Skip to main content
Log in

From Atomic Physics to Superatomic Physics

  • Review Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

Atomic physics is a discipline that studies the structures, laws of motion, and interactions of atoms. Its research can be classified into different categories such as atomic structures and spectra, atomic Rydberg excitation, electron-atom scattering, and atom-light interaction. Compared with atoms, as complex molecular systems, superatoms are almost infinite in variety, showing a wealth of novel properties. However, an important factor hindering the development of superatoms is the lack of fundamental laws and systematic research strategies on them that limit their application. In this context, superatomic physics has been proposed. Its essence is to classify superatomic research like atomic research to understand the fundamental laws of superatoms. In this review, we first briefly summarize the development process from atomic physics to superatomic physics in a timeline. Then, by further introducing the progress including ourselves, the current superatomic research is classified into the design of structures, resolutions of controversial results, developments of functions, strategies of assembly, and other related explorations of physical properties. Finally, a paradigm transformation from structure to function is proposed. This work has the potential to bring developments to the field of superatoms.

Graphical Abstract

The essence of proposed superatomic physics is to explore the physical laws of artificial elements at the atomic level and construct new physics tools. For this reason, the first task is to classify the exploration of superatoms with references of atomic physics, and carry out systemic research on superatomic structures and spectra, superatomic Rydberg excitation, electron-superatom scattering, and superatom-light interaction, etc. Moreover, compared with the elemental atoms in nature, the species of superatoms are nearly endless, which brings an important opportunity to realize the paradigm shift of scientific research from the structure-centered to the function-centered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Copyright © 2018 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved (Color figure online)

Fig. 3

Copyright © 2018 Tsinghua University Press and Springer-Verlag GmbH Germany. All rights reserved (Color figure online)

Fig. 4

Copyright © 2020 American Chemical Society. All rights reserved (Color figure online)

Fig. 5

Copyright © 2019 WILEY–VCH Verlag GmbH & Co. KGaA, Weinheim. All rights reserved (Color figure online)

Fig. 6

Copyright © 2015 the Owner Societies. All rights reserved (Color figure online)

Fig. 7

Copyright © 2015 Tsinghua University Press and Springer-Verlag Berlin Heidelberg. All rights reserved (Color figure online)

Fig. 8

Copyright © 2018 the Owner Societies. All rights reserved (Color figure online)

Fig. 9

Copyright © 2019 Chinese Physical Society and IOP Publishing Ltd. All rights reserved (Color figure online)

Fig. 10

Copyright © 2019 Chinese Physical Society and IOP Publishing Ltd. All rights reserved (Color figure online)

Fig. 11

Copyright © 2021 the Owner Societies. All rights reserved (Color figure online)

Fig. 12

Copyright © 2021 American Chemical Society. All rights reserved (Color figure online)

Fig. 13

Copyright © 2021 American Chemical Society. All rights reserved (Color figure online)

Fig. 14

Copyright © 2020 The Royal Society of Chemistry. All rights reserved (Color figure online)

Fig. 15

Similar content being viewed by others

References

  1. J. Dalton, A New System of Chemical Philosophy (Cambridge University Press, Cambridgeshire, 2010).

    Book  Google Scholar 

  2. T. Inoshita, S. Ohnishi, and A. Oshiyama (1986). Phys. Rev. Lett. 57, 2560.

    Article  CAS  PubMed  Google Scholar 

  3. R. S. Mulliken (1932). Rev. Mod. Phys. 4, 1.

    Article  CAS  Google Scholar 

  4. M. M. Mariscal, O. A. Oviedo, and E. P. M. Leiva, Metal Clusters and Nanoalloys: From Modeling to Applications (Springer, New York, 2013).

    Book  Google Scholar 

  5. D. A. Tomalia and S. N. Khanna (2016). Chem. Rev. 116, 2705.

    Article  CAS  PubMed  Google Scholar 

  6. G. H. Wang (1998). Progress Phys. 18, 31.

    Google Scholar 

  7. Z. G. Wang (2020). Chin. Sci. Bull. 65, 2196.

    Article  Google Scholar 

  8. Z. G. Wang (2020). J. At. Mol. Phys. 37, 196.

    Google Scholar 

  9. Z. G. Wang (2018). Chin. Sci. Bull. 63, 1775.

    Article  Google Scholar 

  10. J. P. Wang, W. Y. Xie, Y. Gao, D. X. Xu, and Z. G. Wang (2018). Sci. Bull. 63, 395.

    Article  CAS  Google Scholar 

  11. W. Ekardt (1984). Phys. Rev. B 29, 1558.

    Article  CAS  Google Scholar 

  12. J. J. Zhao, X. M. Huang, P. Jin, and Z. F. Chen (2015). Coord. Chem. Rev. 289, 315.

    Article  Google Scholar 

  13. B. K. Teo and S. Y. Yang (2015). J. Clust. Sci. 26, 1923.

    Article  CAS  Google Scholar 

  14. H. Yang, Y. Wang, H. Huang, L. Gell, L. Lehtovaara, S. Malola, H. Hakkinen, and N. Zheng (2013). Nat. Commun. 4, 2422.

