Skip to main content

Advertisement

Log in

Global trends and future prospects of food waste research: a bibliometric analysis

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The unregulated discharge reams of food waste (FW) causes severe resource loss and environmental pollution. In the present study, a bibliometric analysis was used for research activities and tendencies of food waste from 1991 to 2015. The results indicated that the amount of FW research continually grew by the years, and the number of publications rose significantly from 2012. Bioresource Technology and Waste Management were the two most frequently published journals in the field of FW research. China took a leading position and had a high h-index (38) out of 94 countries/territories, followed by the USA and South Korea. Presently, anaerobic digestion for methane and dark fermentation for hydrogen production are the mainstream techniques in FW disposal. Lactic and ethanol fermentation from FW received more and more attention in recent years. Life cycle assessment (LCA) was an ever-increasingly popular evaluation method for FW-related research. Moreover, cluster analysis indicated microbial community structure, food security, leachate, and pathogens were also the research hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alibardi L, Cossu R (2015) Composition variability of the organic fraction of municipal solid waste and effects on hydrogen and methane production potentials. Waste Manag 36:147–155

    Article  CAS  Google Scholar 

  • Argelier S, Delgenes JP, Moletta R (1998) Design of acidogenic reactors for the anaerobic treatment of the organic fraction of solid food waste. Bioprocess Eng 18(4):309–315

    Article  CAS  Google Scholar 

  • Arelli V, Begum S, Anupoju GR, Kuruti K, S. S (2018) Dry anaerobic co-digestion of food waste and cattle manure: impact of total solids, substrate ratio and thermal pretreatment on methane yield and quality of biomanure. Bioresour Technol 253:273–280

    Article  CAS  Google Scholar 

  • Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156

    Article  CAS  Google Scholar 

  • Baskerville C (1904) The titles of papers. Science 19(487):702–703

    Article  CAS  Google Scholar 

  • Bernstad A, la Cour Jansen J, Aspegren A (2013) Door-stepping as a strategy for improved food waste recycling behaviour—evaluation of a full-scale experiment. Resour Conserv Recycl 73:94–103

    Article  Google Scholar 

  • Borowski S, Boniecki P, Kubacki P, Czyżowska A (2018) Food waste co-digestion with slaughterhouse waste and sewage sludge: digestate conditioning and supernatant quality. Waste Manag 74:158–167

    Article  CAS  Google Scholar 

  • Cao W, Vaddella V, Biswas S, Perkins K, Clay C, Wu T, Zheng Y, Ndegwa P, Pandey P (2016) Assessing the changes in E. coli levels and nutrient dynamics during vermicomposting of food waste under lab and field scale conditions. Environ Sci Pollut Res 23:23195–23202

    Article  CAS  Google Scholar 

  • Capson-Tojo G, Rouez M, Crest M, Steyer J, Delgenès J, Escudié R (2016) Food waste valorization via anaerobic processes: a review. Rev Environ Sci Biotechnol 15(3):499–547

    Article  CAS  Google Scholar 

  • Castillo-Hernández A, Mar-Alvarez I, Moreno-Andrade I (2015) Start-up and operation of continuous stirred-tank reactor for biohydrogen production from restaurant organic solid waste. Int J Hydrog Energy 40:17239–17245

    Article  CAS  Google Scholar 

  • Chen D, Liu Z, Luo Z, Webber M, Chen J (2016) Bibliometric and visualized analysis of emergy research. Ecol Eng 90:285–293

    Article  Google Scholar 

  • Chen X, Yuan H, Zou D, Liu Y, Zhu B, Chufo A, Jaffar M, Li X (2015) Improving biomethane yield by controlling fermentation type of acidogenic phase in two-phase anaerobic co-digestion of food waste and rice straw. Chem Eng J 273:254–260

    Article  CAS  Google Scholar 

  • Cheung CK (1997) Chemical evaluation of some lesser known edible mushroom mycelia produced in submerged culture from soy milk waste. Food Chem 60(1):61–65

    Article  CAS  Google Scholar 

  • D'Imporzano G, Crivelli F, Adani F (2008) Biological compost stability influences odor molecules production measured by electronic nose during food-waste high-rate composting. Sci Total Environ 402(2–3):278–284

    Article  CAS  Google Scholar 

  • FAO (2015) Food loss and waste facts, http://www.fao.org/resources/infographics/infographics-details/en/c/317265/

