Skip to main content
Log in

Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The growing development of nanotechnology has promoted the wide application of engineered nanomaterials, raising immense concern over the toxicological impacts of nanoparticles on the ecological environment during their transport processes. Nanoparticles in aquatic systems may undergo deposition onto environmental surfaces, which affects the corresponding interactions of engineered nanoparticles (ENPs) with other contaminants and their environmental fate to a certain extent. In this review, the most common ENPs, i.e., carbonaceous, metallic, and nonmetallic nanoparticles, and their potential ecotoxicological impacts on the environment are summarized. Colloidal interactions, including Derjaguin-Landau-Verwey-Overbeek (DLVO) and non-DLVO forces, involved in governing the depositional behavior of these nanoparticles in aquatic systems are outlined in this work. Moreover, laboratory approaches for examining the deposition of ENPs on collector surfaces, such as the packed-bed column and quartz crystal microbalance (QCM) method, and the limitations of their applications are outlined. In addition, the deposition kinetics of nanoparticles on different types of surfaces are critically discussed as well, with emphasis on other influencing factors, including particle-specific properties, particle aggregation, ionic strength, pH, and natural organic matter. Finally, the future outlook and challenges of estimating the environmental transport of ENPs are presented. This review will be helpful for better understanding the effects and transport fate of ENPs in aquatic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ENPs :

engineered nanoparticles

DLVO :

Derjaguin-Landau-Verwey-Overbeek

NOM :

natural organic matter

CNTs :

carbon nanotubes

GOs :

graphene oxide

CDs :

carbon dots

ZVI :

zero-valent iron

QDs :

quantum dots

SWNTs :

single-walled carbon nanotubes

MWNTs :

multiwalled carbon nanotubes

OECD :

Organization for Economic Cooperation and Development

ROS :

reactive oxygen species

FSNP :

fluorescent core-shell silica nanoparticles

vdW :

van der Waals

EDL :

electrostatic double layer

LSA :

linear superposition approximation

QCM :

quartz crystal microbalance

CFT :

colloid filtration theory

ADE :

advection-dispersion equation

CSP :

constant surface potential, IS ionic strength

PLL :

poly-L-lysine

QCM-D :

quartz crystal microbalance with monitoring

IEP :

isoelectric point

SAM :

self-assembled monolayer

FeO-GB :

hematite-coated glass bead

pzc :

point of zero charge

PAA :

polyacrylic acid

CCC :

critical coagulation concentration

CDC :

critical deposition concentration

HA :

humic acid

BSA :

bovine serum albumin

SRHA :

Suwannee River humic acid

SRFA :

Suwannee River fulvic acid

ICP-MS :

inductively coupled plasma mass spectrometry

spICP-MS :

single-particle inductively coupled plasma mass spectrometry

GLC-TEM :

transmission electron microscopy using graphene liquid cells

FFF :

field-flow fractionation

NTA :

nanoparticle tracking analysis

PNC :

particle number concentration

PSD :

particle size distribution

A 123 :

Hamaker constant of nanoparticle-medium-substrate system

U vdW :

Van der Waals interaction energy

a p :

particle radius

D :

particle to surface separation distance

λ :

characteristic wavelength

U EDL :

electrical double-layer interaction energy

ε 0 :

dielectric permittivity in vacuum, 8.85 × 10−12 F/m

ε r :

relative dielectric permittivity of solution

k B :

Boltzmann constant, 1.3805 × 10-23 J/K

T :

absolute temperature

e :

electron charge, 1.602 × 10−19 C

\( \mathcal{z} \) :

counterion valence

Γi :

dimensionless surface potential for particle or collector, Γi=tanh [(\( \mathcal{z}e \)ψi)/(4kBT)]

κ:

inverse Debye length

U HD :

the hdration interaction energy

c 0, c :

empirical constants

F ST :

the steric force

S :

distance between polymer chains on a surface

l :

the film thickness

U ST :

the steric interaction energy

F B :

the bridging force

U B :

the bridging interaction energy

L C :

units segment length in polymer chain

L :

critical hydrocarbon chain length

C :

nanoparticle concentration in the liquid phase

x :

the distance traveled in the porous media

v :

the interstitial particle velocity

k :

the particle deposition rate coefficient

α :

the attachment efficiency

η 0 :

single-collector contact efficiency

d c :

the median diameter of the porous media

ε:

the packed-bed porosity

L :

the length of the packed bed

C 0 :

the influent concentration

References

  • Adrian YF, Schneidewind U, Bradford SA, Simunek J, Fernandez-Steeger TM, Azzam R (2018) Transport and retention of surfactant- and polymer-stabilized engineered silver nanoparticles in silicate-dominated aquifer material. Environ Pollut 236:195–207. https://doi.org/10.1016/j.envpol.2018.01.011

    Article  CAS  Google Scholar 

  • Afrooz A (2015) Aggregation and deposition of gold nanoparticles in singular and binary particle systems: role of size, shape, and environmental characteristics. Dissertation. The University of Texas at Austin

  • Afrooz A, Das D, Murphy CJ, Vikesland P, Saleh NB (2016) Co-transport of gold nanospheres with single-walled carbon nanotubes in saturated porous media. Water Res 99:7–15. https://doi.org/10.1016/j.watres.2016.04.006

    Article  CAS  Google Scholar 

  • Aiken GR, Hsukim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol 45:3196–3201

    CAS  Google Scholar 

  • Akhavan O, Ghaderi E (2010) Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS Nano 4:5731–5736

    CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Akhavan A (2012) Size-dependent genotoxicity of graphene nanoplatelets in human stem cells. Biomaterials 33:8017–8025

    CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Emamy H, Akhavan F (2013) Genotoxicity of graphene nanoribbons in human mesenchymal stem cells. Carbon 54:419–431

    CAS  Google Scholar 

  • Aldana J, Wang YA, Peng X (2001) Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J Am Chem Soc 123:8844–8850

    CAS  Google Scholar 

  • Alivisatos P (2003) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52

    Google Scholar 

  • Allan JD, Castillo MM (2007) Stream ecology: structure and function of running. Chapman and Hall, London

    Google Scholar 

  • And XL, Johnson WP (2005) Nonmonotonic variations in deposition rate coefficients of microspheres in porous media under unfavorable deposition conditions. Environ Sci Technol 39:1658–1665

    Google Scholar 

  • Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4:634–641

    CAS  Google Scholar 

  • Babakhani P, Bridge J, Doong RA, Phenrat T (2017) Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: a state-of-the-science review. Adv Colloid Interface Sci 246:75–104

    CAS  Google Scholar 

  • Bartczak D, Vincent P, Goenaga-Infante H (2015) Determination of size- and number-based concentration of silica nanoparticles in a complex biological matrix by online techniques. Anal Chem 87:5482–5485. https://doi.org/10.1021/acs.analchem.5b01052

    Article  CAS  Google Scholar 

  • Batley GE, Kirby JK, McLaughlin MJ (2013) Fate and risks of nanomaterials in aquatic and terrestrial environments. Acc Chem Res 46:854–862