    Article  PubMed  Google Scholar 

  15. X. Kang, Y. W. Li, M. Z. Zhu, and R. C. Jin (2020). Chem. Soc. Rev. 49, 6443.

    Article  PubMed  Google Scholar 

  16. J. J. Zhao, Q. Y. Du, S. Zhou, and V. Kumar (2020). Chem. Rev. 120, 9021.

    Article  CAS  PubMed  Google Scholar 

  17. T. Omoda, S. Takano, and T. Tsukuda (2021). Small 17, 2001439.

    Article  CAS  Google Scholar 

  18. S. Takano and T. Tsukuda (2021). J. Am. Ceram. Soc. 143, 1683.

    CAS  Google Scholar 

  19. L. Liu and A. Corma (2018). Chem. Rev. 118, 4981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. K. J. Taylor, C. L. Pettiette-Hall, O. Cheshnovsky, and R. E. Smalley (1992). J. Chem. Phys. 96, 3319.

    Article  CAS  Google Scholar 

  21. E. A. Doud, A. Voevodin, T. J. Hochuli, A. M. Champsaur, C. Nuckolls, and X. Roy (2020). Nat. Rev. Mater. 5, 371.

    Article  Google Scholar 

  22. M. Zhou, T. Higaki, Y. W. Li, C. J. Zeng, Q. Li, M. Y. Sfeir, and R. C. Jin (2019). J. Am. Chem. Soc. 141, 19754.

    Article  CAS  PubMed  Google Scholar 

  23. R. P. Feynman (1960). Caltech Eng. Sci. 23, 22.

    Google Scholar 

  24. W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou, and M. L. Cohen (1984). Phys. Rev. Lett. 52, 2141.

    Article  CAS  Google Scholar 

  25. R. E. Leuchtner, A. C. Harms, and A. W. Castleman (1989). J. Chem. Phys. 91, 2753.

    Article  CAS  Google Scholar 

  26. P. Pyykkö (2006). J. Organomet. Chem. 691, 4336.

    Article  Google Scholar 

  27. X. G. Gong and V. V. Kumar (1993). Phys. Rev. Lett. 70, 2078.

    Article  CAS  PubMed  Google Scholar 

  28. S. N. Khanna and P. Jena (1995). Phys. Rev. B: Condens. Matter Mater. Phys. 51, 13705.

    Article  CAS  Google Scholar 

  29. Z. Luo and A. W. Castleman (2014). Acc. Chem. Res. 47, 2931.

    Article  CAS  PubMed  Google Scholar 

  30. D. E. Bergeron, A. W. Castleman Jr., T. Morisato, and S. N. Khanna (2004). Science 304, 84.

    Article  CAS  PubMed  Google Scholar 

  31. P. Jena (2013). J. Phys. Chem. Lett. 4, 1432.

    Article  CAS  PubMed  Google Scholar 

  32. J. P. Dognon, C. Clavaguera, and P. Pyykkö (2009). J. Am. Chem. Soc. 131, 238.

    Article  CAS  PubMed  Google Scholar 

  33. T. Guo, M. D. Diener, Y. Chai, M. J. Alford, R. E. Haufler, S. M. McClure, T. Ohno, J. H. Weaver, G. E. Scuseria, and R. E. Smalley (1992). Science 257, 1661.

    Article  CAS  PubMed  Google Scholar 

  34. J. Li, X. Li, H. J. Zhai, and L. S. Wang (2003). Science 299, 864.

    Article  CAS  PubMed  Google Scholar 

  35. M. P. Johansson, D. Sundholm, and J. Vaara (2004). Angew. Chem. Int. Ed. Engl. 43, 2678.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Gao, X. Dai, S. G. Kang, C. A. Jimenez-Cruz, M. Xin, Y. Meng, J. Han, Z. G. Wang, and R. Zhou (2014). Sci. Rep. 4, 5862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Y. Gao, B. Wang, Y. Y. Lei, B. K. Teo, and Z. G. Wang (2016). Nano Res. 9, 622.

    Article  CAS  Google Scholar 

  38. Y. Gao and Z. G. Wang (2016). Chin. Phys. B 25, 083102.

    Article  Google Scholar 

  39. Y. Gao, W. R. Jiang, D. X. Xu, and Z. G. Wang (2018). Adv. Theory Simul. 1, 1700038.

    Article  Google Scholar 

  40. P. Pyykkö and N. Runeberg (2002). Angew. Chem. Int. Ed. Engl. 41, 2174.

    Article  PubMed  Google Scholar 

  41. H. J. Zhai, J. Li, and L. S. Wang (2004). J. Chem. Phys. 121, 8369.

    Article  CAS  PubMed  Google Scholar 

  42. G. Seifert, P. W. Fowler, D. Mitchell, D. Porezag, and T. Frauenheim (1997). Chem. Phys. Lett. 268, 352.

    Article  CAS  Google Scholar 

  43. J. Wang, T. Yu, Y. Gao, and Z. G. Wang (2017). Sci. China Mater. 60, 1264.

    Article  CAS  Google Scholar 

  44. W. Y. Xie, J. Wang, J. P. Wang, X. C. Wu, Z. G. Wang, and R. Q. Zhang (2020). J. Phys. Chem. C 124, 3881.

    Article  CAS  Google Scholar 

  45. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, and R. E. Smalley (1985). Nature 318, 162.