  • Ferchichi M, Crabbe E, Gil G et al (2005) Influence of initial ph on hydrogen production from cheese whey. J Biotechnol 120:402–409

    Article  CAS  Google Scholar 

  • Garfield E (1990) Key-words-plus takes you beyond title words. 2. Expanded journal coverage for current-contents-on-diskette includes social and behavioral-sciences. Curr Contents 33:5–9

    Google Scholar 

  • Han S, Shin H (2004) Performance of an innovative two-stage process converting food waste to hydrogen and methane. J Air Waste Manage Assoc 54:242–249

    Article  CAS  Google Scholar 

  • Han W, Ye M, Zhu AJ, Zhao HT, Li YF (2015) Batch dark fermentation from enzymatic hydrolyzed food waste for hydrogen production. Bioresour Technol 191:24–29

    Article  CAS  Google Scholar 

  • Hawkes F, Hussy I, Kyazze G, Dinsdale R, Hawkes D (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrog Energy 32(2):172–184

    Article  CAS  Google Scholar 

  • Jarunglumlert T, Prommuak C, Putmai N, Pavasant P (2018) Scaling-up bio-hydrogen production from food waste: feasibilities and challenges. Int J Hydrog Energy 43:634–648

    Article  CAS  Google Scholar 

  • Jenkins R, Alles C (2011) Field to fuel: developing sustainable biorefineries. Ecol Appl 21(4):1096–1104

    Article  Google Scholar 

  • Kapdan IK, Kargi F (2006) Bio-hydrogen production from waste materials. Enzym Microb Technol 38:569–582

    Article  CAS  Google Scholar 

  • Karmee SK (2016) Liquid biofuels from food waste: current trends, prospect and limitation. Renew Sust Energ Rev 53:945–953

    Article  CAS  Google Scholar 

  • Kim HJ, Kim SH, Choi YG, Kim GD, Tai HC (2006) Effect of enzymatic pretreatment on acid fermentation of food waste. J Chem Technol Biotechnol 81(6):974–980

    Article  CAS  Google Scholar 

  • Kim S, Han S, Shin H (2004) Feasibility of biohydrogen production by anaerobic co-digestion of food waste and sewage sludge. Int J Hydrog Energy 29(15):1607–1616

    Article  CAS  Google Scholar 

  • Kinnunen M, Hilderbrandt D, Grimberg S, Rogers S, Mondal S (2015) Comparative study of methanogens in one- and two-stage anaerobic digester treating food waste. Renewable Agric Food Syst 30:515–523

    Article  Google Scholar 

  • Komilis DP, Ham RK (2006) Carbon dioxide and ammonia emissions during composting of mixed paper, yard waste and food waste. Waste Manag 26:62–70

    Article  CAS  Google Scholar 

  • Lay J (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrog Energy 28:1361–1367

    Article  CAS  Google Scholar 

  • Lee WS, Chua ASM, Yeoh HK, Ngoh GC (2014) A review of the production and applications of waste-derived volatile fatty acids. Chem Eng J 235:83–99

    Article  CAS  Google Scholar 

  • Li L, Ding G, Feng N, Wang M, Ho Y (2009) Global stem cell research trend: bibliometric analysis as a tool for mapping of trends from 1991 to 2006. Scientometrics 80(1):39–58

    Article  CAS  Google Scholar 

  • Li Y, Shahbazi A, Williams K, Wan C (2008) Separate and concentrate lactic acid using combination of nanofiltration and reverse osmosis membranes. Appl Biochem Biotechnol 147(1–3):1–9

    Article  CAS  Google Scholar 

  • Li Z, Lu H, Ren L, He L (2013) Experimental and modeling approaches for food waste composting: a review. Chemosphere 93(7):1247–1257

    Article  CAS  Google Scholar 

  • Lin CSK, Pfaltzgraff LA, Herrero-Davila L, Mubofu EB, Abderrahim S, Clark JH, Koutinas AA, Kopsahelis N, Stamatelatou K, Dickson F, Thankappan S, Mohamed Z, Brocklesby R, Luque R (2013) Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6:426–464

    Article  CAS  Google Scholar 

  • Mao IF, Tsai CJ, Shen SH, Lin TF, Chen WK, Chen ML (2006) Critical components of odors in evaluating the performance of food waste composting plants. Sci Total Environ 370(2–3):323–329

    Article  CAS  Google Scholar 

  • Martinezperez N, Cherryman S, Premier G et al (2007) The potential for hydrogen-enriched biogas production from crops: scenarios in the UK. Biomass Bioenergy 31:95–104

