as unavoidable Page 14 of 42

317 food waste..

The waste sorting methods involved 'batching' sorting for
waste from the multi-family house areas and individual waste
bin sorting for waste from the single-family house areas.

321 **2.4.1 Single-family house areas**

- 322 In the single-family house areas, the residual waste was 323 collected separately from each household. Initially, the bins 324 were sealed tightly, to prevent losses and to separate them from 325 other bins. Finally, the waste bins were labelled with the 326 address of the household from where it was collected. The bins 327 were sorted separately, and food waste data were obtained for 328 each household. Information on the number of persons per 329 household was provided by the municipal authorities. 330 The sorting of indiviudal household waste bins enables 331 to investigate differences and distribution (Dahlén and
- 332 Lagerkvist, 2008), but it is very costly and demands a great
- deal of effort. Additionally, it is only feasible in single-family
- house areas.

335 **2.4.2 Multi-family house areas**

It was neither economically nor technically feasible to collect and separately sort the waste from each household in these areas. Instead the waste was mixed and transported to the sorting facility, where it was sorted as a 'batch' (Edjabou et al., 340 2015). Here the waste from each area was treated as a "single
341 sample." As a result, we obtained one dataset from each of the
342 multi-family house area.

Batch sorting is less labour intensive and suitable for all
housing types. While it may avoid sampling and splitting errors
(Edjabou et al., 2015), it does generate data that may not

346 describe waste distribution between households.

347 **2.5 Food waste data and statistical analyses**

348 Given the waste sampling and sorting procedures,

349 distributions of food waste per household were only available

350 from the single-family house areas. However, data from multi-

351 family house areas described differences between

352 municipalities.

353 The average quantities and composition of food waste

354 were calculated as weighted average according to the

355 distribution of the Danish population as shown in Tables SM 4

356 & SM 5 (Statistics Denmark, 2015).

357 We applied permutation tests (Kabacoff, 2011) to

358 compute p-values. A bootstrap, applied on a robust regression,

359 was used to calculate a 95% confidence interval and estimates

360 of measurement precision (Fox and Weisberg, 2012). A

361 permutation test and bootstrap methods were applied, because

362 they do not require distribution assumptions for the data, and

they are less sensitive to outliers (Kabacoff, 2011).

Page 16 of 42

364	We investigated whether or not the mass of food waste
365	was influenced by housing type, by comparing the average data
366	from each of the two areas. Furthermore, we analysed factors
367	influencing the mass of food waste in the single-family house
368	areas and compared the relationship between individual food
369	waste fractions. The households' generation of food waste was
370	analysed by means of a permutation test extended to logistic
371	regression. Here, the binary variable was whether a household
372	generated food waste (mass higher than zero) or not (the mass
373	was zero) (Kabacoff, 2011).

374 The effect of the sample size was analysed for each food 375 waste fraction by assessing the relationship between the 376 confidence intervals and the sample size (number of households). 377 The confidence intervals were computed using bootstrapping 378 (Crawley, 2005). This method was chosen because traditional 379 sampling plans assume specific classical probability distribution 380 (typically normal distribution) of either the population or of the 381 parameters of the population to be estimated. However, given the 382 heterogeneity of waste fractions, a very large sample at 383 unacceptable cost should be considered to ensure each fraction is 384 distributed normally. Moreover, the composition studies showed 385 that almost no waste fraction generation and composition is 386 normally distributed (Klee, 1993). For these reasons, traditional 387 sampling theories are not suitable to estimate the required sample

388	size in order to determine the quantity or the composition of solid
389	waste (Klee, 1993)assume specific classical probability
390	distribution (typically normal distribution) of either the
391	population or of the parameters of the population to be estimated.
392	However, given the heterogeneity of waste fractions, a very large
393	sample at unacceptable cost should be considered to ensure each
394	fraction is distributed normally. Moreover, the composition
395	studies showed that almost no waste fraction generation and
396	composition is normally distributed (Klee, 1993). For these
397	reasons, traditional sampling theories are not suitable to estimate
398	the required sample size in order to determine the quantity or the
• • • •	commonition of calid month (Vian 1002)
399	composition of solid waste (Klee, 1993).
399 400	The data were modelled using the statistical and
400	The data were modelled using the statistical and
400 401	The data were modelled using the statistical and graphical software R (http://www.r-project.org).
400 401 402	The data were modelled using the statistical and graphical software R (http://www.r-project.org). 3 Results and discussion
400 401 402 403	The data were modelled using the statistical and graphical software R (http://www.r-project.org). 3 Results and discussion 3.1 Analysis of sample size for each municipality
400 401 402 403 404	The data were modelled using the statistical and graphical software R (http://www.r-project.org). 3 Results and discussion 3.1 Analysis of sample size for each municipality We simulated sample sizes (k: to determine) between 5
400 401 402 403 404 405	The data were modelled using the statistical and graphical software R (http://www.r-project.org). 3 Results and discussion 3.1 Analysis of sample size for each municipality We simulated sample sizes (k: to determine) between 5 and 782, and for each sample size we used 10,000 replicates. The
400 401 402 403 404 405 406	The data were modelled using the statistical and graphical software R (http://www.r-project.org). 3 Results and discussion 3.1 Analysis of sample size for each municipality We simulated sample sizes (k: to determine) between 5 and 782, and for each sample size we used 10,000 replicates. The results show that the bootstrap 95% confidence intervals for food
400 401 402 403 404 405 406 407	The data were modelled using the statistical and graphical software R (http://www.r-project.org). 3 Results and discussion 3.1 Analysis of sample size for each municipality We simulated sample sizes (k: to determine) between 5 and 782, and for each sample size we used 10,000 replicates. The results show that the bootstrap 95% confidence intervals for food waste fractions narrowed sufficiently to suggest that a sample

411 **3.2 Quantities and composition of food waste fractions** Page **18** of **42**

412	Tables 3 & 4 show respectively the weighted average of
413	wet mass and the composition of food waste. Figure 1
414	illustrates the average mass of food waste generated in a Danish
415	household, split into unavoidable and avoidable, which were
416	further split into the six food waste fractions. The mass of
417	vegetable (suitable for home composting) and animal-derived
418	food waste are also provided.
419	The total weighted mass of residual waste generated in
420	an average Danish household amounted to 434 ± 18 kg per year
421	(Figure 1), or 201±13 kg per person per year. Thus, per mass,
422	the largest contribution to residual household waste was from
423	food waste ($43\pm1.8\%$) as shown in Table 3. These results are
424	consistent with previous Danish studies, which reported 42%
425	(Edjabou et al., 2015) and 41% (Riber et al., 2009) food waste.
426	Food waste in Danish households consisted of 56.4±3.8%
427	of avoidable food waste and 43.6±2.2% of unavoidable food
428	waste (Table SM 6). The avoidable food waste amounted to
429	103±9 kg per household per year (Figure 1), or 48±4 kg per
430	person per year. These results differ from those estimated by
431	EUROSTAT at 7 kg per person per year (Monier et al., 2010) and
432	126 kg per household (Brautigam et al., 2014) as shown in Table
433	5. However, Monier et al. (2010) acknowledged their estimates
434	may include high uncertainties, and so they recommended
435	undertaking a waste stream analysis to estimate reliable data. The
	Page 19 of 42

436	mass of avoidable food waste from Danish households was also
437	lower than those found in the UK (210 kg per household per year
438	(WRAP, 2011)), the United States (124 kg per person per year
439	(Koester, 2013)) and in Canada (117 kg per person per year
440	(Parizeau et al., 2014)). However, this figure is in the range of
441	those reported in Austria (33 kg per person per year (Lebersorger
442	and Schneider, 2011)) and Finland (23 kg per person per year
443	(Koivupuro et al., 2012)). This discrepancy between countries
444	confirms the difficulty of extrapolating avoidable food waste
445	data.

446	Avoidable processed food waste, which occurs after
447	cooking, serving or preparation (Section 2.1) accounted for 30%
448	of all avoidable food waste (Table 3 and Table SM 6) and was
449	34±5kg per household per year (Figure 1), or 16±3 kg per person
450	per year. Avoidable unprocessed food waste constituted 67% of
451	all avoidable food waste (Table 3 and Table SM 6) and was
452	estimated at 79 \pm 9 kg per household (Figure 1) per year, or 32 \pm 4
453	kg per person per year. These results indicate that a high
454	proportion of avoidable food waste was food that had been
455	purchased, stored (or not) and then discarded.
456	On average, 71% of the avoidable food waste consisted
457	of vegetable products, which amounted to 73±8 kg per household
458	per year (Figure 1), or 35±2 kg per person per year. The
459	corresponding 29% of avoidable animal-derived food waste
	Page 20 of 42

460	indicates that Danish households discard a relatively small mass
461	avoidable animal-derived food waste compared to avoidable
462	vegetable food waste. Moreover, given that animal-derived food
463	waste consisted of animal products and a mix of animal products
464	and vegetable products, such as salads (Table 1), we could
465	conclude that the mass of avoidable animal products may be
466	smaller than the mass of avoidable animal-derived food waste.

468	While the mass of avoidable animal-derived food waste
469	consisted of 50% unprocessed avoidable food waste, avoidable
470	vegetable food waste comprised 74% of avoidable unprocessed
471	food waste (54 \pm 6 kg per household per year) and 36% avoidable
472	processed food waste (19±7 kg per household per year), as
473	shown in Figure 1. This result indicates that about 74% of the
474	avoidable vegetable food waste may be food that has been
475	purchased and then thrown away, without having been cooked,
476	prepared or served as a meal. These results could be explained
477	mainly by inefficient purchase planning, causing unnecessary and
478	excessive food that neither could be eaten nor preserved for a
479	longer period(FUSIONS, 2014; Halloran et al., 2014; Parizeau et
480	al., 2014; Silvennoinen et al., 2012). Thus, shopping planning
481	reduce (Silvennoinen et al., 2014; Stefan et al., 2013; WRAP,
482	2009) and the correct storage of vegetables and fruits (WRAP,
483	2009) could reduce substantially the mass of avoidable food
	Page 21 of 42

484	waste in the Danish households. Additionally, recipes for food
485	leftovers and cooking planning (WRAP, 2009) should be
486	considered to reduce food waste from household.

487 **3.2** Composition of food categories

488 Food waste fractions were grouped in food categories 489 (Table 1 and Table SM 2). Each food category was further 490 subdivided into avoidable and unavoidable food waste as 491 shown in Figure 2. Overall, the dominant food products were 492 fresh vegetables and salads (30% of total food waste) and fresh 493 fruit (17% of total food waste), followed by bakery (13% of 494 total food waste), and drink and confectionery and desert (13% 495 of total food waste).

496 The predominant avoidable food categories from

497 Danish houses were fresh vegetables and salads (14% of total

498 food waste) and bakery (13% of total food waste). However,

499 fresh vegetables and salads (16% of total food waste), fresh

500 fruit (12% of total food waste) and drink, confectionery and

501 desert (11% of total food waste) were the dominant

502 unavoidable foods. A relatively high percentage of drink,

503 confectionery and desert in unavoidable food waste was mainly

504 due to spent coffee grounds. These results are comparable to

505 those found by WRAP (2009) for which fresh vegetables and

506 salads, drink, fresh fruit, bakery and meal (home-made and pre-

507 prepared) were dominant in the UK.