    Article  CAS  Google Scholar 

  46. M. Feng, J. Zhao, and H. Petek (2008). Science 320, 359.

    Article  CAS  PubMed  Google Scholar 

  47. H. J. Zhai, Y. F. Zhao, W. L. Li, Q. Chen, H. Bai, H. S. Hu, Z. A. Piazza, W. J. Tian, H. G. Lu, Y. B. Wu, Y. W. Mu, G. F. Wei, Z. P. Liu, J. Li, S. D. Li, and L. S. Wang (2014). Nat. Chem. 6, 727.

    Article  CAS  PubMed  Google Scholar 

  48. R. G. Parr and W. Yang (1995). Annu. Rev. Phys. Chem. 46, 701.

    Article  CAS  PubMed  Google Scholar 

  49. W. Kohn, A. D. Becke, and R. G. Parr (1996). J. Phys. Chem. 100, 12974.

    Article  CAS  Google Scholar 

  50. J. P. Wang, W. Y. Xie, W. R. Jiang, X. C. Wu, and Z. G. Wang (2019). Adv. Theory Simul. 2, 1900138.

    Article  CAS  Google Scholar 

  51. A. H. Cheng, J. P. Wang, Q. Y. Zhang, Y. Zhu, and Z. G. Wang (2020). Chem. Phys. Lett. 752.

    Article  CAS  Google Scholar 

  52. X. C. Wu, Y. Gao, W. Y. Xie, and Z. G. Wang (2020). RSC Adv. 10, 14482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. W. Kohn and L. J. Sham (1965). Phys. Rev. 140, A1133.

    Article  Google Scholar 

  54. K. Burke (2012). J. Chem. Phys. 136.

    Article  PubMed  Google Scholar 

  55. N. Kaltsoyannis (2003). Chem. Soc. Rev. 32, 9.

    Article  CAS  PubMed  Google Scholar 

  56. X. Wu and X. Lu (2007). J. Am. Chem. Soc. 129, 2171.

    Article  CAS  PubMed  Google Scholar 

  57. Y. Kumagai, H. Ikeno, and I. Tanaka (2009). J. Phys.: Condens. Matter 21, 104209.

    PubMed  Google Scholar 

  58. D. Wang, W. F. van Gunsteren, and Z. Chai (2012). Chem. Soc. Rev. 41, 5836.

    Article  CAS  PubMed  Google Scholar 

  59. T. W. Hayton (2013). Chem. Commun. 49, 2956.

    Article  CAS  Google Scholar 

  60. H. J. Huang, S. H. Yang, and X. X. Zhang (1999). J. Phys. Chem. B 103, 5928.

    Article  CAS  Google Scholar 

  61. K. Furukawa, S. Okubo, H. Kato, H. Shinohara, and T. Kato (2003). J. Phys. Chem. A 107, 10933.

    Article  CAS  Google Scholar 

  62. H. Giefers, F. Nessel, S. I. Györy, M. Strecker, G. Wortmann, Y. S. Grushko, E. G. Alekseev, and V. S. Kozlov (1999). Carbon 37, 721.

    Article  CAS  Google Scholar 

  63. B. Y. Sun, H. X. Luo, Z. J. Shi, and Z. N. Gu (2002). Electrochem. Commun. 4, 47.

    Article  CAS  Google Scholar 

  64. V. Kumar and Y. Kawazoe (2003). Appl. Phys. Lett. 83, 2677.

    Article  CAS  Google Scholar 

  65. J. U. Reveles, P. A. Clayborne, A. C. Reber, S. N. Khanna, K. Pradhan, P. Sen, and M. R. Pederson (2009). Nat. Chem. 1, 310.

    Article  CAS  PubMed  Google Scholar 

  66. X. Zhang, Y. Wang, H. Wang, A. Lim, G. Gantefoer, K. H. Bowen, J. U. Reveles, and S. N. Khanna (2013). J. Am. Chem. Soc. 135, 4856.

    Article  CAS  PubMed  Google Scholar 

  67. A. Muñoz-Castro (2015). Chem. Commun. 51, 10287.

    Article  Google Scholar 

  68. Y. W. Li, M. Z. Zhou, and R. C. Jin (2021). Adv. Mater. 33, 2006591.

    Article  CAS  Google Scholar 

  69. X. C. Wu, F. M. Yu, W. Y. Xie, Z. Liu, Z. G. Wang, and S. B. Zhang (2022). J. Phys. Chem. Lett. 13, 2632.

    Article  CAS  PubMed  Google Scholar 

  70. M. Z. Zhu, C. M. Aikens, F. J. Hollander, G. C. Schatz, and R. C. Jin (2008). J. Am. Chem. Soc. 130, 5883.

    Article  CAS  PubMed  Google Scholar 

  71. Q. Yao, H. Fang, K. Deng, E. Kan, and P. Jena (2016). Nanoscale 8, 17836.

    Article  CAS  PubMed  Google Scholar 

  72. Y. Zhu, H. F. Qian, M. Z. Zhu, and R. C. Jin (2010). Adv. Mater. 22, 1915.

    Article  CAS  PubMed  Google Scholar 

  73. H. Shen, S. J. Xiang, Z. Xu, C. Liu, X. H. Li, C. F. Sun, S. C. Lin, B. K. Teo, and N. F. Zheng (2020). Nano Res. 13, 1908.