    CAS  Google Scholar 

  • Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395

    CAS  Google Scholar 

  • Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470

    CAS  Google Scholar 

  • Benn T, Westerhoff P (2008) Nanoparticle silver released into water from commercially available sock fabrics. Environ Sci Technol 42:4133–4139

    CAS  Google Scholar 

  • Bergendahl J, Grasso D (1999) Prediction of colloid detachment in a model porous media: thermodynamics. AIChE J 45:475–484

    CAS  Google Scholar 

  • Bergna HE, Roberts WO (2005) Colloidal silica: fundamentals and applications, vol 131. CRC, Boca Raton

    Google Scholar 

  • Bergström L (1997) Hamaker constants of inorganic materials. Adv Colloid Interf Sci 70:125–169

    Google Scholar 

  • Bhattacharjee S, Chen JY, Elimelech M (2000) DLVO interaction energy between spheroidal particles and a flat surface. Colloids Surf A165:143–156

    Google Scholar 

  • Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications. Adv Mater 15:1765–1768

    CAS  Google Scholar 

  • Bianco A, Kostarelos K, Partidos CD, Prato M (2005) Biomedical applications of functionalised carbon nanotubes. Chem Commun 571. https://doi.org/10.1039/b410943k

  • Bizmark N, Ioannidis MA (2015) Effects of ionic strength on the colloidal stability and interfacial assembly of hydrophobic ethyl cellulose nanoparticles. Langmuir 31:9282–9289. https://doi.org/10.1021/acs.langmuir.5b01857

    Article  CAS  Google Scholar 

  • Bour A, Mouchet F, Silvestre J, Gauthier L, Pinelli E (2015) Environmentally relevant approaches to assess nanoparticles ecotoxicity: a review. J Hazard Mater 283:764–777. https://doi.org/10.1016/j.jhazmat.2014.10.021

    Article  CAS  Google Scholar 

  • Bradford SA, Torkzaban S (2008) Colloid transport and retention in unsaturated porous media: a review of interface-, collector-, and pore-scale processes and models. Vadose Zone J 7:667. https://doi.org/10.2136/vzj2007.0092

    Article  Google Scholar 

  • Bradford SA, Simunek J, Bettahar M, van Genuchten MT, Yates SR (2006) Significance of straining in colloid deposition: evidence and implications. Water Res Res 42. https://doi.org/10.1029/2005wr004791

  • Bradford SA, Torkzaban S, Shapiro A (2013) A theoretical analysis of colloid attachment and straining in chemically heterogeneous porous media. Langmuir 29:6944–6952. https://doi.org/10.1021/la4011357

    Article  CAS  Google Scholar 

  • Brant J, Lecoanet H, Wiesner MR (2005) Aggregation and deposition characteristics of fullerene nanoparticles in aqueous systems. J Nanopart Res 7:545–553. https://doi.org/10.1007/s11051-005-4884-8

    Article  CAS  Google Scholar 

  • Brar SK, Verma M, Tyagi RD, Surampalli RY (2010) Engineered nanoparticles in wastewater and wastewater sludge—evidence and impacts. Waste Manag 30:504–520. https://doi.org/10.1016/j.wasman.2009.10.012

    Article  CAS  Google Scholar 

  • Brownson DAC, Kampouris DK, Banks CE (2011) An overview of graphene in energy production and storage applications. J Power Sources 196:4873–4885. https://doi.org/10.1016/j.jpowsour.2011.02.022

    Article  CAS  Google Scholar 

  • Buettner KM, Rinciog CI, Mylon SE (2010) Aggregation kinetics of cerium oxide nanoparticles in monovalent and divalent electrolytes. Colloids Surf. A Physicochem. Eng. Asp 366:74–79. https://doi.org/10.1016/j.colsurfa.2010.05.024

    Article  CAS  Google Scholar 

  • Buffle J, Wilkinson KJ, Stoll S, Filella M, Zhang JA (1998) Generalized description of aquatic colloidal interactions: the three-colloidal component approach. Environ Sci Technol 32:2887–2899

    CAS  Google Scholar 

  • Bundschuh M et al (2018) Nanoparticles in the environment: where do we come from, where do we go to? Environ Sci Eur 30:6. https://doi.org/10.1186/s12302-018-0132-6

    Article  CAS  Google Scholar 

  • Butt H, Graf K (2003) Physics and chemistry of interfaces. Wiley, Weinheim

    Google Scholar 

  • Byrd TL, Walz JY (2005) Interaction force profiles between Cryptosporidium parvumoocysts and silica surfaces. Environ Sci Technol 39:9574–9582

    CAS  Google Scholar 

  • Cai L, Tong M, Wang X, Kim H (2014) Influence of clay particles on the transport and retention of titanium dioxide nanoparticles in quartz sand. Environ Sci Technol 48:7323–7332. https://doi.org/10.1021/es5019652

    Article  CAS  Google Scholar 

  • Camesano TA, Unice KM, Logan BE (1999) Blocking and ripening of colloids in porous media and their implications for bacterial transport. Colloids Surf A Physicochem Eng Asp 160:291–307

    CAS  Google Scholar 

  • Celebi S, Erdamar AK, Sennaroglu A, Kurt A, Acar HY (2007) Synthesis and characterization of poly(acrylic acid) stabilized cadmiumsulfide quantum dots. J Phys Chem 111:12668–12675

    CAS  Google Scholar 

  • Chang X, Bouchard DC (2013) Multiwalled carbon nanotube deposition on model environmental surfaces. Environ Sci Technol 47:10372–10380. https://doi.org/10.1021/es402200h

    Article  CAS  Google Scholar 

  • Che HX, Gwee SJ, Ng WM, Ahmad AL, Lim J (2018) Design of core-shell magnetic nanocomposite by using linear and branched polycation as an ad-layer: influences of the structural and viscoelastic properties. Colloids Surfaces A: Physicochemical Engineering Aspects 539:209–220. https://doi.org/10.1016/j.colsurfa.2017.12.019

    Article  CAS  Google Scholar 

  • Chefetz B, Xing BS (2009) Relative role of aliphatic and aromatic moieties as sorption domains for organic compounds: a review. Environ Sci Technol 43:1680–1688

    CAS  Google Scholar 

  • Chen K, Elimelech M (2006) Aggregation and deposition kinetics of fullerene (C60) nanoparticles. Langmuir 22:10994–11001

    CAS  Google Scholar 

  • Chen KL, Elimelech M (2009) Relating colloidal stability of fullerene (C60) nanoparticles to nanoparticle charge and electro-kinetic properties. Environ Sci Technol 43:7270–7276

    CAS  Google Scholar 

  • Chen J, Gu B, Royer R, Burgos W (2003) The roles of natural organic matter in chemical and microbial reduction of ferric iron. Sci Total Environ 307:167–178. https://doi.org/10.1016/s0048-9697(02)00538-7

    Article  CAS  Google Scholar 

  • Chen K, Mylon S, Elimelech M (2006) Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ Sci Technol 40:1516–1523

    CAS  Google Scholar 

  • Chen G, Liu X, Su C (2011) Transport and retention of TiO2 rutile nanoparticles in saturated porous media under low-ionic-strength conditions: measurements and mechanisms. Langmuir 27:5393–5402. https://doi.org/10.1021/la200251v