3.3 Occurrence of food waste

509	We analysed whether a single-family household
510	generated one of the six food waste fractions or not. In this
511	section, occurrence of food waste refers to whether household
512	generated food waste fractions or not. This approach aimed to
513	assess the availability of food waste fractions generated from the
514	single-family house areas. Owing to the waste data for each
515	household, we computed the number of households where "zero
516	mass" of food waste were found in the waste bin. The analysis
517	was done for each of the six food waste fractions.
518	The occurrence of food waste from the Danish
519	households was analysed by assessing how many cases where
520	"zero mass" of food were found in the waste bins. The analysis
521	was done for each of the six food waste fractions. The percentage
522	of households (single-family house areas) that did not generate
523	food waste as function of household size is presented in Table 6.
524	The results show that 97% of households involved in this study
525	generated avoidable food waste, suggesting that this practice
526	occurs in most of Danish households. Avoidable processed food
527	waste was found in 68% of bins. Consequently, initiatives to
528	reduce avoidable food waste could be carried out at national
529	level, even though municipalities have the responsibility for the
530	management and prevention of municipal solid waste (Danish
531	EPA, 2014), as suggested by Halloran et al. (2014). Moreover,
	Page 23 of 42

98% of household generated unavoidable food waste. These
figures suggest that, initiatives to reduce avoidable food waste
should be accompanied by other initiatives that enable efficient
resource recovery with minimum environmental impacts from
food waste that cannot be avoided.

Logistic regression was applied to assess the factors
influencing food waste generation (Table SM 7). The binary
variable was food waste generation (yes/no), where "yes" meant
that food waste fraction was found in the bins, and where "no"
meant that it was not found. The explanatory variables were
regions, municipalities and household size (Table SM 7).

The results show that only the variable household size
might affect significantly households' food waste generation
(Table 6). This suggests the likelihood that food waste is
generated will increase significantly according to the number of

547 occupants in the household. As a result, a house containing two

548 persons may increase this likelihood of generating food waste by

549 a factor of four, and a house containing more than two persons

550 may increase this figure by a factor of five or more.

Waste sampled from three different periods from the
same households showed that 94-97% generated avoidable food
waste, whereas 97-98% generated unavoidable food waste
(Figure SM 1). The statistical analysis showed that periodic

Page 24 of 42

555	variations did not significantly affect household food waste
556	generation in this respect. The size of household significantly
557	influenced the generation of food waste from the Danish
558	households (Tables SM 8 & SM 9).

559	These results suggest that an increase in the number of
560	persons per household increases the likelihood of wasting food. A
561	possible explanation for this might be that a person living alone
562	(household containing one person) tends to eat "simplified" or
563	"cold meal" consisting of bread (e.g. rye bread) with cold or fried
564	fish, cold meats, warm meats, etc, soup, and ready meals. They
565	may also eat at work. As a result, these households may merely
566	generate food waste (Table 6), although they may generate other
567	waste materials such as packaging. However, a house containing
568	more one person may keep "classical" or "traditional" meal habit,
569	especially for dinner where warm meal or prepared food is
570	served. The process of preparing, cooking and serving food at
571	home for more than one person may increase the risk of
572	overestimation during purchasing and cooking, leading to food
573	waste generation. This uncertainty may increase when the size of
574	household increases because it is apparently more difficult to plan
575	efficiently purchasing and cooking of food that satisfy the desire
576	of all the household members. These results suggest that in the
577	single-family house areas, households with one person could
578	affect the availability of food waste for home composting and

- 579 biogas plants. These plants rely on a continuous availability of
- 580 organic material

581 **3.4 Factors influencing the quantity of individual food**

582 waste fraction

583 First we analysed the significance differences in the quantity of

584 food waste between single-family and multi-family areas.

585 Second, we investigated that may influence the quantity of food

586 waste from the single-family house areas.

587 **3.4.1 Influence of housing type on food waste**

588 The mass of residual household waste per household 589 was significantly higher in single-family house areas (8.7 ± 0.2) 590 kg per household per week) than in multi-family house areas 591 $(7.8\pm0.1 \text{ kg per household per week})$ (Table 4). However, this 592 difference was not significant when considering the mass per 593 person. Similarly, single-family house areas generated 594 significantly higher mass of food waste, avoidable food waste 595 and unavoidable food waste per household than multi-family 596 house areas (Table 4). In contrast, considering the mass per 597 person, the mass of total food waste, avoidable and unavoidable 598 food waste was similar between single-family house areas and 599 multi-family house areas. Regardless of factors such as socio-600 economic differences, these results may suggest that the results of 601 statistical analysis applied to the mass of food waste, depends on 602 the unit generation rates of food waste (mass of food waste per

603	household or mass of food waste per person). This could be
604	explained by the difference in the number of occupants per
605	household, which is 2.4 for single-family house areas and 1.8 for
606	multi-family house areas (Statistics Denmark, 2015).
607	In the following sections (3.4.2 to 3.4.5), we investigated
608	the influence on the quantity of food waste from single-family
609	house areas, based on (1) household size, (2) municipality, (3)
610	region and (4) the difference between municipalities offering a
611	free composter for home composting and those, which do not
612	provide such a service. For the latter factor, we did not assess
613	differences in the numbers of households engaged in home
614	composting; we considered the mass of food waste per household
615	and per person.
616	3.4.2 Geographical variation
617	Geographical variations include the influence of regions
618	and municipalities on the generated mass of food waste. The
619	distribution between households of the mass of avoidable and
620	unavoidable food waste as a function of household size in single-
621	family house areas is shown in Figures 3A & 3B for mass per
622	household and Figures 3C & 3D for mass per person. The results
623	show that geographical variations including municipalities (df=3,

- 624 $\,$ p>0.05) and regions (df=1, p>0.05) did not make any significant
- 625 difference to the mass of avoidable and unavoidable food waste
- 626 per household and per person. Similarly, we found no significant

difference in the mass of the six detailed food waste fractions,
respectively, between municipalities and regions in Denmark.
These findings indicate that the generation of avoidable food
waste, as well the detailed food waste fractions, were not affected
by geographical differences such as municipalities or regions.

632 **3.4.3 Household size**

633 We analysed household size as a categorical explanatory 634 variable. The result showed that the mass of food waste (see 635 Table 1 and Table SM 1) per household may increase 636 significantly in line with the size of household. For the mass of 637 avoidable food waste per household, households containing one 638 person generated significantly lower avoidable food waste than 639 those containing two persons (0.66 kg, with a 95% confidence 640 interval of 0.23 to 1.44), three persons, (1.85 kg, with a 95% 641 confidence interval of 1.36 to 2.34) and four or more persons 642 (2.75 kg, with a 95% confidence interval of 2.30 to 3.12), as 643 shown in Table 7. These findings are consistent with those of 644 Parizeau et al. (2014), Silvennoinen et al. (2014) and WRAP 645 (2009). Similarly, the mass of unavoidable food waste was also 646 significantly affected by household size (Table 7). 647 The mass of food waste decreased when household size 648 increased, except for avoidable processed food waste (avoidable 649 processed animal-derived food waste, avoidable processed 650 vegetable food waste and total avoidable processed food waste)

Page 28 of 42

651	(Tables SM 10 & SM 11). For example, households containing
652	one person generated higher avoidable food waste than those
653	containing two persons, three persons and more than three
654	persons as it shown in Table 7. However, this difference was not
655	statistically significant, thereby suggesting that there was no
656	significant difference in the mass of avoidable food waste per
657	persons among households. Although these results differ from
658	those published by Parizeau et al. (2014), who found a negative
659	correlation, they are nevertheless consistent with those of WRAP
660	(2009), Katajajuuri et al.(2014), Koivupuro et al. (2012) and
661	Silvennoinen et al. (2014). In contrast, the mass of unavoidable
662	food waste per person decreased significantly in line with the
663	number of persons per household. Thus, a household containing
664	three or more may generate, respectively, 18 kg (a 95%
665	confidence interval of 8 to 28) per person per year and 22 kg (a
666	95% confidence interval from 14 to 32) per person per year,
667	which is significantly lower than for one person (Table 8). This
668	discrepancy could reflect the difference in the generation of
669	avoidable and unavoidable food waste from the Danish
670	households.
671	The comparison between the mass of avoidable and
672	unavoidable food waste per household showed that on average,
673	Danish households generated 24 kg (95% confidence interval
674	from 15 to 33) per household per year significantly higher

Page 29 of 42

675	avoidable food waste than unavoidable food waste. The results
676	according to household size showed that households containing
677	three or more persons generated 33 kg (95% confidence interval
678	16 to 52) per household per year significantly higher avoidable
679	food waste than unavoidable food waste. However, households
680	containing one and two persons generated comparable mass of
681	avoidable and unavoidable food waste. Figures 4 present the
682	bootstrap 95% confidence interval and mean of unprocessed vs.
683	processed and vegetable vs. animal-derived per household
684	(Figures 4A & 4B) and per person (Figures 4C & 4D). The
685	results also showed that the difference in the mass of food waste
686	generated per household, between (1) avoidable unprocessed
687	food waste and avoidable processed food waste and (2) vegetable
688	and total animal-derived food waste, increased significantly in
689	line with household size.
690	A possible explanation for these results may be that
691	households with one person may only cook food to satisfy their
692	own desire, at least less often than those with more than one
693	person. Furthermore, easy accessibility to shops enables
694	householders to make smaller purchases (Gjerris and Gaiani,
695	2013). Thus, households containing one person could purchase
696	food products that they want for themselves, even though
697	promotions and price discounts could affect the type and mass of
698	what they buy (Jahns et al., 2014).
699	3.4.4 Free composter for home composting
	Page 30 of 42

We analysed the influence of the 'free composter' on the
mass of food waste discarded in single-family house areas by
comparing those municipalities offering free composter and those
that do not.