    Article  CAS  Google Scholar 

  74. I. A. Popov, T. Jian, G. V. Lopez, A. I. Boldyrev, and L. S. Wang (2015). Nat. Commun. 6, 8654.

    Article  CAS  PubMed  Google Scholar 

  75. S. A. Claridge, A. W. Castleman, S. N. Khanna, C. B. Murray, A. Sen, and P. S. Weiss (2009). ACS Nano 3, 244.

    Article  CAS  PubMed  Google Scholar 

  76. R. C. Jin, C. Liu, S. Zhao, A. Das, H. Xing, C. Gayathri, Y. Xing, N. L. Rosi, R. R. Gil, and R. C. Jin (2015). ACS Nano 9, 8530.

    Article  CAS  PubMed  Google Scholar 

  77. J. Liu, P. Guo, J. M. Zheng, P. J. Zhao, Z. Y. Jiang, and L. Shen (2020). J. Phys. Chem. C 124, 6861.

    Article  CAS  Google Scholar 

  78. Z. F. Chen, H. J. Jiao, A. Hirsch, and P. von Rague Schleyer (2002). Angew. Chem. Int. Ed. Engl. 41, 4309.

    Article  CAS  PubMed  Google Scholar 

  79. S. Jin, X. J. Zou, L. Xiong, W. J. Du, S. Wang, Y. Pei, and M. Z. Zhu (2018). Angew. Chem. Int. Ed. Engl. 57, 16768.

    Article  CAS  PubMed  Google Scholar 

  80. L. R. Liu, P. Li, L. F. Yuan, L. J. Cheng, and J. L. Yang (2016). Nanoscale 8, 12787.

    Article  CAS  PubMed  Google Scholar 

  81. P. Jena and Q. Sun (2018). Chem. Rev. 118, 5755.

    Article  CAS  PubMed  Google Scholar 

  82. Z. N. Wu, J. L. Liu, Y. Gao, H. W. Liu, T. T. Li, H. Y. Zou, Z. G. Wang, K. Zhang, Y. Wang, H. Zhang, and B. Yang (2015). J. Am. Chem. Soc. 137, 12906.

    Article  CAS  PubMed  Google Scholar 

  83. L. Ai, W. T. Jiang, Z. Y. Liu, J. L. Liu, Y. Gao, H. Y. Zou, Z. N. Wu, Z. G. Wang, Y. Liu, H. Zhang, and B. Yang (2017). Nanoscale 9, 12618.

    Article  CAS  PubMed  Google Scholar 

  84. W. J. Wang, Q. Tang, T. R. Yu, X. Li, Y. Gao, J. Li, Y. Liu, L. Rong, Z. G. Wang, H. C. Sun, H. Zhang, and B. Yang (2017). ACS Appl. Mater. Interfaces 9, 3376.

    Article  CAS  PubMed  Google Scholar 

  85. N. Shao, Y. Pei, Y. Gao, and X. C. Zeng (2009). J. Phys. Chem. A 113, 629.

    Article  CAS  PubMed  Google Scholar 

  86. Y. Pei, P. Wang, Z. Y. Ma, and L. Xiong (2019). Acc. Chem. Res. 52, 23.

    Article  CAS  PubMed  Google Scholar 

  87. J. Li, H. C. Huang, J. Chen, Y. X. Bu, and S. B. Cheng (2021). Nano Res. 15, 1162.

    Article  Google Scholar 

  88. Y. Pei, Y. Gao, and X. C. Zeng (2008). J. Am. Chem. Soc. 130, 7830.

    Article  CAS  PubMed  Google Scholar 

  89. J. L. Fiorio, E. C. M. Barbosa, D. K. Kikuchi, P. H. C. Camargo, M. Rudolph, A. S. K. Hashmi, and L. M. Rossi (2020). Catal. Sci. Technol. 10, 1996.

    Article  CAS  Google Scholar 

  90. Y. Ma, S. Zhang, C. R. Chang, Z. Q. Huang, J. C. Ho, and Y. Qu (2018). Chem. Soc. Rev. 47, 5541.

    Article  CAS  PubMed  Google Scholar 

  91. J. L. Fiorio, N. López, and L. M. Rossi (2017). ACS Catal. 7, 2973.

    Article  CAS  Google Scholar 

  92. F. Izquierdo, S. Manzini, and S. P. Nolan (2014). Chem. Commun. 50, 14926.

    Article  CAS  Google Scholar 

  93. S. P. Chen, M. F. Li, S. Yu, S. Louisia, W. Chuang, M. Y. Gao, C. B. Chen, J. B. Jin, M. B. Salmeron, and P. D. Yang (2021). J. Chem. Phys. 155, 051101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. F. M. Yu, Y. Zhu, Y. Gao, R. Wang, W. R. Huang, Y. Gao, and Z. G. Wang (2022). Nano Res. https://doi.org/10.1007/s12274-022-4478-0.