    Article  CAS  Google Scholar 

  • Chen G, Liu X, Su C (2012) Distinct effects of humic acid on transport and retention of TiO2 rutile nanoparticles in saturated sand columns. Environ Sci Technol 46:7142–7150. https://doi.org/10.1021/es204010g

    Article  CAS  Google Scholar 

  • Chen J, Kline SR, Liu Y (2015) From the depletion attraction to the bridging attraction: the effect of solvent molecules on the effective colloidal interactions. J Chem Phys 142:084904

    Google Scholar 

  • Chen IC, Zhang M, Min Y, Akbulut M (2016a) Deposition kinetics of graphene oxide on charged self-assembled monolayers. J Phys Chem C 120:8333–8342. https://doi.org/10.1021/acs.jpcc.6b00884

    Article  CAS  Google Scholar 

  • Chen Q, Xu S, Liu Q, Masliyah J, Xu Z (2016b) QCM-D study of nanoparticle interactions. Adv Colloid Interface Sci 233:94–114. https://doi.org/10.1016/j.cis.2015.10.004

    Article  CAS  Google Scholar 

  • Cheng XK, Kan AT, Tomson MB (2004) Naphthalene adsorption and desorption from aqueous C60 fullerene. J Chem Eng Data 49:675–683

    CAS  Google Scholar 

  • Chowdhury I, Walker SL (2012) Deposition mechanisms of TiO2 nanoparticles in a parallel plate system. J Colloid Interface Sci 369:16–22. https://doi.org/10.1016/j.jcis.2011.12.019

    Article  CAS  Google Scholar 

  • Chowdhury I, Hong Y, Honda RJ, Walker SL (2011) Mechanisms of TiO2 nanoparticle transport in porous media: role of solution chemistry, nanoparticle concentration, and flowrate. J Colloid Interface Sci 360:548–555. https://doi.org/10.1016/j.jcis.2011.04.111

    Article  CAS  Google Scholar 

  • Chowdhury I, Cwiertny DM, Walker SL (2012) Combined factors influencing the aggregation and deposition of nano-TiO2 in the presence of humic acid and bacteria. Environ Sci Technol 46:6989–6976

    Google Scholar 

  • Chowdhury I, Duch MC, Manuskhani ND, Hersam MC, Bouchard D (2013) Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Environ Sci Technol 47:6288–6296

    CAS  Google Scholar 

  • Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D (2014a) Deposition and release of graphene oxide nanomaterials using a quartz crystal microbalance. Environ Sci Technol 48:961–969. https://doi.org/10.1021/es403247k

    Article  CAS  Google Scholar 

  • Chowdhury I, Duch MC, Mansukhani ND, Hersam MC, Bouchard D (2014b) Interactions of graphene oxide nanomaterials with natural organic matter and metal oxide surfaces. Environ Sci Technol 48:9382–9390. https://doi.org/10.1021/es5020828

    Article  CAS  Google Scholar 

  • Claesson PM, Poptoshev E, Blomberg E, Dedinaite A (2005) Polyelectrolyte-mediated surface interactions. Adv Colloid Interface Sci 114-115:173–187. https://doi.org/10.1016/j.cis.2004.09.008

    Article  CAS  Google Scholar 

  • Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6:711–723. https://doi.org/10.1002/smll.200901934

    Article  CAS  Google Scholar 

  • Cornell RM, Schwertmann U (1996) The iron oxides. VCH, Weinheim and New York

  • Crittenden JC, Montgomery Watson H (2005) Water treatment principles and design. Wiley, Hoboken

    Google Scholar 

  • Darlington TK, Neigh AM, Spencer MT, Nguyen OT, Oldenburg SJ (2009) Nanoparticle characteristics affecting environmental fate and transport through soil. Environ Toxicol Chem 28:1191–1199

    CAS  Google Scholar 

  • Daskal Y, Tauchnitz T, Guth F, Dittrich R, Joseph Y (2017) Assembly behavior of organically interlinked gold nanoparticle composite films: a quartz crystal microbalance investigation. Langmuir 33:11869–11877. https://doi.org/10.1021/acs.langmuir.7b01974

    Article  CAS  Google Scholar 

  • de Gennes PG (1985) Dry spreading of a liquid on a random surface. C R Seances Acad Sci Ser 2(300):129–132

    Google Scholar 

  • de Gennes PG (1987) Polymers at an interface; a simplified view. Adv Colloid Interface Sci 27:189–209

    Google Scholar 

  • de Kerchove AJ, Elimelech M (2007) Formation of polysaccharide gel layers in the presence of Ca2+ and K+ ions: measurements and mechanisms. Biomacromolecules 8:113–121

    Google Scholar 

  • de Vicente J, Delgado AV, Plaza RC, Durán JDG, González-Caballero F (2000) Stability of cobalt ferrite colloidal particles. Effect of pH and applied magnetic fields. Langmuir 16:7954–7961

    Google Scholar 

  • Deng M, Xu Z, Liu Q (2014) Impact of gypsum supersaturated process water on the interactions between silica and zinc sulphide minerals. Minerals Eng 55:172–180. https://doi.org/10.1016/j.mineng.2013.09.017

    Article  CAS  Google Scholar 

  • Derjaguin B, Landau L (1941) Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Progress Surface Sci 43:30–59

    Google Scholar 

  • Domingos RF, Peyrot C, Wilkinson KJ (2010) Aggregation of titanium dioxide nanoparticles: role of calcium and phosphate. Environ Chem 7:61. https://doi.org/10.1071/en09110

    Article  CAS  Google Scholar 

  • Du Y, Shen C, Zhang H, Huang Y (2013) Effects of flow velocity and nonionic surfactant on colloid straining in saturated porous media under unfavorable conditions. Transp Porous Media 98:193–208. https://doi.org/10.1007/s11242-013-0140-3

    Article  CAS  Google Scholar 

  • Dzumedzey Y, Labille J, Cathala B, Moreau C, Santaella C (2017) Polysaccharide coating on environmental collectors affects the affinity and deposition of nanoparticles. NanoImpact 5:83–91. https://doi.org/10.1016/j.impact.2016.12.004

    Article  Google Scholar 

  • Eita M (2011) In situ study of the adsorption of humic acid on the surface of aluminium oxide by QCM-D reveals novel features. Soft Matter 7:709–715. https://doi.org/10.1039/c0sm00648c

    Article  CAS  Google Scholar 

  • El Badawy AM, Hassan AA, Scheckel KG, Suidan MT, Tolaymat TM (2013) Key factors controlling the transport of silver nanoparticles in porous media. Environ Sci Technol 47:4039–4045. https://doi.org/10.1021/es304580r

    Article  CAS  Google Scholar 

  • Elghanian R (1997) Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277:1078–1081. https://doi.org/10.1126/science.277.5329.1078