704	The result of the permutation test showed that offering a
705	free composter did not make a significant difference to the mass
706	of food discarded by single-family households. Surprisingly, the
707	mass of vegetable food waste was not significantly influenced
708	either. These results may suggest that municipalities where free
709	composters are offered generated a comparable mass of food
710	waste compared to those that do not offer such a service. Since
711	we did not determine the number of households engaging in
712	home composting as a result of being given a free composter,
713	these results should be interpreted with caution.
714	The results showed that shout 145 ± 0 is non-household
714	The results showed that about 145±9 kg per household
715	per year could be home-composted (Figure 1) in Danish
716	households and as a result reduce 33±2% of the total residual
717	household waste. However, the current incentive via free of
718	charge composters has not made any significant differences in
719	this respect, especially for vegetable food waste. Tucker and
720	Speirs (2003) argued that negative perceptions, such as vermin,
721	flies, space, aesthetics, etc., may determine households' reticence
722	to take composting on board. They also found that factors such as
723	time and effort could influence the issue. Therefore, Tucker and
	Page 31 of 42

Page 31 of 42

724	Speirs (2003) suggested awareness programmes focusing on
725	changing perceptions, such as "composting does not necessarily
726	attract flies and vermin" and "composters can be beautiful."
727	Refsgaard and Magnussen (2009) proposed including
728	institutional and organisational solutions in addition to technical
729	solutions such as providing composters and financial incentives
730	to motivate households. An alternative could be a central
731	composting or combined anaerobic and aerobic treatment plant.
732	3.4.5 Periodic mass of household food waste
733	The mass of food waste generated from households
734	during the three periods, and the p-values of the permutation test
735	(Kabacoff, 2011), are presented in Table 8.
736	Overall the results showed that the mass of food waste
737	generated in Danish households was not significantly different
738	between the three periods. However, only the mass of
739	unavoidable animal-derived food waste per household and per
740	person (4 to 6% of total food waste) was significantly different
741	through this time span. These results could be explained by the
742	demand for fresh food through the whole year and the modern
743	food chain that enables retailers to import out of season produce
744	(HLPE, 2014). However, in contrast to these results, another
744 745	(HLPE, 2014). However, in contrast to these results, another study found significant monthly variations in Canada, which were

748	Figures 5 show the distribution of food waste as a
749	function of household size, grouped per period per household
750	(Figures 5A & 5B) and per person (Figures 5C & 5D).
751	Concurrently, the mass of avoidable and unavoidable food waste
752	per household increased in line with the size of the household.
753	Compared to a household containing one person, the mass of
754	avoidable food waste may increase by 1.15 kg (with a 95%
755	confidence interval of 0.76 to1.53) per week for a household
756	containing two persons, 1.72 kg (with a 95% confidence interval
757	of 0.40 to 2.97) per week for household containing three persons
758	and 2.42 kg (with a 95% confidence interval of 1.52 to 3.31) per
759	week for more than three persons. However, the mass of
760	avoidable food waste per person also increased in line with
761	household size, albeit not significantly.
762	The mass of unavoidable food waste per household
763	increased significantly in line with the number of occupants per
764	household, whereas the mass per person decreased insignificantly
765	in relation to household size (Figures 5A & 5B). These results are
766	consistent with those found for the four municipalities (Section
767	3.4.2).
768	3.4.6 Influence of household with "zero mass" of food
769	waste
770	The influence of household that did not generate food
771	waste during this sampling period on the outcome of statistical

772	analyses was investigated by comparing two datasets: (1) all
773	households (in single-family house areas) included in the
774	sampling campaign and (2) those that actually generated food
775	waste. This means that households that did not generate anything
776	were excluded in the second datasets for each food waste
777	fraction.
778	We found a significant difference between datasets for the

he 779 following: avoidable processed food waste avoidable processed 780 vegetable food waste, avoidable processed animal-derived food 781 waste, avoidable unprocessed animal-derived food waste, and 782 unavoidable animal-derived food waste (Table SM 12). For these 783 waste fractions, the mass per person increased in line with the 784 size of household.. However, if we consider only the dataset for 785 households that generated food waste, we found that the mass of 786 food waste per person decreased when the household size 787 increased – as expected. 788 **5** Conclusions and future prospects 789 In the present study, we provided data for the occurrence, 790 the mass and the composition of food waste from Danish

households based on waste stream analysis.

The results showed that most of the Danish households

- generated avoidable (97% of households) and unavoidable (98%
- of households) food waste independently of regions,
- 795 municipalities and sampling period. Moreover, the occurrence of

796	food waste generated by households was driven by household
797	size. The results indicate a Danish household containing one
798	person is less likely to generate avoidable food waste compared
799	to other household sizes.
800	We found that avoidable food waste was the predominant
801	food waste fraction, suggesting that a reduction of avoidable food
802	waste could reduce considerably the total mass of Danish residual
803	household waste. However, an efficient treatment of unavoidable
804	food waste could ensure resource recovery.
805	Although, the results showed that the mass per household
806	of food waste fractions increased in line with household size, the
807	statistical analysis revealed that there was no significant
808	difference among household sizes of the aggregated mass per
809	person for individual fractions, avoidable and unavoidable food
810	waste.
811	A combining waste stream analysis based on food
812	categories, households purchasing data, and their consumption
813	patterns-type should be considered to determine the mass of food
814	purchased and the mass of food consumed. These data could
815	provide better insight of the detailed food products that are
816	wasted from households. This information enables to develop
817	efficient and local based solution to reduce food waste from
818	households.

819 Acknowledgments

820	The authors acknowledge the Danish Strategic Research
821	Council for financing this study via the IRMAR (Integrated
822	Resource Management & Recovery) Project (No. 11-116775).
823	The Danish Environmental Protection Agency (EPA) and the
824	municipalities of Gladsaxe, Helsingør, Kolding, Viborg and
825	Odense are also acknowledged for their valuable support and
826	contributions. We would like to express our gratitude to the
827	Technical University of Denmark Environment's Graphic
828	group for helping with the graphs.
829	Supplementary material (SM)

830 Supplementary materials contain detailed food waste data used

831 for calculations and figures. SMs are divided into tables (Table

- 832 SM) and figures (Figure SM).
- 833
- 834

835 **References**

836	Abeliotis, K., Lasaridi, K., Chroni, C., 2014. Attitudes and
837	behaviour of Greek households regarding food waste
838	prevention. Waste Management & Research. 32, 237–240.
839	doi:10.1177/0734242X14521681.
840	Adhikari, B.K., Barrington, S., Martinez, J., King, S., 2008.
841	Characterization of food waste and bulking agents for
842	composting. Waste Management. 28, 795–804.
843	doi:10.1016/j.wasman.2007.08.018.
844	Andersen, J.K., Boldrin, a., Christensen, T.H., Scheutz, C.,
845	2010. Greenhouse gas emissions from home composting
846	of organic household waste. Waste Management 30,
847	2475–2482. doi:10.1016/j.wasman.2010.07.004.
848	Beretta, C., Stoessel, F., Baier, U., Hellweg, S., 2013.
849	Quantifying food losses and the potential for reduction in
850	Switzerland. Waste Management. 33, 764–73.
851	doi:10.1016/j.wasman.2012.11.007.
852	Bernstad Sariva Schott, A., Vukicevic, S., Bohn, I., Andersson,
853	T., 2013. Potentials for food waste minimization and
854	effects on potential biogas production through anaerobic
855	digestion. Waste Management & Research. 31, 811–9.
856	doi:10.1177/0734242X13487584
857	Brautigam, KR., Jorissen, J., Priefer, C., 2014. The extent of
858	food waste generation across EU-27: Different calculation
859	methods and the reliability of their results. Waste
860	Management & Research. 32, 683–694.
861	doi:10.1177/0734242X14545374.
862	Crawley, M.J., 2005. Statistics: An Introduction using R,
863	American Statistician. John Wiley & Sons Ltd., London,
864	UK. doi:10.1002/9781119941750.
865	 Christensen, T., Matsufuji, Y., 2010. Source Segregation and
866	Collection of Source-Segregated Waste., in: Christensen,
867	T.H. (Ed.), Solid Waste Technology & Management,
868	Volume 1 & 2. Chichester, UK.
869	doi:10.1002/9780470666883.ch21
870	Dahlén, L., Lagerkvist, A., 2008. Methods for household waste
871	composition studies. Waste Management. 28, 1100–12.
872	doi:10.1016/j.wasman.2007.08.014.

873 874 875	Dana, G., 2012. Wasted: How America is losing up to 40 percent of its food from farm to fork to landfill, Natural Resources Defense Council Issue Paper. 12-06-B.
876 877 878	Danish EPA, 2014. National Standard affaldsregulativer (National standard of waste regulation) [WWW Document]. URL
879	https://www3.mst.dk/Nstar/Regulation/Search.aspx.
880 881	Danish Government, 2013. Denmark without Waste: Recycle
882	More-Incinerate Less. Danish Ministry of the Environment, Copenhagen, Denmark
883	Edjabou, M.E., Jensen, M.B., Götze, R., Pivnenko, K.,
884	Petersen, C., Scheutz, C., Astrup, T.F., 2015. Municipal
885 886	solid waste composition: Sampling methodology, statistical analyses, and case study evaluation. Waste
887	Management. 36, 12–23.
888	doi:10.1016/j.wasman.2014.11.009.
889	European Commission, 2004. Methodology for the Analysis of
890	Solid Waste (SWA-tool). User Version 43, 1–57.
891	European Parliament, 2015. European Parliament resolution of
892	9 July 2015 on resource efficiency: moving towards a
893 804	circular economy. [WWW Document]. URL
894 895	http://www.europarl.europa.eu/sides/getDoc.do?pubRef=- //EP//TEXT+TA+P8-TA-2015-
895 896	$\frac{0266+0+\text{DOC}+\text{XML}+\text{V0}/\text{EN\&language}=\text{EN.}}{0266+0+\text{DOC}+\text{XML}+\text{V0}/\text{EN\&language}=\text{EN.}}$
897	Fessler, D.M.T., Navarrete, C.D., 2003. Meat Is Good to
898	Taboo. Journal of Cognition and Culture. 1–40.
899	doi:http://dx.doi.org/10.1163/156853703321598563.
900	Fox, J., Weisberg, S., 2012. Bootstrapping Regression Models
901	in R, in: An R Companion to Applied Regression. SAGE,
902	pp. 1–17.
903	FUSIONS, 2014. Fusion Definitional Framework for Food
904	Waste. Final Report 3rd of July, 2014, http://www.eu-
905	fusions.org/index.php/publications.
906	Gentil, E.C., Gallo, D., Christensen, T.H., 2011. Environmental
907	evaluation of municipal waste prevention. Waste Manag.
908	31, 2371–9. doi:10.1016/j.wasman.2011.07.030.
909	Gjerris, M., Gaiani, S., 2013. Household food waste in Nordic
910	countries : Estimations and ethical implications. Etikk i
911	praksis - Nordic Journal of Applied Ethics 7, 6–23. Page 38 of 42

912	Gustavsson, J., Cederberg, C., Sonesson, U., 2011. Global food
913	losses and food waste: Extent, causes and prevention,
914	Organization.
915	Halloran, A., Clement, J., Kornum, N., Bucatariu, C., Magid, J.,
916	2014. Addressing food waste reduction in Denmark. Food
917	Policy 49, 294–301. doi:10.1016/j.foodpol.2014.09.005.
918	Hallström, E., Börjesson, P., 2013. Meat-consumption
919	statistics: reliability and discrepancy. Sustainability:
920	Science, Practice, & Policy. Policy 9, 37–47.
921	HLPE, 2014. Food losses and waste in the context of
922	sustainable food systems - The High Level Panel of
923	Experts(HLPE)-Report-8. Rome.
924	Jahns, L., Payne, C.R., Whigham, L.D., Johnson, L.K., Scheett,
925	A.J., Hoverson, B.S., Kranz, S., 2014. Foods advertised in
926	US weekly supermarket sales circulars over one year: a
927	content analysis [WWW Document]. 2014. URL
928	http://www.nutritionj.com/content/pdf/1475-2891-13-
929	95.pdf (accessed 9.29.14).
930	Jörissen, J., Priefer, C., Bräutigam, KR., 2015. Food Waste
931	Generation at Household Level: Results of a Survey
932	among Employees of Two European Research Centers in
933	Italy and Germany. Sustainability 7, 2695–2715.
934	doi:10.3390/su7032695
935	Kabacoff, R.I., 2011. R IN ACTION: Data analysis and
936	graphics with R. Manning Publications Co., Shelter Island.
937	Katajajuuri, JM., Silvennoinen, K., Hartikainen, H., Heikkilä,
938	L., Reinikainen, A., 2014. Food waste in the Finnish food
939	chain. Journal of Cleaner Production. 73, 322–329.
940	doi:10.1016/j.jclepro.2013.12.057.
941	Klee, A., 1993. NEW APPROACHES TO ESTIMATION OF
942	SOLID-WASTE QUANTITY AND COMPOSITION.
943	Journal of Environmental Engineering. 119, 248 – 261.
944	Koester, U., 2013. Total and per capita value of food loss in the
945	United States - Comments. Food Policy 41, 63–64.
946	doi:10.1016/j.foodpol.2013.04.003.
947 948 949 950	Koivupuro, HK., Hartikainen, H., Silvennoinen, K., Katajajuuri, JM., Heikintalo, N., Reinikainen, A., Jalkanen, L., 2012. Influence of socio-demographical, behavioural and attitudinal factors on the amount of Page 39 of 42