    Article  PubMed  PubMed Central  Google Scholar 

  95. L. J. Cheng, X. Z. Zhang, B. K. Jin, and J. L. Yang (2014). Nanoscale 6, 12440.

    Article  CAS  PubMed  Google Scholar 

  96. R. Gomer and C. S. Smith, Structure and Properties of Solid Surfaces (Universty of Chicago Press, Chicago, 1953).

    Google Scholar 

  97. E. Becker, K. Bier, and W. Henkes (1956). Z. Med. Phys. 146, 333.

    Google Scholar 

  98. F. A. Cotton (1966). Q. Rev. Chem. Soc. 20, 389.

    Article  CAS  Google Scholar 

  99. S. N. Khanna and P. Jena (1992). Phys. Rev. Lett. 69, 1664.

    Article  CAS  PubMed  Google Scholar 

  100. Q. Wang, S. Pan, S. J. Lei, J. Y. Jin, G. B. Deng, G. J. Wang, L. L. Zhao, M. F. Zhou, and G. Frenking (2019). Nat. Commun. 10, 3375.

    Article  PubMed  PubMed Central  Google Scholar 

  101. L. R. Liu, L. J. Cheng, and J. L. Yang (2018). Sci. Sin.: Chim. 48, 143.

    Article  Google Scholar 

  102. M. M. Wu, H. P. Wang, Y. J. Ko, Q. Wang, Q. Sun, B. Kiran, A. K. Kandalam, K. H. Bowen, and P. Jena (2011). Angew. Chem. Int. Ed. Engl. 50, 2568.

    Article  CAS  PubMed  Google Scholar 

  103. J. Chen, H. Yang, J. Wang, and S. B. Cheng (2020). Spectrochim. Acta A 237, 118400.

    Article  CAS  Google Scholar 

  104. J. U. Reveles, S. N. Khanna, P. J. Roach, and A. W. Castleman Jr. (2006). Proc. Natl. Acad. Sci. USA 103, 18405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. V. Chauhan, A. C. Reber, and S. N. Khanna (2018). Nat. Commun. 9, 2357.

    Article  PubMed  PubMed Central  Google Scholar 

  106. J. Li, H. C. Huang, J. Wang, Y. Zhao, J. Chen, Y. X. Bu, and S. B. Cheng (2019). Nanoscale 11, 19903.

    Article  CAS  PubMed  Google Scholar 

  107. N. Hou, D. Wu, Y. Li, and Z. R. Li (2014). J. Am. Chem. Soc. 136, 2921.

    Article  CAS  PubMed  Google Scholar 

  108. T. Kambe, A. Watanabe, M. Li, T. Tsukamoto, T. Imaoka, and K. Yamamoto (2020). Adv. Mater. 32, e1907167.

    Article  PubMed  Google Scholar 

  109. X. Li, B. Kiran, J. Li, H. J. Zhai, and L. S. Wang (2002). Angew. Chem. 41, 4786.

    Article  CAS  Google Scholar 

  110. P. Pyykkö (2008). Chem. Soc. Rev. 37, 1967.

    Article  PubMed  Google Scholar 

  111. B. D. Yadav and V. Kumar (2010). Appl. Phys. Lett. 97, 133701.

    Article  Google Scholar 

  112. Y. Gao, S. Bulusu, and X. C. Zeng (2005). J. Am. Chem. Soc. 127, 15680.

    Article  CAS  PubMed  Google Scholar 

  113. Y. Gao, L. Chen, X. Dai, R. X. Song, B. Wang, and Z. G. Wang (2015). RSC Adv. 5, 32198.

    Article  CAS  Google Scholar 

  114. L. Petit, A. Svane, W. M. Temmerman, and Z. Szotek (2002). Phys. Rev. Lett. 88, 216403.

    Article  CAS  PubMed  Google Scholar 

  115. S. S. Hecker, D. R. Harbur, and T. G. Zocco (2004). Prog. Mater. Sci. 49, 429.

    Article  CAS  Google Scholar 

  116. X. Dai, Y. Gao, W. Jiang, Y. Lei, and Z. G. Wang (2015). Phys. Chem. Chem. Phys. 17, 23308.

    Article  CAS  PubMed  Google Scholar 

  117. T. R. Yu, Y. Gao, D. X. Xu, and Z. G. Wang (2018). Nano Res. 11, 354.

    Article  CAS  Google Scholar 

  118. Y. Gao, W. R. Jiang, L. Chen, J. Wang, and Z. G. Wang (2017). J. Mater. Chem. C 5, 803.

    Article  CAS  Google Scholar 

  119. Adcanced Science News, Revealing the atomic structure of actinides (2018). https://www.advancedsciencenews.com/revealing-atomic-structure-actinides.