    Article  CAS  Google Scholar 

  • Elimelech M, Gregory J, Jia X, Williams RA (1995) Particle deposition and aggregation: measurement, modeling, and simulation. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Espinasse BP et al (2018) Comparative persistence of engineered nanoparticles in a complex aquatic ecosystem. Environ Sci Technol 52:4072–4078. https://doi.org/10.1021/acs.est.7b06142

    Article  CAS  Google Scholar 

  • Fathinia M, Khataee AR, Zarei M, Aber S (2010) Comparative photocatalytic degradation of two dyes on immobilized TiO2 nanoparticles: effect of dye molecular structure and response surface approach. J Mol Catal A Chem 333:73–84. https://doi.org/10.1016/j.molcata.2010.09.018

    Article  CAS  Google Scholar 

  • Fatisson J, Domingos RF, Wilkinson KJ, Tufenkji N (2009) Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir 25:6062–6069. https://doi.org/10.1021/la804091h

    Article  CAS  Google Scholar 

  • Fatisson J, Ghoshal S, Tufenkji N (2010) Deposition of carboxymethylcellulose-coated zero-valent iron nanoparticles onto silica: roles of solution chemistry and organic molecules. Langmuir 26:12832–12840. https://doi.org/10.1021/la1006633

    Article  CAS  Google Scholar 

  • Fent K, Weisbrod CJ, Wirth-Heller A, Pieles U (2010) Assessment of uptake and toxicity of fluorescent silica nanoparticles in zebrafish (Danio rerio) early life stages. Aquatic Toxicology 100:218–228. https://doi.org/10.1016/j.aquatox.2010.02.019

    Article  CAS  Google Scholar 

  • Feriancikova L, Xu S (2012) Deposition and remobilization of graphene oxide within saturated sand packs. J Hazard Mater 235-236:194–200. https://doi.org/10.1016/j.jhazmat.2012.07.041

    Article  CAS  Google Scholar 

  • Ferreira JLR et al (2014) Co-exposure of the organic nanomaterial fullerene C60 with benzo[a]pyrene in Danio rerio (zebrafish) hepatocytes: evidence of toxicological interactions. Aquatic Toxicology 147:76–83. https://doi.org/10.1016/j.aquatox.2013.12.007

    Article  CAS  Google Scholar 

  • Flury M, Qiu H (2008) Modeling colloid-facilitated contaminant transport in the vadose zone. Vadose Zone J 7:682–697

    Google Scholar 

  • Flynn RM, Yang X, Hofmann T, von der Kammer F (2012) Bovine serum albumin adsorption to iron-oxide coated sands can change microsphere deposition mechanisms. Environ Sci Technol 46:2583–2591. https://doi.org/10.1021/es202048c

    Article  CAS  Google Scholar 

  • Fortner JD et al (2005) C60 in water: nanocrystal formation and microbial response. Environ Sci Technol 39:4307–4316

    CAS  Google Scholar 

  • Franchi A, O’Melia CR (2003) Effects of natural organic matter and solution chemistry on the deposition and reentrainment of colloids in porous media. Environ Sci Technol 37:1122–1129

    CAS  Google Scholar 

  • Furman O, Usenko S, Lau BLT (2013) Relative importance of the humic and fulvic fractions of natural organic matter in the aggregation and deposition of silver nanoparticles. Environ Sci Technol 47:1349–1356. https://doi.org/10.1021/es303275g

    Article  CAS  Google Scholar 

  • Gagne F, Auclair J, Turcotte P, Fournier M, Gagnon C, Sauve S, Blaise C (2008) Ecotoxicity of CdTe quantum dots to freshwater mussels: impacts on immune system, oxidative stress and genotoxicity. Aquat Toxicol 86:333–340. https://doi.org/10.1016/j.aquatox.2007.11.013

    Article  CAS  Google Scholar 

  • Gallegourrea J, Perezholmberg J, Hassellov M (2014) Influence of different types of natural organic matter on titania nanoparticle stability: effects of counter ion concentration and pH. Environ Sci Nano 1:181–189

    CAS  Google Scholar 

  • Gao J, Yu A, Itkis ME, Bekyarova E, Zhao B, Niyogi S, Haddon RC (2004) Large-scale fabrication of aligned single-walled carbon nanotube array and hierarchical single-walled carbon nanotube assembly. J Am Chem Soc 126:16698–16699

    CAS  Google Scholar 

  • Ge J, Huynh T, Hu Y, Yin Y (2008) Hierarchical magnetite/silica nanoassemblies as magnetically recoverable catalyst−supports. Nano Lett 8:931–934

    CAS  Google Scholar 

  • Ghosh S, Jiang W, McClements JD, Xing B (2011) Colloidal stability of magnetic iron oxide nanoparticles: influence of natural organic matter and synthetic polyelectrolytes. Langmuir 27:8036–8043. https://doi.org/10.1021/la200772e

    Article  CAS  Google Scholar 

  • Gregory J (1981) Approximate expressions for retarded van der Waals interaction. J Colloid Interface Sci 83:138–145

    CAS  Google Scholar 

  • Guleryuz H, Kaus I, Buron CC, Filiâtre C, Hedin N, Bergström L, Einarsrud M-A (2014) Deposition of silica nanoparticles onto alumina measured by optical reflectometry and quartz crystal microbalance with dissipation techniques. Colloids Surf A Physicochem Eng Asp 443:384–390. https://doi.org/10.1016/j.colsurfa.2013.11.049

    Article  CAS  Google Scholar 

  • Gutierrez L, Mylon SE, Nash B, Nguyen TH (2010) Deposition and aggregation kinetics of rotavirus in divalent cation solutions. Environ Sci Technol 44:4552–4557

    CAS  Google Scholar 

  • Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40:7688–7693

    Google Scholar 

  • Hahn MW, Abadzic D, O'Melia CR (2004) Aquasols: on the role of secondary minima. Environ Sci Technol 38:5915–5924

    CAS  Google Scholar 

  • Hamaker HC (1937) The London–van der Waals attraction between spherical particles. Physica 4:1058–1072

    CAS  Google Scholar 

  • Handy RD, von der Kammer F, Lead JR, Hassellov M, Owen R, Crane M (2008) The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17:287–314. https://doi.org/10.1007/s10646-008-0199-8

    Article  CAS  Google Scholar 

  • Hardman R (2006) A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environ Health Perspect 114:165–172. https://doi.org/10.1289/ehp.8284

    Article  Google Scholar 

  • Havrdova M et al (2016) Toxicity of carbon dots—effect of surface functionalization on the cell viability, reactive oxygen species generation and cell cycle. Carbon 99:238–248. https://doi.org/10.1016/j.carbon.2015.12.027

    Article  CAS  Google Scholar 

  • He Q et al (2010) Centimeter-long and large-scale micropatterns of reduced graphene oxide films: fabrication and sensing applications. ACS Nano 4:3201–3208

    CAS  Google Scholar 

  • Healy TW, Homola A, James RO, Hunter RJ (1980) Coagulation of amphoteric latex colloids reversibility and specific ion effects. Faraday Discuss Chem Soc 65:156–163

    Google Scholar 

  • Hendren CO, Mesnard X, Dröge J, Wiesner MR (2011) Estimating production data for five engineered nanomaterials as a basis for exposure assessment. Environ Sci Technol 45:2562–2569. https://doi.org/10.1021/es103300g