951 952 953	avoidable food waste generated in Finnish households. International Journal of Consumer Studies. 36, 183–191. doi:10.1111/j.1470-6431.2011.01080.x.
954	Langley, J., Yoxall, A., Heppell, G., Rodriguez, E.M.,
955	Bradbury, S., Lewis, R., Luxmoore, J., Hodzic, A.,
956	Rowson, J., 2010. Food for thought?A UK pilot study
957	testing a methodology for compositional domestic food
958	waste analysis. Waste Management & Research. 28, 220–
959	7. doi:10.1177/0734242X08095348.
960	Lebersorger, S., Schneider, F., 2011. Discussion on the
961	methodology for determining food waste in household
962	waste composition studies. Waste Management. 31, 1924-
963	33. doi:10.1016/j.wasman.2011.05.023.
964	Monier, V., Escalon, V., O'Connor, C., European Commission,
965	2010. PREPARATORY STUDY ON FOOD WASTE
966	ACROSS EU 27 October 2010, October.
967	doi:10.2779/85947.
968	Nilsson, P., Christensen, T.H., 2010. Waste Collection:
969	Systems and Organization, in: Christensen, T.H. (Ed.),
970	Solid Waste Technology & Management, Volume 1 & 2.
971	Chichester, UK. doi:10.1002/9780470666883.ch21.
972	Nordtest, 1995. Municipal solid waste: Sampling and
973	characterisation (No. NT ENVIR 001), Nordtest Method.
974	Espoo, Finland.
975	Parizeau, K., von Massow, M., Martin, R., 2014. Household-
976	level dynamics of food waste production and related
977	beliefs, attitudes, and behaviours in Guelph, Ontario.
978	Waste Management. doi:10.1016/j.wasman.2014.09.019.
979	Quested, T.E., Parry, a. D., Easteal, S., Swannell, R., 2011.
980	Food and drink waste from households in the UK.
981	Nutrition Bulletin. 36, 460–467. doi:10.1111/j.1467-
982	3010.2011.01924.x.
983	Raven, R.P.J.M., Gregersen, K.H., 2007. Biogas plants in
984	Denmark: successes and setbacks. Renewable &
985	Sustainable Energy Reviews. 11, 116–132.
986	doi:10.1016/j.rser.2004.12.002.
987	Refsgaard, K., Magnussen, K., 2009. Household behaviour and
988	attitudes with respect to recycling food waste -
989	experiences from focus groups. Journal of Environmental

990 991	Management. 90, 760–771. doi:10.1016/j.jenvman.2008.01.018
992 993 994 995	Riber, C., Petersen, C., Christensen, T.H., 2009. Chemical composition of material fractions in Danish household waste. Waste Management. 29, 1251–7. doi:10.1016/j.wasman.2008.09.013.
,,,,	
996	Silvennoinen, K., Katajajuuri, JM., Hartikainen, H., Heikkilä,
997 008	L., Reinikainen, A., 2014. Food waste volume and
998 999	composition in Finnish households. British Food Journal. 116, 1058–1068. doi:10.1108/BFJ-12-2012-0311.
1000	Statistics Denmark, 2015. Housing [WWW Document]. URL
1001	http://www.dst.dk/en/Statistik/emner/boligforhold.aspx
1002	(accessed 12.21.13).
1003	Stefan, V., van Herpen, E., Tudoran, A.A., Lähteenmäki, L.,
1004	2013. Avoiding food waste by Romanian consumers: The
1005	importance of planning and shopping routines. Food
1006	Quality and Preference. 28, 375–381.
1007	doi:10.1016/j.foodqual.2012.11.001.
1008	Tucker, P., Speirs, D., 2003. Attitudes and Behavioural Change
1009	in Household Waste Management Behaviours. Journal of
1010	Environmental Planning and Management 46, 289–307.
1011	doi:10.1080/0964056032000070927.
1012	US EPA, 2002. RCRA Waste Sampling Draft Technical
1013	Guidance Planning, Implementation, and Assessment (No.
1014	EPA530-D-02-002), Solid Waste and Emergency
1015	Response (5305W)
1016	http://www3.epa.gov/epawaste/hazard/testmethods/sw846/
1017	pdfs/rwsdtg_a.pdf.
1018	Williams, H., Wikström, F., Otterbring, T., Löfgren, M.,
1019	Gustafsson, A., 2012. Reasons for household food waste
1020	with special attention to packaging. Journal of Cleaner
1021	Production. 24, 141–148.
1022	doi:10.1016/j.jclepro.2011.11.044.
1023	WRAP, 2011. New estimates for household food and drink
1024	waste in the UK A report presenting updated estimates of
1025	food and drink waste from UK.
1026	WRAP, 2009. Household Food and Drink Waste in the UK,
1027	October. Banbury, UK. doi:10.1111/j.1467-
1028	3010.2011.01924.x.

1	Tables
2	Published in Waste Management
3	
4	Food waste generation and composition from Danish
5	households
6	
7	Maklawe Essonanawe Edjabou ¹ *, Claus Petersen ² , Charlotte Scheutz ¹ , Thomas Fruergaard Astrup ¹
8	
9	1) Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
10	2) Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen, Denmark
11	
12	
13	
14	*) Corresponding author: <u>vine@env.dtu.dk</u> ;
15	Phone number: +45 4525 1498
16	

Food waste fractions	Food categories ^a	Included food products	Excluded food products	
	Bakery	Bread, cakes (packed or not)	Bread used for sandwiches.	
	Drinks and confectionery and desserts	Tea bags, coffee grounds, biscuits, chips, beer, alcohol, etc.		
	Condiments, sauces, herbs and spices	Ketchup, peanut butter, sauces, salt, honey, jam, olives, mayonnaise, salt, sugar, etc.		
Avoidable unprocessed vegetable	Fresh fruit	Banana, apple, melon, other fruits, etc.	Fruits prepared or served at home -half eaten.	
food waste (AUVFW)	Fresh vegetables and salads	Carrots, potatoes, other fresh vegetables, etc.	Home cooked or served vegetables, salad.	
	Stable food	Breakfast cereal, rice, pasta, flour, etc.	Cooked rice, pasta, etc.	
	Canned food	Corn, bean, pineapple, other tinned vegetables		
	Other food	Other uncooked vegetable food.		
	Bakery	Vegetable pizza, pizza bread, etc.	Bread used for sandwiches, meat pizza.	
Avoidable processed vegetable	Stable food	Rice, pasta, etc. (cooked or served at home).		
ood waste (APVFW)	Fresh vegetables and salads	Potatoes, yams, vegetables, etc. (cooked or served at home).		
	Other food	Other cooked, prepared or served food at home.		
	Drinks and confectionery and desserts	Spent coffee grounds, tea bags, etc.	Unused tea bag, coffee grounds	
	Fresh fruit	Skin (e.g. pineapple), peals (e.g. banana), stones (e.g. avocado), (fruits rinds (e.g. melon).	Half eaten fruit, rotten fruit, etc.	
Inavoidable vegetable food waste	Fresh vegetables and salads	Skin (e.g. potatoes, carrots, onion), peels (e.g. courgette, cucumber, etc.), etc.	Half eaten vegetables.	
UVFW)	Canned food	Brine from canned vegetables food, etc.		
	Pet food	Vegetable pet food.		
	Other food	Other inedible vegetables and fruits.		
	Dairy and eggs	Eggs, dairy products (milk, yoghurt, cheese, margarine, butter, etc.).	Cooked eggs, opened and served dairy products.	
voidable unprocessed animal	Meat and fish	Meat, fish, packed cold meat, cut meat.	Opened meat package -cooked or served.	
erived food waste (AUAFW)	Canned food	Canned meat and fish, canned mixed animal and vegetable products, etc.	Opened canned vegetable.	
	Other food	Other mixed of vegetable and animal products.	Opened canned mixed or only animal products.	
	Bakery	Bread found in sandwich prepared and served at home.		
	Dairy and eggs	Cooked or fried eggs, cheese served at home, etc. and edible leftover.		
Avoidable processed animal lerived food waste (APAFW)	Canned food	Opened canned meat and fish food.	Unopened canned vegetable food.	
derived food waste (APAFW)	Meat and fish	Cooked, prepared or served at home (meat, fish, etc.).	TT	
	Other food	Other mixed of vegetable and animal products cooked, prepared or served at home.	Unopened canned mixed or only animal products	
	Dairy and eggs	Cheese rinds, eggs shells, etc.	Half or leftover eggs and dairy products.	
Jnavoidable animal derived food	Meat and fish	Meat and fish (skin, rinds, fat, etc.), fish heads, shellfish shells, etc.		
waste (UAFW)	Pet food	Animal or mixed animal and vegetable pet food.		
	Other food	Other non-edible mixed of animal and vegetable products.		

Table 1: Food categories and food	products included in the six food waste fractions-Last column shows	example of food products that is not included

^aGrouped food categories were adapted from WRAP (2009) and Lebersorger and Schneider (2011) See Table SM 1 for food categories.