  120. Y. Gao, X. Z. Liu, and Z. G. Wang (2017). J. Electron. Mater. 46, 3899.

    Article  CAS  Google Scholar 

  121. H. Bai, Q. Chen, H. J. Zhai, and S. D. Li (2015). Angew. Chem. Int. Ed. 54, 941.

    Article  CAS  Google Scholar 

  122. H. Dong, T. Hou, S. T. Lee, and Y. Li (2015). Sci. Rep. 5, 9952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. W. Fa, S. Chen, S. Pande, and X. C. Zeng (2015). J. Phys. Chem. A 119, 11208.

    Article  CAS  PubMed  Google Scholar 

  124. P. Jin, Q. Hou, C. Tang, and Z. Chen (2015). Theor. Chem. Acc. 134, 13.

    Article  Google Scholar 

  125. H. W. Kroto (1987). Nature 329, 529.

    Article  CAS  Google Scholar 

  126. A. A. Popov, S. Yang, and L. Dunsch (2013). Chem. Rev. 113, 5989.

    Article  CAS  PubMed  Google Scholar 

  127. W. L. Li, T. Jian, X. Chen, T. T. Chen, G. V. Lopez, J. Li, and L. S. Wang (2016). Angew. Chem. 55, 7358.

    Article  CAS  Google Scholar 

  128. Y. D. Li (2016). Nano Res. 9, 1877.

    Article  CAS  Google Scholar 

  129. L. S. Wang (2016). Int. Rev. Phys. Chem. 35, 69.

    Article  Google Scholar 

  130. W. R. Jiang and Z. G. Wang (2016). J. Cluster Sci. 27, 845.

    Article  CAS  Google Scholar 

  131. Y. M. Chen, C. Z. G. Wang, Q. Y. Wu, J. H. Lan, Z. F. Chai, and W. Q. Shi (2021). Dalton Trans. 50, 15576.

    Article  CAS  PubMed  Google Scholar 

  132. O. Stéphan, Y. Bando, A. Loiseau, F. Willaime, N. Shramchenko, T. Tamiya, and T. Sato (1998). Appl. Phys. A: Mater. Sci. Process. 67, 107.

    Article  Google Scholar 

  133. X. Xia, D. A. Jelski, J. R. Bowser, and T. F. George (2002). J. Am. Ceram. Soc. 114, 6493.

    Google Scholar 

  134. X. Xu and W. A. Goddard 3rd. (2004). Proc. Natl. Acad. Sci. USA 101, 2673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Y. Zhao and D. G. Truhlar (2008). Theor. Chem. Acc. 120, 215.

    Article  CAS  Google Scholar 

  136. K. Zhao and R. M. Pitzer (1996). J. Phys. Chem. 100, 4798.

    Article  CAS  Google Scholar 

  137. X. Dai, Y. Gao, M. Xin, Z. G. Wang, and R. Zhou (2014). J. Chem. Phys. 141, 244306.

    Article  PubMed  Google Scholar 

  138. K. Kobayashi and S. Nagase (1998). Chem. Phys. Lett. 282, 325.

    Article  CAS  Google Scholar 

  139. E. Nishibori, K. Iwata, M. Sakata, M. Takata, H. Tanaka, H. Kato, and H. Shinohara (2004). Phys. Rev. B 69, 113412.

    Article  Google Scholar 

  140. A. A. Popovand and L. Dunsch (2009). Chemistry—Eur. J. 15, 9707.

    Article  Google Scholar 

  141. M. Suzuki, X. Lu, S. Sato, H. Nikawa, N. Mizorogi, Z. Slanina, T. Tsuchiya, S. Nagase, and T. Akasaka (2012). Inorg. Chem. 51, 5270.

    Article  CAS  PubMed  Google Scholar 

  142. A. L. Kutepov (2007). J. Alloys Compd. 444, 174.

    Article  Google Scholar 

  143. K. I. Ingram, M. J. Tassell, A. J. Gaunt, and N. Kaltsoyannis (2008). Inorg. Chem. 47, 7824.

    Article  CAS  PubMed  Google Scholar 

  144. P. Wåhlin, C. Danilo, V. Vallet, F. Réal, J. P. Flament, and U. Wahlgren (2008). J. Chem. Theory Comput. 4, 569.

    Article  PubMed  Google Scholar 

  145. J. M. L. Martin (1996). Chem. Phys. Lett. 255, 1.

    Article  CAS  Google Scholar 

  146. C. Z. Wang, T. Bo, J. H. Lan, Q. Y. Wu, Z. F. Chai, J. K. Gibson, and W. Q. Shi (2018). Chem. Commun. 54, 2248.

    Article  CAS  Google Scholar 

  147. P. W. Dunk, N. K. Kaiser, M. Mulet-Gas, A. Rodríguez-Fortea, J. M. Poblet, H. Shinohara, C. L. Hendrickson, A. G. Marshall, and H. W. Kroto (2012). J. Am. Ceram. Soc. 134, 9380.