    Article  CAS  Google Scholar 

  • Mela GS, Cimmino MA, Ugolini D (1999) Impact assessment of oncology research in the European Union. Eur J Cancer 35(8):1182–1186

    Article  CAS  Google Scholar 

  • Meng Y, Li S, Yuan H, Zou D, Liu Y, Zhu B, Li X (2015) Effect of lipase addition on hydrolysis and biomethane production of Chinese food waste. Bioresour Technol 179:452–459

    Article  CAS  Google Scholar 

  • Michalopoulos A, MD F, E M, Falagas MM (2005) A bibliometric analysis of global research production in respiratory medicine. Chest 128:3993–3998

    Article  Google Scholar 

  • Mourad M (2016) Recycling, recovering and preventing “food waste”: competing solutions for food systems sustainability in the United States and France. J Clean Prod 126:461–477

    Article  Google Scholar 

  • Murphy S, Gaffney MT, Fanning S, Burgess CM (2016) Potential for transfer of escherichia coli o157:h7, listeria monocytogenes and salmonella senftenberg from contaminated food waste derived compost and anaerobic digestate liquid to lettuce plants. Food Microbiol 59:7–13

    Article  Google Scholar 

  • Nakakubo T, Tokai A, Ohno K (2012) Comparative assessment of technological systems for recycling sludge and food waste aimed at greenhouse gas emissions reduction and phosphorus recovery. J Clean Prod 32:157–172

    Article  CAS  Google Scholar 

  • Nam J, Kim D, Kim S et al (2016) Harnessing dark fermentative hydrogen from pretreated mixture of food waste and sewage sludge under sequencing batch mode. Environ Sci Pollut Res 23:7155–7161

    Article  CAS  Google Scholar 

  • Olguin EJ, Sanchez G, Gonzalez R (1993) Accelerated food waste cornposting. World J Microbiol Biotechnol 9:625–629

    Article  CAS  Google Scholar 

  • Pagliaccia P, Gallipoli A, Gianico A, Montecchio D, Braguglia CM (2016) Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: impact of thermal pretreatment on hydrogen and methane production. Int J Hydrog Energy 41(2):905–915

    Article  CAS  Google Scholar 

  • Parfitt J, Barthel M, Macnaughton S (2010) Food waste within food supply chains: quantification and potential for change to 2050. Philos Trans R Soc B Biol Sci 365:3065–3081

    Article  Google Scholar 

  • Persson O, Danell R, Schneider J.W (2009) How to use Bibexcel for various types of bibliometric analysis. Celebrating Scholarly Communication Studies A Festschrift for Olle Persson at His Birthday 9–24

  • Porpatham E, Ramesh A, Nagalingam B (2007) Effect of hydrogen addition on the performance of a biogas fuelled spark ignition engine. Int J Hydrog Energy 32:2057–2065

    Article  CAS  Google Scholar 

  • Rafieenia R, Girotto F, Peng W, Cossu R, Pivato A, Raga R, Lavagnolo MC (2017) Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions. Waste Manag 59:194–199

    Article  CAS  Google Scholar 

  • Schwartz FW, Fang YC, Parthasarathy S (2005) Patterns of evolution of research strands in the hydrologic sciences. Hydrogeol J 13(1):25–36

    Article  Google Scholar 

  • Sealey KS, Smith J (2014) Recycling for small island tourism developments: food waste composting at Sandals Emerald Bay, Exuma, Bahamas. Resour Conserv Recycl 92:25–37

    Article  Google Scholar 

  • Sen B, Aravind J, Kanmani P, Lay C (2016) State of the art and future concept of food waste fermentation to bioenergy. Renew Sust Energ Rev 53:547–557

    Article  CAS  Google Scholar 

  • Sim EYS, Wu TY (2010) The potential reuse of biodegradable municipal solid wastes (MSW) as feedstocks in vermicomposting. J Sci Food Agric 90(13):2153–2162

    Article  CAS  Google Scholar 

  • Sullivan DM, Bary AI, Thomas DR, Fransen SC, Cogger CG (2002) Food waste compost effects on fertilizer nitrogen efficiency, available nitrogen, and tall fescue yield. Soil Sci Soc Am J 66(1):154–161