Housing types	Municipalities	Regions	Number of households per sampling unit	Amount analysed (kg wet mass) ¹
Single-family	Gladsaxe	Zealand	111	1,100
	Gladsaxe	Zealand	98	1,100
	Helsingør	Zealand	189	2,000
	Kolding	Jutland	101	1,000
	Kolding	Jutland	93	1,000
	Viborg	Jutland	108	1,100
	Viborg	Jutland	82	1,000
Multi-family	Gladsaxe	Zealand	319	2,100
	Odense	Jutland	372	1,800
Total	-	-	1,474	12,200

Table 2: Number of household per area and the total amount of residual household waste generated during one week

¹Arounded amount of residual household analysed

Table 3: Composition of food waste (in mass per wet basis: w/w)

	SFHA ^a (n=7) ^c		MFHA ^b (n=3) ^c		Denmark (Weighted average) ^d	
	Mean	SD^e	Mean	SD^e	Mean	SD^e
Composition						
Avoidable food waste						
Avoidable processed food waste						
Avoidable processed animal-derived food waste (% w/w)	7.8	1.1	8.9	3.04	8.2	1.3
Avoidable processed vegetable food waste (% w/w)	8.9	0.9	13.0	4.8	10.5	1.8
Avoidable unprocessed food waste						
Avoidable unprocessed animal-derived food waste (% w/w)	8.3	0.8	7.3	2.3	8.0	1.0
Avoidable unprocessed vegetable food waste (% w/w)	30.6	1.2	28.5	7.7	29.8	2.9
Unavoidable food waste						
Unavoidable animal-derived food waste (% w/w)	3.9	0.8	5.2	1.1	4.4	0.6
Unavoidable vegetable food waste (% w/w)	40.6	1.9	37.0	4.7	39.2	2.1
Total	100		100		100	
Food waste (% w/w of total residual household waste)	41.0	0.8	43	4.7	43	1.8
^a Single family house areas						

^a Single-family house areas

^b Multi-family house areas

^c Number of sampling areas (see Table 1)

^d Weighted average was calculated with 60% single-family houses and 40% multi-family houses (Statistics Denmark, 2015).

^e Standard deviation.

Table 4: Generation rate of food waste (in mass per wet basis: w/w)

	SFHA ^a (SFHA ^a (n=7) ^c		(n=3) ^c	Denmark (Weighted average) ^d	
	Mean	SD^e	Mean	SD^e	Mean	SD^e
Food waste (kg/household/week)	3.50	0.1	3.8	0.2	3.5	0.1
Food waste (kg/person/week)	1.47	0.04	1.97	0.1	1.6	0.0
Residual household waste (kg/household/week)	8.71	0.2	7.81	0.9	8.4	0.3
Residual household waste (kg /person/week)	3.55	0.2	4.6	0.2	3.9	0.1

^a Single-family house areas

^b Multi-family house areas

^c Number of sampling areas (see Table 1)

^d Weighted average was calculated with 60% single-family houses and 40% multi-family houses (Statistics Denmark, 2015).

^e Standard deviation.

Countries	Avoidable food waste (wet kg per year)		- Methods	Source		
Countries	Household	Capita	Weulous	Source		
Denmark ^a	48	103	WSA ^a			
UK	210	88	WSA ^a , diary and statistics	(WRAP, 2009)		
Austria	-	33	WSA ^a	(Lebersorger and Schneider, 2011)		
Sweden	60		WSA ^a	(Bernstad Sariva Schott et al., 2013)		
EU	-	115	Database	(Brautigam et al., 2014)		
DK	-	126	Database	(Brautigam et al., 2014)		
Germany	-	7	Questionnaire	(Jörissen et al., 2015)		
Italy	-	7	Questionnaire	(Jörissen et al., 2015)		
Germany	-	78	Modelling	(Jörissen et al., 2015)		
Italy	-	42-104	Modelling	(Jörissen et al., 2015)		
US	-	124	Literature review	(Koester, 2013)		
UK	-	73	Diary	(Langley et al., 2010)		
EU	-	47	Database	(Monier et al., 2010)		
Denmark	-	7	Database	(Monier et al., 2010)		
Finland	-	23	Diary	(Silvennoinen et al., 2014)		
Canada	-	218	WSA ^a	(Parizeau et al., 2014)		

^a Current study

^b Waste stream analysis

Table 6: Percentage of households that did not generate food waste ("no") as function of household size (%
$n/n)^{a}$ in the single-family house area

Household size	1 person	2 persons	3 persons	4+ persons	Total
Number of households	95	304	113	270	782
Avoidable food waste (% n/n)	11	3	0	13	3
Avoidable processed food waste (% n/n)	52	21	8	15	17
Avoidable processed animal-derived food waste (% n/n)	67	41	23	11	32
Avoidable processed vegetable food waste (% n/n)	60	36	25	1	30
Avoidable unprocessed food waste (% n/n)	15	5	2	14	4
Avoidable unprocessed animal-derived food waste	49	28	19	1	25
Avoidable unprocessed vegetable food waste (% n/n)	23	10	2	1	7
Unavoidable food waste (% n/n)	5	2	0	1	2
Unavoidable animal-derived food waste (% n/n)	28	14	12	6	15
Unavoidable vegetable food waste (% n/n)	8	3	1	1	3

^a Number of households that did not generate food waste (n) divided by number of total households for each household size (n)

Household size	Coefficients		Standard Errors ^c		Bootstrap Co Interval (95% house	5-level) per	Bootstrap Confidence ^a Interval (95%-level) per person	
	Household	Person	Household	Person	Lower	Upper	Lower	Upper
Avoidable foo	d waste							
1 person	1.03	1.03	0.15	0.16	0.81	1.51	0.81	1.45
2 persons	0.66 ^b	-0.19 ^b	0.18	0.16	0.22	0.96	-0.62	0.05
3 persons	1.85 ^b	-0.07 ^b	0.25	0.17	1.36	2.34	-0.50	0.18
4+ persons	2.75 ^b	-0.15 ^b	0.21	0.16	2.30	3.12	-0.60	0.08
Unavoidable f	ood waste							
1 person	0.96	0.96	0.15	0.08	0.96	1.14	0.81	1.14
2 persons	0.85 ^b	-0.05 ^b	0.18	0.10	0.85	1.14	-0.25	0.14
3 persons	0.91 ^b	-0.34 ^b	0.25	0.10	0.91	1.24	-0.53	-0.16
4+ persons	1.34 ^b	-0.43 ^b	0.21	0.09	1.35	1.58	-0.62	-0.27

Table 7: Bootstrap estimates of standard errors and confidence intervals of the difference in amount of food
waste (avoidable and unavoidable) as function of household size in single-family house areas

^a Confidence interval that excluded zero, and indicating significant difference.

^b Difference between household containing one person and other household size; (-) is lower than household containing one person and (+) means higher than household containing one person. Confidence interval containing zero means that the difference is insignificant, whereas confidence interval excluding zero means the difference is significant.

^c Bootstrap estimate of standard deviation.

Table 8: Generation of food waste and total residual household waste in single-family house area of Gladsaxe as function of period and associated probability values from permutation test (kg wet-waste per week)

Material fractions	Period 1	(n=115) ^a	Period 2	Period 2 (n=124) ^a		Period 3 (n=124) ^a		P-value ^d	
	HH ^b	PP^{c}	HHp	PP °	HH ^b	PP ^c	HH^{b}	PP ^c	
Avoidable food waste	2.22±2.13	0.87±0.81	2.6±2.49	1.01±1.34	2.25±2.18	0.84±0.8	0.55	0.37	
Avoidable processed food waste	0.66 ± 0.85	0.24 ± 0.29	0.70±0.96	0.24 ± 0.29	0.85±1.03	0.31±0.39	0.12	0.18	
Avoidable processed animal-derived food waste ^g	0.32±0.51	0.12±0.2	0.33±0.43	0.11±0.13	0.38±0.54	0.13±0.2	0.34	0.67	
Avoidable processed vegetable food waste ^g	0.34±0.52	0.12±0.17	0.37±0.74	0.13±0.24	0.47±0.65	0.18±0.26	0.22	0.13	
Avoidable unprocessed food waste	$1.56{\pm}1.6$	0.63±0.68	1.90 ± 2.01	0.77 ± 1.27	$1.4{\pm}1.49$	0.53±0.58	0.07	0.09	
Avoidable unprocessed animal-derived food waste ^g	0.3±0.38	0.13±0.21	0.38±0.45	0.15±0.18	0.26±0.57	0.10±0.26	0.18	0.27	
Avoidable unprocessed vegetable food waste ^g	1.26±1.41	0.50±0.56	1.52±1.81	0.62±1.24	1.14±1.27	0.43±0.49	0.14	0.16	
Unavoidable food waste	2.06±1.58	0.88±0.69	1.90±1.43	0.77±0.53	1.74±1.62	0.68±0.64	0.35	0.04	
Unavoidable animal-derived food waste ^g	0.20±0.28	0.08±0.12	0.22±0.29	0.08±0.09	0.13±0.22	0.05±0.09	0.04* ^f	$0.04 *^{f}$	
Unavoidable vegetable food waste ^g	1.87±1.46	0.80±0.64	1.68±1.34	0.69±0.51	1.60±1.5	0.62±0.58	0.17	0.19	
Food waste	4.28±3.05	1.75±1.19	4.49±3.38	1.78±1.54	3.99±3.43	1.51±1.27	0.46	0.39	
Residual household waste	8.86±4.64	3.76±2.13	9.38±5.2	3.84±2.3	8.62±5.64	3.47±2.53	0.62	0.84	

^a Number of households in the single family house areas

^b mean and standard deviation in kg wet waste per household per week

^c mean and standard deviation in kg wet waste per person per week. Standard deviation describes the variation between single-family houses

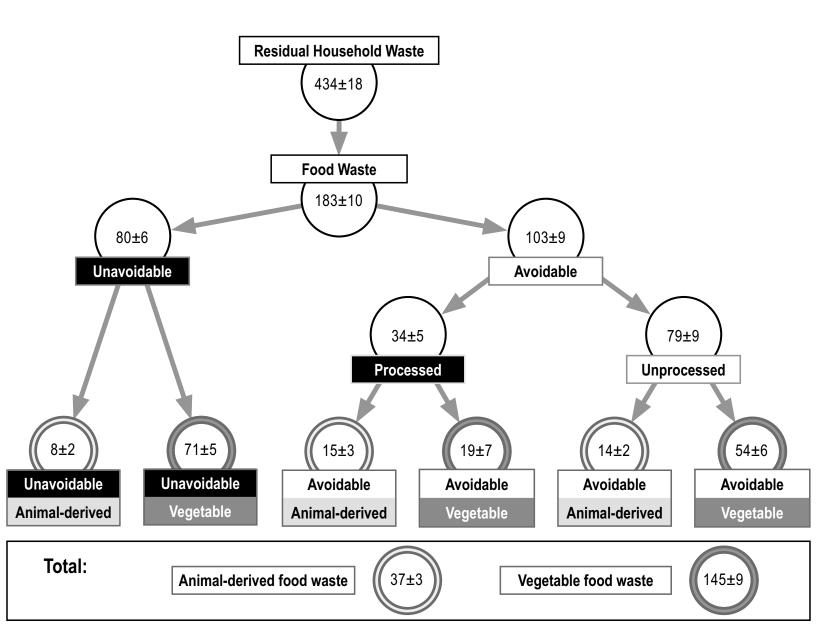
d: p-values for the permutation test based on the amount of FW per households (HH) and per person (PP).

^f: significance level p<0.05

gDetailed six food waste fractions

Figures

Figure 1: Weighted generation rate of food waste in Danish households in kg wet mass per household per year.


Figure 2: Weighted average composition of Danish household food waste (% mass per wet basis) based on food categories.