    CAS  Google Scholar 

  148. H. X. Xu, E. J. Bjerneld, M. Kall, and L. Borjesson (1999). Phys. Rev. Lett. 83, 4357.

    Article  CAS  Google Scholar 

  149. Z. Q. Tian and B. Ren (2004). Annu. Rev. Phys. Chem. 55, 197.

    Article  CAS  PubMed  Google Scholar 

  150. D. Y. Wu, J. F. Li, B. Ren, and Z. Q. Tian (2008). Chem. Soc. Rev. 37, 1025.

    Article  CAS  PubMed  Google Scholar 

  151. J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang, and Z. Q. Tian (2010). Nature 464, 392.

    Article  CAS  PubMed  Google Scholar 

  152. L. Jensen, C. M. Aikens, and G. C. Schatz (2008). Chem. Soc. Rev. 37, 1061.

    Article  CAS  PubMed  Google Scholar 

  153. B. Erdmann and C. Keller (1973). J. Solid State Chem. 7, 40.

    Article  CAS  Google Scholar 

  154. J. C. Krupa (1995). J. Alloys Compd. 225, 1.

    Article  CAS  Google Scholar 

  155. L. L. Zhao, L. Jensen, and G. C. Schatz (2006). Nano Lett. 6, 1229.

    Article  CAS  PubMed  Google Scholar 

  156. L. Jensen, L. L. Zhao, and G. C. Schatz (2007). J. Phys. Chem. C 111, 4756.

    Article  CAS  Google Scholar 

  157. R. E. Da Re, K. C. Jantunen, J. T. Golden, J. L. Kiplinger, and D. E. Morris (2005). J. Am. Chem. Soc. 127, 682.

    Article  PubMed  Google Scholar 

  158. J. Wang, W. Xie, J. Wang, Y. Gao, J. Lei, R. Q. Zhang, and Z. G. Wang (2018). Phys. Chem. Chem. Phys. 20, 27523.

    Article  CAS  PubMed  Google Scholar 

  159. D. Y. Wu, S. Duan, B. Ren, and Z. Q. Tian (2005). J. Raman Spectrosc. 36, 533.

    Article  CAS  Google Scholar 

  160. C. M. Aikens and G. C. Schatz (2006). J. Phys. Chem. A 110, 13317.

    Article  CAS  PubMed  Google Scholar 

  161. L. Zhao, L. Jensen, and G. C. Schatz (2006). J. Am. Chem. Soc. 128, 2911.

    Article  CAS  PubMed  Google Scholar 

  162. L. Chen, Y. Gao, Y. Cheng, H. Li, Z. G. Wang, Z. Li, and R. Q. Zhang (2016). Nanoscale 8, 4086.

    Article  CAS  PubMed  Google Scholar 

  163. S. Nie and R. Emory Steven (1997). Science 275, 1102.

    Article  CAS  PubMed  Google Scholar 

  164. Y. Sun and Y. Xia (2002). Science 298, 2176.

    Article  CAS  PubMed  Google Scholar 

  165. D. Tian, H. Zhang, and J. Zhao (2007). Solid State Commun. 144, 174.

    Article  CAS  Google Scholar 

  166. H. J. Zhai, A. N. Alexandrova, K. A. Birch, A. I. Boldyrev, and L. S. Wang (2003). Angew. Chem. Int. Ed. 42, 6004.

    Article  CAS  Google Scholar 

  167. W. L. Li, A. S. Ivanov, J. Federič, C. Romanescu, I. Černušák, A. I. Boldyrev, and L. S. Wang (2013). J. Chem. Phys. 139, 104312.

    Article  PubMed  Google Scholar 

  168. Y. Gao, R. Wang, J. Lei, Y. Zhu, D. Li, L. Zhang, W. Xie, and Z. G. Wang (2021). Adv. Theory Simul. 4, 2000283.

    Article  CAS  Google Scholar 

  169. V. Kumar and Y. Kawazoe (2001). Phys. Rev. Lett. 87, 045503.

    Article  CAS  PubMed  Google Scholar 

  170. B. Q. Yin and Z. X. Luo (2021). Coord. Chem. Rev. 429, 213643.

    Article  CAS  Google Scholar 

  171. B. K. Teo and H. Zhang (1991). Proc. Natl. Acad. Sci. USA 88, 5067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. L. J. Cheng and J. L. Yang (2013). J. Chem. Phys. 138, 141101.