    Article  CAS  Google Scholar 

  • Hogg R, Healy TW, Fuerstenau DW (1966) Mutual coagulation of colloidal dispersions. Trans Faraday Soc 62:1638–1651. https://doi.org/10.1039/tf9666201638

    Article  CAS  Google Scholar 

  • Hong Y, Honda RJ, Myung NV, Walker SL (2009) Transport of iron-based nanoparticles: role of magnetic properties. Environ Sci Technol 43:8834–8839

    CAS  Google Scholar 

  • Hotze EM, Phenrat T, Lowry GV (2010) Nanoparticle aggregation: challenges to understanding transport and reactivity in the environment. J Environ Qual 39:1909–1924. https://doi.org/10.2134/jeq2009.0462

    Article  CAS  Google Scholar 

  • Hu X, Cook S, Wang P, Hwang H-M (2009) In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Sci Total Environ 407:3070–3072. https://doi.org/10.1016/j.scitotenv.2009.01.033

    Article  CAS  Google Scholar 

  • Hu JD, Zevi Y, Kou XM, Xiao J, Wang XJ, Jin Y (2010) Effect of dissolved organic matter on the stability of magnetite nanoparticles under different pH and ionic strength conditions. Sci Total Environ 408:3477–3489

    CAS  Google Scholar 

  • Huang PM, Li Y, Sumner ME (2011) Handbook of soil sciences: properties and processes. CRC, New York

    Google Scholar 

  • Huangfu X, Jiang J, Ma J, Liu Y, Yang J (2013) Aggregation kinetics of manganese dioxide colloids in aqueous solution: influence of humic substances and biomacromolecules. Environ Sci Technol 47:10285–10292. https://doi.org/10.1021/es4003247

    Article  CAS  Google Scholar 

  • Hunter RJ, White LR, Chan DYC (1987) Foundations of colloid science. Clarendon Press Oxford, New York

  • Hydutsky BW, Mack EJ, Beckerman BB, Skluzacek JM, Mallouk TE (2007) Optimization of nano- and microiron transport through sand columns using polyelectrolyte mixtures. Environ Sci Technol 41:6418–6424

    CAS  Google Scholar 

  • Indeglia PA, Georgieva AT, Krishna VB, Martyniuk CJ, Bonzongo JJ (2018) Toxicity of functionalized fullerene and fullerene synthesis chemicals. Chemosphere 207:1–9. https://doi.org/10.1016/j.chemosphere.2018.05.023

    Article  CAS  Google Scholar 

  • Israelachvili JN (2011) Intermolecular and surface forces, 3rd edition. Q Rev Biol 2:59–65. https://doi.org/10.1016/b978-0-12-375182-9.10025-9

    Article  Google Scholar 

  • Israelachvili J, Pashley R (1982) The hydrophobic interaction is long range, decaying exponentially with distance. Nature 300:341

    CAS  Google Scholar 

  • Jaisi DP, Saleh N, Blake R, Elimelech M (2008) Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility. Environ Sci Technol 42:8317–8323

    CAS  Google Scholar 

  • Jaiswal RP, Kumar G, Kilroy CM, Beaudoin SP (2009) Modeling and validation of the van der Waals force during the adhesion of nanoscale objects to rough surfaces: a detailed description. Langmuir 25:10612–10623. https://doi.org/10.1021/la804275m

    Article  CAS  Google Scholar 

  • Jang W, Chen Z, Bao W, Lau CN, Dames C (2010) Thickness dependent thermal conductivity of encased graphene and ultrathin graphite. Nano Lett 10:3909–3913

    CAS  Google Scholar 

  • Jekel MR (1986) The stabilization of dispersed mineral particles by adsorption of humic substances. Water Res 20:1534–1554

    Google Scholar 

  • Jiang X, Tong M, Li H, Yang K (2010) Deposition kinetics of zinc oxide nanoparticles on natural organic matter coated silica surfaces. J Colloid Interface Sci 350:427–434. https://doi.org/10.1016/j.jcis.2010.06.063

    Article  CAS  Google Scholar 

  • Jiang X, Tong M, Kim H (2012) Influence of natural organic matter on the transport and deposition of zinc oxide nanoparticles in saturated porous media. J Colloid Interface Sci 386:34–43

    CAS  Google Scholar 

  • Jiménez MS, Gómez MT, Bolea E, Laborda F, Castillo J (2011) An approach to the natural and engineered nanoparticles analysis in the environment by inductively coupled plasma mass spectrometry. Int J Mass Spectrometry 307:99–104

    Google Scholar 

  • Johannsmann D, Reviakine I, Richter RP (2009) Dissipation in films of adsorbed nanospheres studied by quartz crystal microbalance (QCM). Anal Chem 81:8167–8176. https://doi.org/10.1021/ac901381z

    Article  CAS  Google Scholar 

  • Johnson WP, Li X, Assemi S (2007a) Deposition and re-entrainment dynamics of microbes and non-biological colloids during non-perturbed transport in porous media in the presence of an energy barrier to deposition. Adv Water Res 30:1432–1454. https://doi.org/10.1016/j.advwatres.2006.05.020

    Article  Google Scholar 

  • Johnson WP, Li X, Yal G (2007b) Colloid retention in porous media: mechanistic confirmation of wedging and retention in zones of flow stagnation. Environ Sci Technol 41:1279–1287

    CAS  Google Scholar 

  • Johnson WP, Ma H, Pazmino E (2011) Straining credibility: a general comment regarding common arguments used to infer straining as the mechanism of colloid retention in porous media. Environ Sci Technol 45:3831–3832. https://doi.org/10.1021/es200868e

    Article  CAS  Google Scholar 

  • Johnston BD et al (2010) Bioavailability of nanoscale metal oxides TiO2, CeO2, and ZnO to fish. Environ Sci Technol 44:1144–1151

    CAS  Google Scholar 

  • Joshi RK et al (2014) Precise and ultrafast molecular sieving through graphene oxide membranes. Science 43:752–754

    Google Scholar 

  • Kai LC, Elimelech M (2007) Influence of humic acid on the aggregation kinetics of fullerene (C60) nanoparticles in monovalent and divalent electrolyte solutions. J Colloid Interface Sci 309:126

    Google Scholar 

  • Kai LC, Elimelech M (2008) Interaction of fullerene (C60) nanoparticles with humic acid and alginate coated silica surfaces: measurements, mechanisms, and environmental implications. Environ Sci Technol 42:7607–7614

    Google Scholar 

  • Kamrani S, Rezaei M, Kord M, Baalousha M (2017) Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: role of ionic strength, pH, and collector grain size. Water Res 13:338–347. https://doi.org/10.1016/j.watres.2017.08.045

    Article  CAS  Google Scholar 

  • Kanel SR, Goswami RR, Clement TP, Barnett MO, Zhao D (2008) Two dimensional transport characteristics of surface stabilized zero-valent iron nanoparticles in porous media. Environ Sci Technol 42:896–900