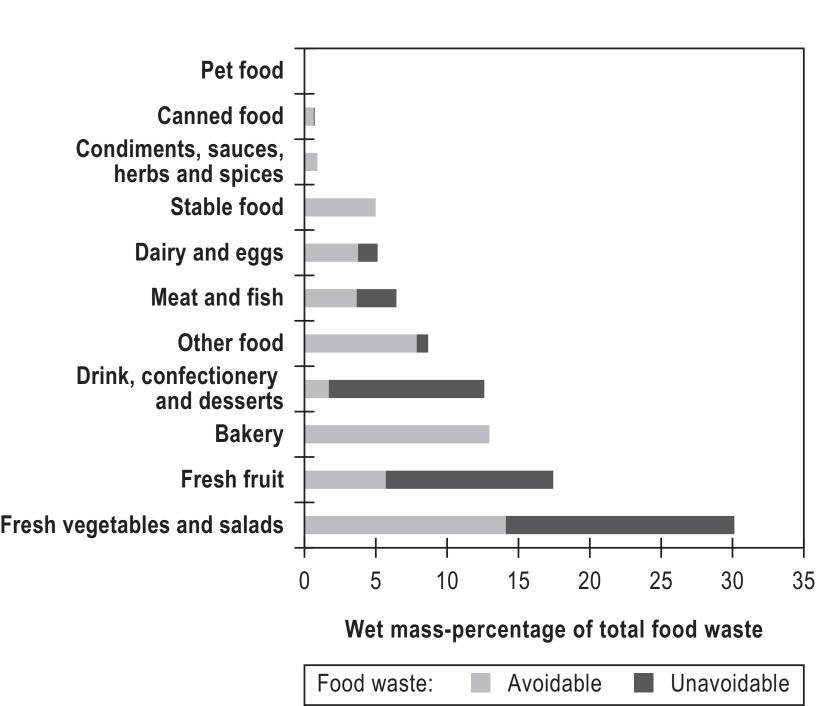
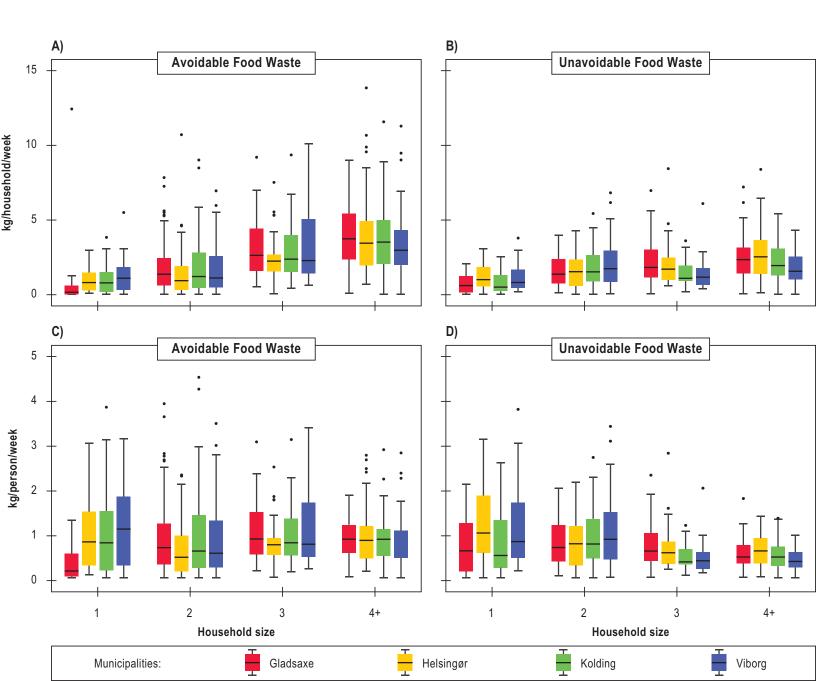
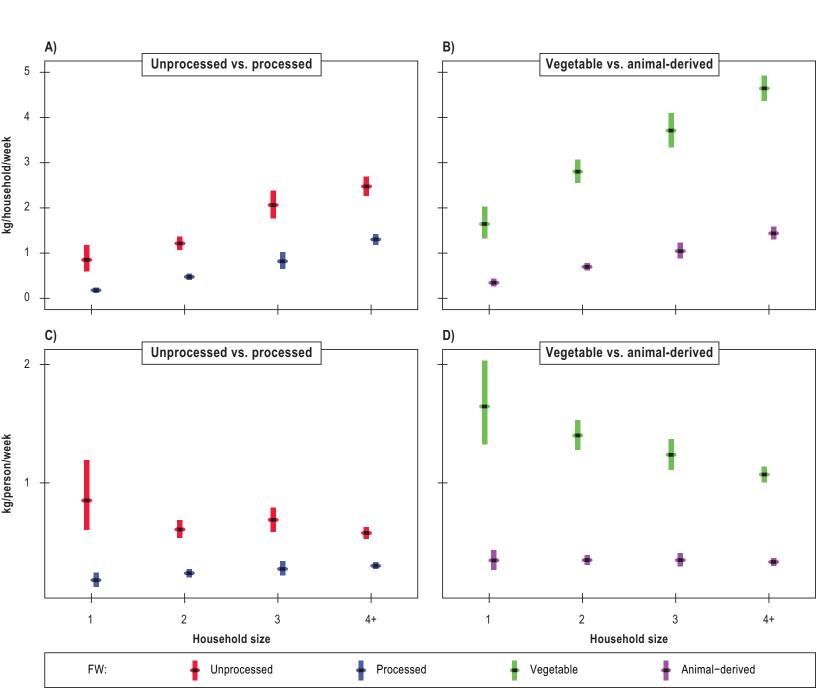
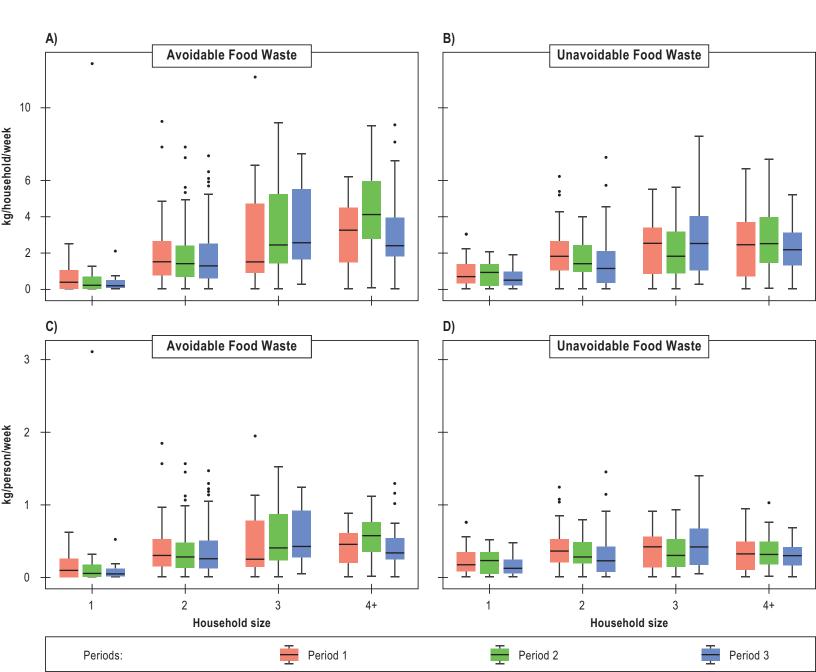

Figure 3: Distribution of the generation of avoidable and unavoidable food waste (box plots are based on wet mass basis) in the single family house areas as function of household size for the four municipalities: kg waste per household (A & B) and waste kg per person per week (C&D).

Figure 4: Comparison of the generation rates for different food waste fractions generated in singlefamily house areas between (wet mass basis of mean and 95% confidence interval are displayed): 1) unprocessed versus processed food waste fractions (A & C); 2) vegetable and animal-derived food waste fractions (B & D). The data are expressed in kg per household per week (A & B) and kg per person per week (C&D).


Figure 5: Periodic generation of avoidable and unavoidable food waste (box plots are based on wet mass basis) in the single-family house areas of Gladsaxe as function of household size: kg per household (A & B) and kg per person(C & D).





1	Supplementary materials for the paper:	
---	--	--

2	
3	Food waste generation and composition fom Danish households
4	
5	Maklawe Essonanawe Edjabou ¹ *, Claus Petersen ² , Charlotte Scheutz ¹ , Thomas Fruergaard Astrup ¹
6	
7	1) Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
8	2) Econet AS, Omøgade 8, 2.sal, 2100 Copenhagen, Denmark
9	
10	
11	
12	*) Corresponding author: <u>vine@env.dtu.dk</u> ;
13	Phone number: +45 4525 1498
14	
15	

16 Supplementary materials (SM)

17 Supplementary materials contain detailed food waste data used for calculations. SMs are divided into

tables (Table SM) and figures (Figure SM).

20 Supplementary materials (SM) – Tables

21

22

23 Table SM1: Grouping of food waste fractions

APAFW ^a	AUAFW ^b	UAFW ^c	\mathbf{APVFW}^{d}	AUVFW ^e	UVFW
Х	Х		Х	Х	
		Х			Х
Х	Х	Х			
			Х	Х	Х
Х			Х		
	Х			Х	
Х	Х	Х	Х	Х	Х
-	x x x	X X X X X X X	X X X X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X	X X X X X X X X X X X X X X X X X X X X X X X X X X X X

24 *a Avoidable processed animal derived food waste.*

25 ^bAvoidable unprocessed animal derived food waste.

26 ^c Unavoidable processed animal derived food waste.

27 ^e Avoidable processed vegetable food waste.

28 ^fAvoidable unprocessed vegetable food waste.

Grouped food categories	What it includes				
Bakery	Bread found in sandwich prepared and served at home				
	Bread, cakes (packed or not)				
	Vegetable pizza, pizza bread, etc.				
Canned food	Brine from canned vegetables food, etc.				
	Canned meat and fish,				
	Canned mixed animal and vegetable products, etc.				
	Corn, bean, pineapple, other tinned vegetables				
	Opened canned meat and fish food				
Condiments, sauces, herbs and spices	Honey, jam, olives, etc.				
	Mayonnaise, Ketchup,				
	Peanut butter, sauces, salt, sugar				
Dairy and eggs	Cheese rinds, eggs shells, etc.,				
	Cooked or fried eggs, cheese served at home, etc. and edible leftover,				
	Dairy products (milk, yoghurt, cheese, margarine, butter, etc.)				
	Eggs,				
Drinks and confectionery and desserts	Biscuits, chips, beer, alcohol, etc				
	Spent coffee grounds, tea bags, etc.				
	Tea bags, coffee grounds				
Fresh fruit	Banana, apple, melon, other fruits, etc.				
	Skin (e.g. pineapple), peals (e.g. banana),				
	Stones (e.g. avocado), (fruits rinds (e.g. melon)				
Fresh vegetables and salads	Carrots, potatoes, other fresh vegetables, etc.				
	Peels (e.g. courgette, cucumber, etc.), etc.				
	potatoes, yams, vegetables, etc. (cooked or served at home)				
	Skin (e.g. potatoes, carrots, onion)				
Meat and fish	Cooked, prepared or served at home (meat, fish, etc.)				
	Fish heads, shellfish shells, etc.				
	Meat and fish (skin, rinds, fat, etc.),				
	Meat, fish, packed cold meat, cut meat,				
Other food	Other cooked, prepared or served food at home,				
	Other inedible vegetables and fruits				
	Other mixed of vegetable and animal products				
	Other mixed of vegetable and animal products cooked, prepared or served at home				
	Other uncooked vegetable food				
Pet food	Animal or mixed animal and vegetable pet food				
	Vegetable pet food				
Stable food	Breakfast cereal, rice, pasta, flour, etc.				
	Rice, pasta, etc. (cooked or served at home)				