    Article  PubMed  Google Scholar 

  173. L. Noodleman, C. Y. Peng, D. A. Case, and J. M. Mouesca (1995). Coord. Chem. Rev. 144, 199.

    Article  CAS  Google Scholar 

  174. W. Y. Xie, Y. Zhu, J. P. Wang, A. H. Cheng, and Z. G. Wang (2019). Chin. Phys. Lett. 36, 116401.

    Article  CAS  Google Scholar 

  175. Q. Y. Du, Z. Wang, S. Zhou, J. J. Zhao, and V. Kumar (2021). Phys. Rev. Mater. 5, 066001.

    Article  CAS  Google Scholar 

  176. J. Wang, W. R. Jiang, W. Y. Xie, J. P. Wang, and Z. G. Wang (2019). Sci. China Mater. 62, 416.

    Article  CAS  Google Scholar 

  177. W. Y. Xie, W. R. Jiang, Y. Gao, J. Wang, and Z. Wang (2018). Chem. Commun. 54, 13383.

    Article  CAS  Google Scholar 

  178. W. Y. Xie, F. M. Yu, X. C. Wu, Z. Liu, Q. Yan, and Z. G. Wang (2021). Phys. Chem. Chem. Phys. 23, 15899.

    Article  CAS  PubMed  Google Scholar 

  179. D. E. Jiang, M. Kuhn, Q. Tang, and F. Weigend (2014). J. Phys. Chem. Lett. 5, 3286.

    Article  CAS  PubMed  Google Scholar 

  180. H. Häkkinen (2008). Chem. Soc. Rev. 37, 1847.

    Article  PubMed  Google Scholar 

  181. C. Q. Sun, Y. Sun, Y. G. Ni, X. Zhang, J. S. Pan, X. H. Wang, J. Zhou, L. T. Li, W. T. Zheng, S. S. Yu, L. K. Pan, and Z. Sun (2009). J. Phys. Chem. C 113, 20009.

    Article  CAS  Google Scholar 

  182. A. H. Cheng, R. Wang, Z. Liu, R. Liu, W. R. Huang, and Z. G. Wang (2021). J. Phys. Chem. Lett. 12, 8713.

    Article  CAS  PubMed  Google Scholar 

  183. V. Bendkowsky, B. Butscher, J. Nipper, J. P. Shaffer, R. Low, and T. Pfau (2009). Nature 458, 1005.

    Article  CAS  PubMed  Google Scholar 

  184. Y. O. Dudin, L. Li, F. Bariani, and A. Kuzmich (2012). Nat. Phys. 8, 790.

    Article  CAS  Google Scholar 

  185. T. Peyronel, O. Firstenberg, Q.-Y. Liang, S. Hofferberth, A. V. Gorshkov, T. Pohl, M. D. Lukin, and V. Vuletić (2012). Nature 488, 57.

    Article  CAS  PubMed  Google Scholar 

  186. P. Schauss, M. Cheneau, M. Endres, T. Fukuhara, S. Hild, A. Omran, T. Pohl, C. Gross, S. Kuhr, and I. Bloch (2012). Nature 491, 87.

    Article  CAS  PubMed  Google Scholar 

  187. T. M. Weber, M. Honing, T. Niederprum, T. Manthey, O. Thomas, V. Guarrera, M. Fleischhauer, G. Barontini, and H. Ott (2015). Nat. Phys. 11, 157.

    Article  CAS  Google Scholar 

  188. C. Boisseau, I. Simbotin, and R. Côté (2002). Phys. Rev. Lett. 88, 133004.

    Article  PubMed  Google Scholar 

  189. Z. Liu, X. Wu, Y. Zhu, R. Wang, F. Yu, and Z. G. Wang (2021). J. Phys. Chem. Lett. 12, 11766.

    Article  CAS  PubMed  Google Scholar 

  190. J. H. Hodak, A. Henglein, and G. V. Hartland (2000). J. Chem. Phys. 112, 5942.

    Article  CAS  Google Scholar 

  191. Z. Y. Guo, B. F. Habenicht, W. Z. Liang, and O. V. Prezhdo (2010). Phys. Rev. B 81.

    Article  Google Scholar 

  192. A. J. Neukirch, Z. Guo, and O. V. Prezhdo (2012). J. Phys. Chem. C 116, 15034.

    Article  CAS  Google Scholar 

  193. R. E. Imhof and F. H. Read (1977). Rep. Prog. Phys. 40, 1.

    Article  Google Scholar 

  194. C. E. Theodosiou (1984). Phys. Rev. A 30, 2881.

    Article  CAS  Google Scholar 

  195. D. Pavičić, K. F. Lee, D. M. Rayner, P. B. Corkum, and D. M. Villeneuve (2007). Phys. Rev. Lett. 98.

    Article  PubMed  Google Scholar 

  196. W. David, Energy Landscapes: Applications to Clusters, Biomolecules and Glasses (Cambridge University Press, Cambridge, 2003).

    Google Scholar 

  197. B. Jeziorski, R. Moszynski, and K. Szalewicz (2002). Chem. Rev. 94, 1887.

    Article  Google Scholar 

  198. Q. Y. Zhang, Y. Gao, R. Wang, Y. Zhu, W. Y. Xie, G. Schreckenbach, and Z. G. Wang (2020). Chem. Commun. 56, 14681.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank the members of our group for the stimulating discussion, including Dr. Yang Gao, Dr. Weiyu Xie, Dr. Xing Dai, Dr. Jia Wang, Dr. Wanrun Jiang, Mr. Dexuan Xu, Ms. Tianrong Yu, Mr. Jianpeng Wang, Ms. Qingyue Zhang, Ms. Aihua Cheng, Ms. Xiaochen Wu, Ms. Yang Gao and Mr. Xinrui Yang. This work is supported by the National Natural Science Foundation of China (under Grant Numbers 11974136, 11674123 and 11374004). Z. W. also acknowledges the High-Performance Computing Center of Jilin University and National Supercomputing Center in Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, F., Li, J., Liu, Z. et al. From Atomic Physics to Superatomic Physics. J Clust Sci 34, 1691–1708 (2023). https://doi.org/10.1007/s10876-022-02354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-022-02354-y

Keywords

Navigation