    CAS  Google Scholar 

  • Kang S, Xing BS (2005) Phenanthrene sorption to sequentially extracted soil humic acids and humins. Environ Sci Technol 39:134–140

    CAS  Google Scholar 

  • Kang S, Herzberg M, Rodrigues DF, Elimelech M (2008a) Antibacterial effects of carbon nanotubes: size does matter. Langmuir 24:6409–6413

    CAS  Google Scholar 

  • Kang S, Mauter MS, Elimelech M (2008b) Physicochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity. Environ Sci Technol 42:7528–7534

    CAS  Google Scholar 

  • Kang YF, Li YH, Fang YW, Xu Y, Wei XM, Yin XB (2015) Carbon quantum dots for zebrafish fluorescence imaging. Sci Rep 5:11835. https://doi.org/10.1038/srep11835

    Article  Google Scholar 

  • Keller AA et al (2010) Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices. Environ Sci Technol 44:1962–1967

    CAS  Google Scholar 

  • Khot LR, Sankaran S, Maja JM, Ehsani R, Schuster EW (2012) Applications of nanomaterials in agricultural production and crop protection: a review. Crop Prot 35:64–70. https://doi.org/10.1016/j.cropro.2012.01.007

    Article  CAS  Google Scholar 

  • Kim JK, Kim KI, Basavaraja C, Rabai G, Huh DS (2013) Reversible adsorption–desorption oscillations of nanoparticles on a patterned hydrogel surface induced by a pH oscillator in a closed chemical system. J Phys Chem B 117:6294–6303. https://doi.org/10.1021/jp401100z

    Article  CAS  Google Scholar 

  • Kim JK, Jung KH, Jang JH, Huh DS (2014) Hydrophobic interaction-mediated reversible adsorption–desorption of nanoparticles in the honeycomb-patterned thermoresponsive poly(N-isopropylamide) hydrogel surface. Polym Bull 71:1375–1388. https://doi.org/10.1007/s00289-014-1129-y

    Article  CAS  Google Scholar 

  • King RB (1999) Chemical structure and superconductivity. J Chem Inf Comput Sci 39:180–191

    CAS  Google Scholar 

  • Klaine SJ et al (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    CAS  Google Scholar 

  • Kosmulski M (2009) pH-dependent surface charging and points of zero charge. IV. Update and new approach. J Colloid Interface Sci 337:439–448. https://doi.org/10.1016/j.jcis.2009.04.072

    Article  CAS  Google Scholar 

  • Kubiak-Ossowska K, Tokarczyk K, Jachimska B, Mulheran PA (2017) Bovine serum albumin adsorption at a silica surface explored by simulation and experiment. J Phys Chem B 121:3975–3986

    CAS  Google Scholar 

  • Laborda F, Jiménezlamana J (2011) Selective identification, characterization and determination of dissolved silver(I) and silver nanoparticles based on single particle detection by inductively coupled plasma mass spectrometry. J Analytical Atomic Spectrometry 26:1362–1371

    CAS  Google Scholar 

  • Lanphere JD, Luth CJ, Walker SL (2013) Effects of solution chemistry on the transport of graphene oxide in saturated porous media. Environ Sci Technol 47:4255–4261. https://doi.org/10.1021/es400138c

    Article  CAS  Google Scholar 

  • Lecoanet HF, Bottero JY, Wiesner MR (2004) Laboratory assessment of the mobility of nanomaterials in porous media. Environ Sci Technol 38:5164–5169

    CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42:4927–4933

    CAS  Google Scholar 

  • Lehoux AP, Faure P, Lafolie F, Rodts S, Courtier-Murias D, Coussot P, Michel E (2017) Combined time-lapse magnetic resonance imaging and modeling to investigate colloid deposition and transport in porous media. Water Res 123:12–20. https://doi.org/10.1016/j.watres.2017.06.035

    Article  CAS  Google Scholar 

  • Levine S, Bowen BD, Partridge JS (1989) Stabilization of emulsions by fne particles. I. Partitioning of particles between continuous phase and oil/water interface. Colloids Surf 38:325–343

    CAS  Google Scholar 

  • Li X, Scheibe TD, Johnson WP (2004) Apparent decreases in colloid deposition rate coefficients with distance of transport under unfavorable deposition conditions: a general phenomenon. Environ Sci Technol 38:5616–5625. https://doi.org/10.1021/es049154v

    Article  CAS  Google Scholar 

  • Li Z, Sahle-Demessie E, Hassan AA, Sorial GA (2011) Transport and deposition of CeO2 nanoparticles in water-saturated porous media. Water Res 45:4409–4418. https://doi.org/10.1016/j.watres.2011.05.025

    Article  CAS  Google Scholar 

  • Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6:5164–5173

    CAS  Google Scholar 

  • Li H et al (2013) Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342:95–98. https://doi.org/10.1126/science.1236686

    Article  CAS  Google Scholar 

  • Li W, Liu D, Wu J, Kim C, Fortner JD (2014) Aqueous aggregation and surface deposition processes of engineered superparamagnetic iron oxide nanoparticles for environmental applications. Environ Sci Technol 48:11892–11900. https://doi.org/10.1021/es502174p

    Article  CAS  Google Scholar 

  • Li T, Jin Y, Huang Y, Li B, Shen C (2017) Observed dependence of colloid detachment on the concentration of initially attached colloids and collector surface heterogeneity in porous media. Environ Sci Technol 51:2811–2820. https://doi.org/10.1021/acs.est.6b06264

    Article  CAS  Google Scholar 

  • Liang Y, Bradford SA, Simunek J, Vereecken H, Klumpp E (2013) Sensitivity of the transport and retention of stabilized silver nanoparticles to physicochemical factors. Water Res 47:2572–2582

    CAS  Google Scholar 

  • Liao P, Li W, Jiang Y, Wu J, Yuan S, Fortner JD, Giammar DE (2017) Formation, aggregation, and deposition dynamics of NOM-iron colloids at anoxic-oxic interfaces. Environ Sci Technol 51:12235–12245. https://doi.org/10.1021/acs.est.7b02356

    Article  CAS  Google Scholar 

  • Lin S, Wiesner MR (2012a) Deposition of aggregated nanoparticles—a theoretical and experimental study on the effect of aggregation state on the affinity between nanoparticles and a collector surface. Environ Sci Technol 46:13270–13277. https://doi.org/10.1021/es3041225

    Article  CAS  Google Scholar 

  • Lin S, Wiesner MR (2012b) Theoretical investigation on the steric interaction in colloidal deposition. Langmuir 28:15233–15245. https://doi.org/10.1021/la302201g

    Article  CAS  Google Scholar 

  • Lin W, Huang Y-W, Zhou X-D, Ma Y (2006) In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicol Appl Pharmacol 217:252–259. https://doi.org/10.1016/j.taap.2006.10.004

    Article  CAS  Google Scholar 

  • Lin D, Tian X, Wu F, Xing B (2010) Fate and transport of engineered nanomaterials in the environment. J Environ Qual 39:1896. https://doi.org/10.2134/jeq2009.0423