Table SM 3: Distribution of household size of both households sampled and population for the fourmunicipalities

Municipalities	Type of nonviotion		TT (1			
	Type of population	1	2	3	4+	- Total
Gladsaxe	Sample	12	36	16	35	100
	Population	22	33	16	29	100
TT 1 1 .	Sample	9	42	16	33	100
Helsingør	Population	23	36	15	26	100
	Sample	16	35	15	34	100
Kolding	Population	24	38	14	25	100
Viborg	Sample	11	43	10	36	100
	Population	26	37	13	24	100

35 Table SM 4: Household size and distribution of Danish households per housing type

Parameters	Single-family house (SFHA)	Multi-family house (MFSA)	Denmark (DK)
Distribution (%)	60^{aj}	40^{aj}	100
Average household size (Number of person per household)	1.89	1.66	1.70 ^b

36 Source: (Statistics Denmark, 2015)

37 The average amount per household in Denmark is: $M_{DK}(Household) = aiM_{SFHA} + ajM_{MFHA}; M_{DK}(Person) = bM_{DK}(Household)$

38

39 Table SM 5: Distribution of Danish household's size in the single-family household area

Household size (Number of person per households)	1	2	3	4+
Single-family households (SFHA)	27 ^{cj}	38 ^{cj}	14 ^{cj}	22 ^{cj}
Source: (Statistics Denmark, 2015)				

The average amount per household in Denmark is: $M_{SFHA} = \sum_{k=1}^{n} c_k m_{SFHA(k)}$ 41

42 Where ck is the distribution according to housing size, and m_{SFHA} is the mass for each housing size.

43 44

40

Table SM 6: Average food waste composition (wet mass basis) for each housing type and the weighted average 45 46 for Denmark

Food waste	SFHA ^a ($(n=4)^{c}$	MFHA ^b (n=3) ^c		Denmark (Weighted Average)	
	Mean	SD^e	Mean	SD^e	Mean	SD ^e
Avoidable food waste	55.6	2.0	57.8	9.8	56.4	3.8
Avoidable processed food waste	16.7	1.4	22.0	5.7	18.7	2.2
Avoidable processed animal-derived food waste	7.8	1.1	8.9	3.0	8.2	1.3
Avoidable processed vegetable food waste	8.9	0.9	13.0	4.8	10.5	1.8
Avoidable unprocessed food waste	38.9	1.4	35.9	8.0	37.7	3.0
Avoidable unprocessed animal-derived food waste	8.3	0.8	7.3	2.3	8.0	1.0
Avoidable unprocessed vegetable food waste	30.6	1.2	28.5	7.7	29.8	2.9
Unavoidable food waste	44.4	2.1	42.2	4.8	43.6	2.2
Unavoidable animal-derived food waste	3.9	0.8	5.2	1.1	4.4	0.6
Unavoidable vegetable food waste	40.6	1.9	37.0	4.7	39.2	2.1
Animal-derived food waste	20.0	1.6	21.4	4.0	20.5	1.7
Vegetable food waste	80.0	2.4	21.4	10.2	79.5	4.0
Avoidable vegetable food waste	38.9	1.5	35.9	9.1	37.7	3.4
Avoidable animal-derived food waste	16.7	1.4	22.0	3.8	18.7	1.6

47 ^a Single-family house areas

48 ^b Multi-family house areas

49 ^c Number of sampling areas (see Table 1) 50

^d Weighted average was calculated with 60% single-family houses and 40% multi-family houses (Statistics Denmark, 2015). 51

^e Standard deviation quantifies the amount of dispersion of data set, which consists of the average waste values of the municipalities.

53 Table SM 7: Names of variables and description for logistic regression model

Response variable (Y)	Influencing factors (explanatory)	Description
Y=0 (FWs was not found in the RHW waste bin) Y=1 (FWs was found in the RHW waste bin)	Region (categorical n=2)	Jutland, Zealand
	Municipalities (categorical n=4)	Gladsaxe, Helsingør, Kolding and Viborg
	Household size (categorical n=2)	1 person, 1+persons
	Household size (continuous)	Number of person per household

56 Table SM 8: Overview of the result from the logistic regression model assessing factors that influence whether

57 a Danish household generate

Potential influential factors	Municipalities	Regions	Composting	Household size	Household size
Type of variables	Categorical	Categorical	Categorical	Categorical	Continuous
Degree of freedom	3	1	1	1	1
Avoidable food waste	Not(Sig)	Not(Sig)	Not(Sig)	Sig***	Sig***
Avoidable processed food waste	Not(Sig)	-	Not(Sig)	Sig*	Sig*
Avoidable processed animal-derived food waste	Not(Sig)	Not(Sig)	Sig***	Sig***	Sig***
Avoidable processed vegetable food waste	Not(Sig)	Not(Sig)	Sig***	Sig***	Sig***
Avoidable unprocessed FW	Not(Sig)	Not(Sig)	Not(Sig)	Sig***	Sig***
Avoidable unprocessed animal-derived food waste	Not(Sig)	Not(Sig)	Sig***	Sig***	Sig***
Avoidable unprocessed vegetable food waste	Not(Sig)	Not(Sig)	Sig***	Sig***	Sig***
Unavoidable food waste	Not(Sig)	Not(Sig)	Not(Sig)	Sig*	Sig*
Unavoidable animal-derived food waste	Not(Sig)	Not(Sig)	Sig***	Sig***	Sig***
Unavoidable vegetable food waste	Not(Sig)	Not(Sig)	Sig*	Sig*	Sig*

58 *** Very high significance probability (p<0.001).

59 ** High significance probability (0.001<p<0.1).

60 **significance probability (0.05<p<0.001).*

61 *Not(Sig) no significance probability (p>0.05).*

Table SM 9: Estimated coefficients, 95% confidence interval and statistically significant of the logistic 62

regression that predict the probability of generating food waste in Danish single-family home 63

Food waste fractions	Household size	OR^{a}	Std. error ^b	Confidence	P-value		
				Lower	Upper		
Avoidable food waste	Intercept (1 person)	8.5	1.4	4.64	17.45	< 0.001	
	2 persons	3.46	1.59	1.38	8.7	0.00747	
	<2 persons	22.41	2.19	5.78	147.55	< 0.001	
Avoidable processed food wase	Intercept (1 person)	0.94	1.23	0.63	1.4	0.758	
	2 persons	3.92	1.28	2.41	6.4	< 0.001	
	<2 persons	19.33	1.36	10.73	36.06	< 0.001	
Avoidable animal-derived	Intercept (1 person)	0.48	1.24	0.31	0.74	< 0.001	
food waste	2 persons	3	1.28	1.86	4.92	< 0.001	
	<2 persons	10.9	1.3	6.61	18.33	< 0.001	
Avoidable vegetable processed	Intercept (1 person)	0.67	1.23	0.44	1	0.0529	
food waste	2 persons	2.65	1.27	1.66	4.27	< 0.001	
	<2 persons	7.2	1.28	4.44	11.83	< 0.001	
NProcpk	Intercept (1 person)	5.79	1.34	3.39	10.65	< 0.001	
	2 persons	3.58	1.49	1.63	7.88	0.00136	
	<2 persons	16.38	1.79	5.71	58.94	< 0.001	
AnNPkr	Intercept (1 person)	1.02	1.23	0.68	1.53	0.918	
	2 persons	2.52	1.27	1.57	4.06	< 0.001	
	<2 persons	4.97	1.28	3.07	8.1	< 0.001	
VeNPkr	Intercept (1 person)	3.32	1.28	2.1	5.47	< 0.001	
	2 persons	2.86	1.37	1.54	5.26	< 0.001	
	<2 persons	28.55	1.75	10.56	99.8	< 0.001	
UAvoidkr	Intercept (1 person)	18	1.58	8.11	51.09	< 0.001	
	2 persons	2.36	1.82	0.68	7.56	0.15146	
	<2 persons	10.58	2.33	2.24	74.73	0.00523	
AnUkr	Intercept (1 person)	2.52	1.26	1.63	4	< 0.001	
	2 persons	2.48	1.33	1.42	4.29	0.00128	
	<2 persons	2.98	1.32	1.72	5.12	< 0.001	
VeUkr	Intercept (1 person)	10.88	1.45	5.62	24.38	< 0.001	
	2 persons	2.7	1.63	1	7.06	0.0423	
	<2 persons	6.95	1.79	2.26	23.49	< 0.001	
AnAvoidkr	Intercept (1 person)	1.38	1.23	0.92	2.08	0.125	
	2 persons	3.37	1.29	2.04	5.57	< 0.001	
	<2 persons	10.41	1.34	5.91	18.72	< 0.001	
VeAvoidkr	Intercept (1 person)	4.94	1.32	2.97	8.76	< 0.001	
	2 persons	2.47	1.42	1.23	4.88	0.00955	
	<2 persons	25.65	1.9	8.31	112.18	< 0.001	
Ankr	Intercept (1 person)	6.92	1.36	3.93	13.34	< 0.001	
<i>i</i> mini	2 persons	7.18	1.67	2.7	21.16	< 0.001	
	<2 persons	6.01	1.58	2.46	15.17	< 0.001	
Vekr	Intercept (1 person)	46.5	2.04	14.73	282.22	<0.001	
Y UNI	2 persons	1.61	2.4	0.22	8.4	0.5845	
	<2 persons	8.22	3.42	0.22	177.89	0.0869	

^a:The estimate of the odds ratios. ^b:The estimate of the standard error ^c: Transformed (exponential) 95% confidence interval

68 Table SM 10: Uncertainty analysis for food waste generation (wet mass basis): Bootstrapping regression results 69 for dataset including only household that generated food waste (mass of food waste is higher than zero)

Food waste	Household size	Statistica	l parameters								
		Wet mass	Wet mass per household per week				Wet mass per person per week				
				95% CI ^a				95% CI ^a			
		original	bootSE ^b	Lower	Upper	original	bootSE ^b	Lower	Upper		
	(Intercept)	0.356	0.045	0.265	0.446	0.319	0.041	0.240	0.397		
Processed FW	pers2	0.181	0.058	0.064	0.296	-0.066	0.043	-0.148	0.016		
Processed FW	pers3	0.348	0.085	0.183	0.511	-0.076	0.046	-0.164	0.012		
	pers4+	0.861	0.077	0.709	1.015	-0.025	0.042	-0.107	0.056		
Avoidable	(Intercept)	0.295	0.049	0.201	0.394	0.235	0.049	0.135	0.329		
	pers2	-0.014	0.051	-0.116	0.088	-0.106	0.049	-0.200	-0.005		
animal-derived	pers3	0.109	0.065	-0.021	0.234	-0.099	0.051	-0.197	0.005		
processed FW	pers4+	0.298	0.057	0.182	0.411	-0.090	0.049	-0.184	0.011		
A	(Intercept)	0.182	0.024	0.136	0.228	0.168	0.022	0.125	0.210		
Avoidable	pers2	0.195	0.036	0.123	0.263	0.008	0.024	-0.038	0.055		
vegetable	pers3	0.260	0.053	0.152	0.362	-0.018	0.027	-0.068	0.033		
processed FW	pers4+	0.468	0.046	0.373	0.557	-0.006	0.023	-0.050	0.040		
	(Intercept)	0.320	0.037	0.246	0.393	0.274	0.037	0.196	0.345		
Avoidable	pers2	0.037	0.042	-0.044	0.122	-0.110	0.039	-0.185	-0.028		
vegetable	pers3	0.122	0.049	0.026	0.221	-0.125	0.039	-0.200	-0.044		
unprocessed FW	pers4+	0.144	0.046	0.057	0.235	-0.156	0.038	-0.230	-0.076		

74

^a:Confidence interval.