    Article  CAS  Google Scholar 

  • Tenca A, Schievano A, Perazzolo F, Adani F, Oberti R (2011) Biohydrogen from thermophilic co-fermentation of swine manure with fruit and vegetable waste: maximizing stable production without pH control. Bioresour Technol 102:8582–8588

    Article  CAS  Google Scholar 

  • Thi NBD, Lin C, Kumar G (2016) Waste-to-wealth for valorization of food waste to hydrogen and methane towards creating a sustainable ideal source of bioenergy. J Clean Prod 122:29–41

    Article  Google Scholar 

  • Vandermeersch T, Alvarenga RAF, Ragaert P, Dewulf J (2014) Environmental sustainability assessment of food waste valorization options. Resour Conserv Recycl 87:57–64

    Article  Google Scholar 

  • Wan S, Sun L, Douieb Y, Sun J, Luo W (2013) Anaerobic digestion of municipal solid waste composed of food waste, wastepaper, and plastic in a single-stage system: performance and microbial community structure characterization. Bioresour Technol 146:619–627

    Article  CAS  Google Scholar 

  • Wang YH, Li SL, Chen IC, Tseng IC, Cheng SS (2010) A study of the process control and hydrolytic characteristics in a thermophilic hydrogen fermentor fed with starch-rich kitchen waste by using molecular-biological methods and amylase assay. Int J Hydrog Energy 35(23):13004–13012

    Article  CAS  Google Scholar 

  • Wang L, Zhao L, Mao G, Zuo J, Du H (2017) Way to accomplish low carbon development transformation: a bibliometric analysis during 1995–2014. Renew Sust Energ Rev 68:57–69

    Article  CAS  Google Scholar 

  • Waqas M, Almeelbi T, Nizami A (2018) Resource recovery of food waste through continuous thermophilic in-vessel composting. Environ Sci Pollut Res 25:5212–5222

    Article  CAS  Google Scholar 

  • Xie L, Dong N, Wang L, Zhou Q (2014) Thermophilic hydrogen production from starch wastewater using two-phase sequencing batch fermentation coupled with UASB methanogenic effluent recycling. Int J Hydrog Energy 39:20942–20949

    Article  CAS  Google Scholar 

  • Yaliwal VS, Banapurmath NR, Hosmath RS, Khandal SV, Budzianowski WM (2016) Utilization of hydrogen in low calorific value producer gas derived from municipal solid waste and biodiesel for diesel engine power generation application. Renew Energy 99:1253–1261

    Article  CAS  Google Scholar 

  • Yaoyang X, Boeing WJ (2013) Mapping biofuel field: a bibliometric evaluation of research output. Renew Sust Energ Rev 28:82–91

    Article  Google Scholar 

  • Zhang C, Su H, Baeyens J, Tan T (2014) Reviewing the anaerobic digestion of food waste for biogas production. Renew Sust Energ Rev 38:383–392

    Article  CAS  Google Scholar 

  • Zhang J, Lv C, Tong J, Liu J, Liu J, Yu D, Wang Y, Chen M, Wei Y (2016) Optimization and microbial community analysis of anaerobic co-digestion of food waste and sewage sludge based on microwave pretreatment. Bioresour Technol 200(2):253–261

    Article  CAS  Google Scholar 

  • Zhang L, Lee YW, Jahng D (2011) Anaerobic co-digestion of food waste and piggery wastewater: focusing on the role of trace elements. Bioresour Technol 102(8):5048–5059

    Article  CAS  Google Scholar 

  • Zhang M, Gao Z, Zheng T, Ma Y, Wang Q, Gao M, Sun X (2018) A bibliometric analysis of biodiesel research during 1991–2015. J Mater Cycles Waste 20:10–18

    Article  Google Scholar 

  • Zheng T, Wang J, Wang Q, Nie C, Smale N, Shi Z, Wang X (2015) A bibliometric analysis of industrial wastewater research: current trends and future prospects. Scientometrics 105(2):863–882

    Article  Google Scholar 

Download references

Funding

This study is supported by the National Natural Science Foundation of China (Grant No. 51578063), the International Science and Technology Cooperation Program of China (2016YFE0127800), and Key Laboratory for Solid Waste Management and Environment Safety of the Education Ministry of China (SWMES2017-05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qunhui Wang.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Gao, M., Yue, S. et al. Global trends and future prospects of food waste research: a bibliometric analysis. Environ Sci Pollut Res 25, 24600–24610 (2018). https://doi.org/10.1007/s11356-018-2598-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2598-6

Keywords

Navigation