    Article  Google Scholar 

  • Lin S, Cheng Y, Bobcombe Y, Jones K, Liu J, Wiesner MR (2011) Deposition of silver nanoparticles in geochemically heterogeneous porous media: predicting affinity from surface composition analysis. Environ Sci Technol 45:5209–5215. https://doi.org/10.1021/es2002327

    Article  CAS  Google Scholar 

  • Lin S, Cheng Y, Liu J, Wiesner MR (2012) Polymeric coatings on silver nanoparticles hinder autoaggregation but enhance attachment to uncoated surfaces. Langmuir 28:4178–4186. https://doi.org/10.1021/la202884f

    Article  CAS  Google Scholar 

  • Lin W, Huang Y-W, Zhou X-D, Ma YF (2016) Toxicity of cerium oxide nanoparticles in human lung cancer cells. Int J Toxicol 25:451–457. https://doi.org/10.1080/10915810600959543

    Article  CAS  Google Scholar 

  • Liu Y, Gao L (2005) A study of the electrical properties of carbon nanotube-NiFe2O4 composites: effect of the surface treatment of the carbon nanotubes. Carbon 43:47–52. https://doi.org/10.1016/j.carbon.2004.08.019

    Article  CAS  Google Scholar 

  • Liu R, Zhao D (2007) In situ immobilization of cu(II) in soils using a new class of iron phosphate nanoparticles. Chemosphere 68:1867–1876. https://doi.org/10.1016/j.chemosphere.2007.03.010

    Article  CAS  Google Scholar 

  • Liu D, Johnson PR, Elimelech M (1995) Colloid deposition dynamics in flow-through porous media: role of electrolyte concentration. Environ Sci Technol 29:2963–2973

    CAS  Google Scholar 

  • Liu S, Zeng T, Hofmann M, Burcombe E, Wei J (2011) Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide membrane and oxidative stress. ACS Nano 5:6971–6980

    CAS  Google Scholar 

  • Liu X, Chen G, Su C (2012) Influence of collector surface composition and water chemistry on the deposition of cerium dioxide nanoparticles: QCM-D and column experiment approaches. Environ Sci Technol 46:6681–6688. https://doi.org/10.1021/es300883q

    Article  CAS  Google Scholar 

  • Liu X, Li J, Huang Y, Wang X, Zhang X, Wang X (2017) Adsorption, aggregation, and deposition behaviors of carbon dots on minerals. Environ Sci Technol 51:6156–6164. https://doi.org/10.1021/acs.est.6b06558

    Article  CAS  Google Scholar 

  • Logan BE (1999) Environmental transport processes. Wiley, New York

    Google Scholar 

  • Loux NT, Savage N (2008) An assessment of the fate of metal oxide nanomaterials in porous media. Water Air Soil Pollut 194–227. https://doi.org/10.1007/s11270-008-9712-1

    CAS  Google Scholar 

  • Lu C, Chung Y-L, Chang K-F (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39:1183–1189. https://doi.org/10.1016/j.watres.2004.12.033

    Article  CAS  Google Scholar 

  • Lu F et al (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21:139–152. https://doi.org/10.1002/adma.200801491

    Article  CAS  Google Scholar 

  • Lu N, Bevard T, Massoudieh A, Zhang C, Dohnalkova AC, Zilles JL, Nguyen TH (2013) Flagella-mediated differences in deposition dynamics for Azotobacter vinelandii in porous media. Environ Sci Technol 47:5162–5170. https://doi.org/10.1021/es3053398

    Article  CAS  Google Scholar 

  • Luccardini C, Tribet C, Vial F, Marchi-Artzner V, Dahan M (2006) Size, charge, and interactions with giant lipid vesicles of quantum dots coated with an amphiphilic macromolecule. Langmuir 22:2304–2310

    CAS  Google Scholar 

  • Luo P et al (2018) Application of nanoparticle tracking analysis for characterising the fate of engineered nanoparticles in sediment-water systems. J Environ Sci (China) 64:62–71. https://doi.org/10.1016/j.jes.2016.07.019

    Article  Google Scholar 

  • Ma X, Bouchard D (2009) Formation of aqueous suspensions of fullerenes. Environ Sci Technol 43:330–336

    CAS  Google Scholar 

  • Maciejewska-Prończuk J, Morga M, Adamczyk Z, Oćwieja M, Zimowska M (2017) Homogeneous gold nanoparticle monolayers—QCM and electrokinetic characteristics. Colloids Surf. A Physicochem. Eng. Asp 514:226–235. https://doi.org/10.1016/j.colsurfa.2016.11.048

    Article  CAS  Google Scholar 

  • Mani RC, Li X, Sunkara MK, Rajan K (2003) Carbon nanopipettes. Nano Lett 3:671–673

    CAS  Google Scholar 

  • Martin SJ, Granstaff VE, Frye GC (1991) Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Anal Chem 63:2272–2281. https://doi.org/10.1021/ac00020a015

    Article  CAS  Google Scholar 

  • Martinson CA, Reddy KJ (2009) Adsorption of arsenic(III) and arsenic(V) by cupric oxide nanoparticles. J Colloid Interface Sci 336:406–411. https://doi.org/10.1016/j.jcis.2009.04.075

    Article  CAS  Google Scholar 

  • Mashayekhi H, Ghosh S, Du P, Xing BS (2012) Effect of natural organic matter on aggregation behavior of C60 fullerene in water. J Colloid Interf Sci 374:111–117

    CAS  Google Scholar 

  • Mcdowellboyer LM (1992) Chemical mobilization of micron-sized particles in saturated porous media under steady flow conditions. Environ Sci Technol 26:586–593

    CAS  Google Scholar 

  • Messaud FA, Sanderson RD, Runyon JR, Otte T, Pasch H, Williams SKR (2009) An overview on field-flow fractionation techniques and their applications in the separation and characterization of polymers. Progress Polymer Sci 34:351–368. https://doi.org/10.1016/j.progpolymsci.2008.11.001

    Article  CAS  Google Scholar 

  • Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of nanotechnology in cosmetics. Progress Materials Sci 57:875–910. https://doi.org/10.1016/j.pmatsci.2011.10.001

    Article  CAS  Google Scholar 

  • Molnar IL, Johnson WP, Gerhard JI, Willson CS, O’Carroll DM (2015) Predicting colloid transport through saturated porous media: a critical review. Water Resour Res 51:6804–6845. https://doi.org/10.1002/2015wr017318

    Article  Google Scholar 

  • Montaño MD, Badiei HR, Bazargan S, Ranville JF (2014) Improvements in the detection and characterization of engineered nanoparticles using spICP-MS with microsecond dwell times. Environ Sci Nano 1:338–346. https://doi.org/10.1039/c4en00058g

    Article  CAS  Google Scholar 

  • Motaung TE, Luyt AS (2010) Effect of maleic anhydride graftingand the presence of oxidized wax on the thermal and mechanical behaviour of LDPE/silica nanocomposites. Mater Sci Eng 527:761–768

    Google Scholar 

  • Mu H, Chen Y, Xiao N (2011) Effects of metal oxide nanoparticles(TiO2, Al2O3, SiO2 and ZnO) on waste activated sludge anaerobic digestion. Bioresour Technol 102:10305–10311