^b The bootstrapped estimates of standard error

Table SM 11: Uncertainty analysis for food waste generation (wet mass basis): Bootstrapping regression results for dataset including both households that generated and not food waste (raw data)

Food waste	Household size	Statistical parameters									
		Wet mass	Wet mass per household per week				Wet mass per person per week				
				95% CI ^a				95% CI ^a			
		original	bootSE ^b	Lower	Upper	original	bootSE ^b	Lower	Upper		
	(Intercept)	0.168	0.028	0.114	0.221	0.125	0.024	0.076	0.172		
December of DW	pers2	0.233	0.040	0.155	0.314	0.060	0.025	0.011	0.110		
Processed FW	pers3	0.455	0.069	0.325	0.586	0.089	0.029	0.031	0.146		
	pers4+	0.988	0.071	0.853	1.123	0.151	0.026	0.101	0.204		
Avoidable	(Intercept)	0.067	0.015	0.036	0.096	0.045	0.010	0.026	0.063		
	pers2	0.063	0.018	0.028	0.099	0.020	0.010	0.001	0.040		
animal-derived	pers3	0.166	0.032	0.100	0.227	0.046	0.013	0.019	0.074		
processed FW	pers4+	0.408	0.037	0.338	0.481	0.073	0.011	0.051	0.096		
A	(Intercept)	0.071	0.012	0.046	0.097	0.059	0.011	0.038	0.080		
Avoidable	pers2	0.140	0.024	0.091	0.188	0.044	0.013	0.018	0.070		
vegetable	pers3	0.220	0.036	0.150	0.291	0.048	0.016	0.016	0.080		
processed FW	pers4+	0.438	0.040	0.356	0.517	0.077	0.013	0.052	0.103		
Amaidable	(Intercept)	0.149	0.024	0.103	0.195	0.111	0.020	0.073	0.151		
Avoidable	pers2	0.090	0.028	0.033	0.144	0.005	0.019	-0.034	0.043		
vegetable	pers3	0.187	0.039	0.109	0.262	0.009	0.021	-0.034	0.049		
unprocessed FW	pers4+	0.219	0.034	0.149	0.285	-0.009	0.019	-0.048	0.027		

75 ^{*a*}:Confidence interval.

76 ^bThe bootstrapped estimates of standard error

77

78 Table SM 12: Comparison between datasets containing or not households that generated food. Difference is

79 between dataset (raw dataset, including household with zero food waste) and dataset including only households that generated food waste. 80

Food waste fractions	Difference	Bias	5%	95%	Significance
Food waste	-0.022	0.005	-0.289	0.232	
Avoidable food waste	-0.071	0.002	-0.262	0.105	
Avoidable processed food waste	-0.161	-0.001	-0.241	-0.072	*
Avoidable processed animal-derived food waste	-0.168	0.000	-0.215	-0.121	*
Avoidable processed vegetable food waste	-0.176	0.000	-0.232	-0.121	*
Avoidable unprocessed food waste	-0.072	0.002	-0.202	0.074	
Avoidable unprocessed animal-derived food waste	-0.130	0.000	-0.188	-0.074	*
Avoidable unprocessed vegetable food waste	-0.101	0.000	-0.220	0.032	
Unavoidable food waste	-0.035	-0.001	-0.158	0.089	
Unavoidable animal-derived food waste	-0.036	-0.001	-0.065	-0.006	*
Unavoidable vegetable food waste	-0.016	-0.001	-0.138	0.098	
*significance probability (0.05 <p<0.001).< td=""><td></td><td></td><td></td><td></td><td></td></p<0.001).<>					

significance probability (0.05<p<0.001).

82 Not(Sig) no significance probability (p>0.05).

84 Supplementary materials- Figures

- 85
- 86
- Figure SM 1: Percentage of households that did not generate food waste ("no") in the single-family house area
- 88 (% n/n) A: Avoidable and unavoidable; B Avoidable animal-derived and avoidable vegetable; C: Animal
- 89 derived and vegetable food waste; D: Avoidable processed and avoidable unprocessed.

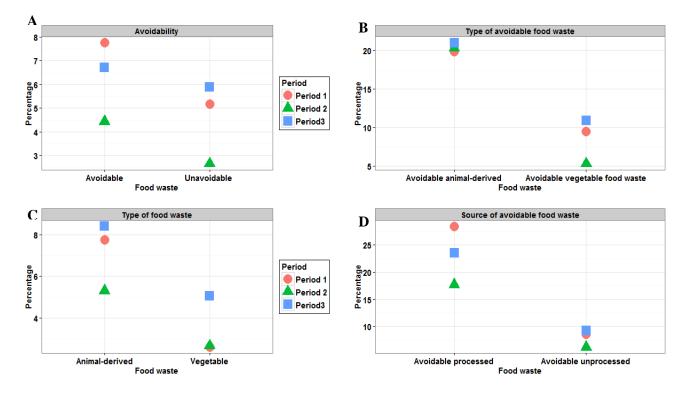
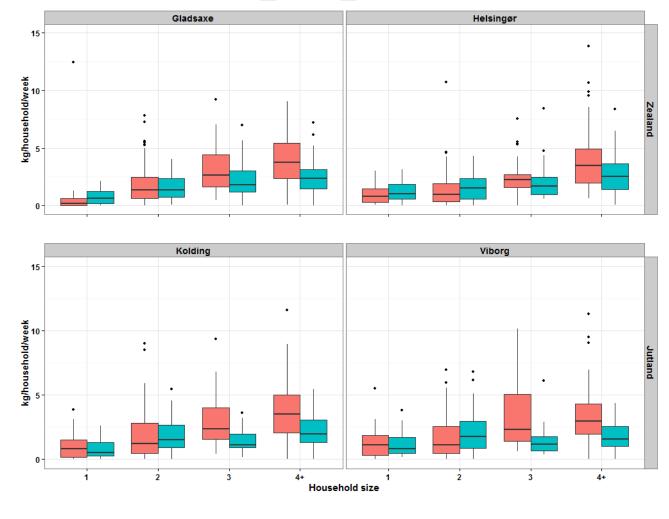



Figure SM 2: Summary of the distribution of total food waste (wet mass basis) among single-family houses as
function of household size based on kg per household per week and kg per person per week

🛑 Avoidable FW 🗮 Unavoidable FW

- .

- 110 Figure SM 3: Percentage of households that did not generate food waste ("no") in the single-family house area
- 111 (% n/n): total food waste and other residual household waste

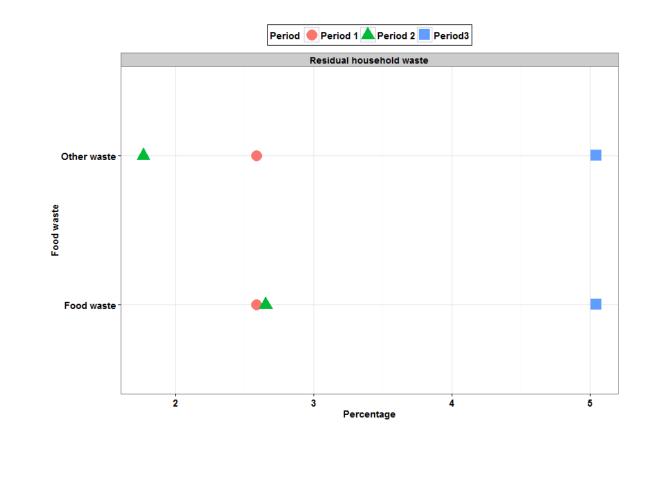
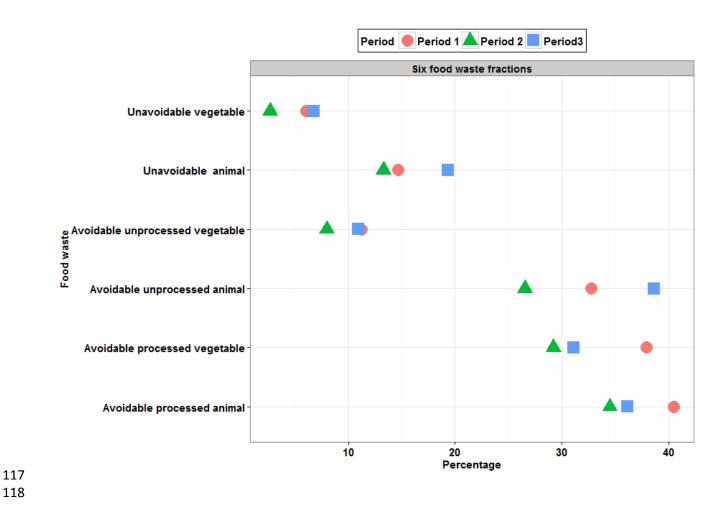
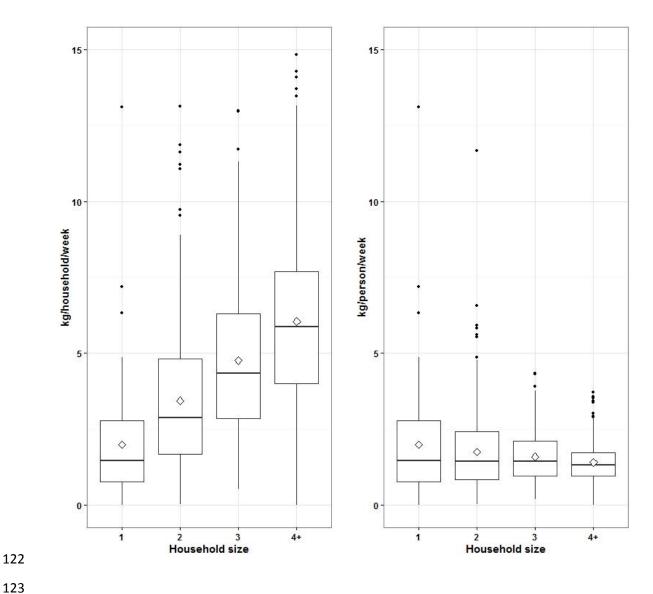




Figure SM 4: Percentage of households that did not generate food waste ("no") in the single-family house area 115 (% n/n) for the six food waste fractions 116

118

- Figure SM 5: Summary of the distribution of total food waste (wet mass basis) among households as function 120
- 121 of household size based on kg per household per week and kg per person per week