    CAS  Google Scholar 

  • Mulvihill MJ, Habas SE, Jen-La Plante I, Wan J, Mokari T (2010) Influence of size, shape, and surface coating on the stability of aqueous suspensions of CdSe nanoparticles. Chem Mater 22:5251–5257. https://doi.org/10.1021/cm101262s

    Article  CAS  Google Scholar 

  • Mylon SE, Chen KL, Elimelech M (2004) Influence of natural organic matter and ionic composition on the kinetics and structure of hematite colloid aggregation: implications to iron depletion in estuaries. Langmuir 20:9000–9006

    CAS  Google Scholar 

  • Nascimento AG, Totola MR, Souza CS, Borges MT, Borges AC (2006) Temporal and spatial dynamics of blocking and ripening effects on bacterial transport through a porous system: a possible explanation for CFT deviation. Colloids Surf B Biointerfaces 53:241–244. https://doi.org/10.1016/j.colsurfb.2006.08.020

    Article  CAS  Google Scholar 

  • Nebbioso A, Piccolo A (2013) Molecular characterization of dissolved organic matter (DOM): a critical review. Anal Bioanal Chem 405:109–124. https://doi.org/10.1007/s00216-012-6363-2

    Article  CAS  Google Scholar 

  • Nel A (2006) Toxic potential of materials at the nanolevel. Science 311:622–627. https://doi.org/10.1126/science.1114397

    Article  CAS  Google Scholar 

  • Nguyen TH, Chen KL (2007) Role of divalent cations in plasmid DNA adsorption to natural organic matter-coated silica surface. Environ Sci Technol 41:5370–5375

    CAS  Google Scholar 

  • Nocito-Gobel J, Tobiason JE (1996) Effects of ionic strength on colloid deposition and release. Colloids Surf A 107:223–231

    CAS  Google Scholar 

  • Nozik AJ (2002) Quantum dot solar cells. Physica E 14:115–120

    CAS  Google Scholar 

  • NRC (2012) Research strategy for environmental, health, and safety aspects of engineered nanomaterials. The National Academies Press, Washington, DC

    Google Scholar 

  • O’Melia CR (1980) Aquasols: the behavior of small particles in aquatic systems. Environ Sci Technol 14:1052–1060

    Google Scholar 

  • Oberdörster E, Zhu S, Blickley TM, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120. https://doi.org/10.1016/j.carbon.2005.11.008

    Article  CAS  Google Scholar 

  • OECD International Futures Programme (2007) Small sizes that matter: opportunities and risks of Nanotechnologies. Allianz, Munich, p 46

  • OECD (2011) Nanosafety at the OECD: the first 5 years 2006–2010. OECD. http://www.oecd.org/science/nanosafety/47104296.pdf. Accessed 5 Jun 2015

  • OECD (2014) Genotoxicity of manufactured nanomaterials: report of the OECD expert meeting; series on the safety of manufactured nanomaterials. OECD, Paris

    Google Scholar 

  • Oliveira R (1997) Understanding adhesion: a means for preventing fouling. Exp Therm Fluid Sci 14:316–322

    CAS  Google Scholar 

  • Ong KJ, Felix LC, Boyle D, Ede JD, Ma G, Veinot JGC, Goss GG (2017) Humic acid ameliorates nanoparticle-induced developmental toxicity in zebrafish. Environ Sci Nano 4:127–137. https://doi.org/10.1039/c6en00408c

    Article  CAS  Google Scholar 

  • Pace HE, Rogers NJ, Jarolimek C, Coleman VA, Higgins CP, Ranville JF (2011) Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal Chem 83:9361–9369. https://doi.org/10.1021/ac201952t

    Article  CAS  Google Scholar 

  • Park J, Park H, Ercius P, Pegoraro AF, Xu C, Kim JW (2015) Direct observation of wet biological samples by Graphene liquid cell transmission electron microscopy. Nano Lett 15:4737–4744

    CAS  Google Scholar 

  • Park JH, Sut TN, Jackman JA, Ferhan AR, Yoonab BK, Cho N-J (2017) Controlling adsorption and passivation properties of bovine serum albumin on silica surfaces by ionic strength modulation and cross-linking. Phys Chem Chem Phys 19:8854–8865

    CAS  Google Scholar 

  • Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65:177–198

    CAS  Google Scholar 

  • Pazmino E, Trauscht J, Johnson WP (2014) Release of colloids from primary minimum contact under unfavorable conditions by perturbations in ionic strength and flow rate. Environ Sci Technol 48:9227–9235. https://doi.org/10.1021/es502503y

    Article  CAS  Google Scholar 

  • Pelley AJ, Tufenkji N (2008) Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J Colloid Interface Sci 321:74–83. https://doi.org/10.1016/j.jcis.2008.01.046

    Article  CAS  Google Scholar 

  • Peng C et al (2017) Behavior and potential impacts of metal-based engineered nanoparticles in aquatic environments. Nanomaterials 7:21. https://doi.org/10.3390/nano7010021

    Article  CAS  Google Scholar 

  • Peralta-Videa JR, Zhao L, Lopez-Moreno ML, de la Rosa G, Hong J, Gardea-Torresdey JL (2011) Nanomaterials and the environment: a review for the biennium 2008–2010. J Hazard Mater 186:1–15. https://doi.org/10.1016/j.jhazmat.2010.11.020

    Article  CAS  Google Scholar 

  • Petosa A, Jaisi D, Quevedo I, Elimelech M, Tufenkji N (2010) Aggregation and deposition of engineered nanomaterials in aquatic environments: role of physicochemical interactions. Environ Sci Technol 44:6532–6549

    CAS  Google Scholar 

  • Petosa AR, Brennan SJ, Rajput F, Tufenkji N (2012) Transport of two metal oxide nanoparticles in saturated granular porous media: role of water chemistry and particle coating. Water Res 46:1273–1285. https://doi.org/10.1016/j.watres.2011.12.033

    Article  CAS  Google Scholar 

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zero valent iron dispersions. Environ Sci Technol 41:284–290

    CAS  Google Scholar 

  • Phenrat T, Song JE, Cisneros CM, Schoenfelder DP, Tilton RD, Lowry GV (2010) Estimating attachment of nano- and submicrometer-particles coated with organic macromolecules in porous media: development of an empirical model. Environ Sci Technol 44:4531–4538

    CAS  Google Scholar 

  • Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: a review. Environ Sci Technol 48:8946–8962. https://doi.org/10.1021/es502342r

    Article  CAS  Google Scholar 

  • Pincus P (1991) Colloid stabilization with grafted polyelectrolytes. Macromolecules 24:2912–2919

    CAS  Google Scholar 

  • Pomorska A, Yliniemi K, Wilson BP, Shchukin D, Johannsmann D, Grundmeier G (2011) QCM study of the adsorption of polyelectrolyte covered mesoporous TiO2 nanocontainers on SAM modified Au surfaces. J Colloid Interface Sci 362:180–187. https://doi.org/10.1016/j.jcis.2011.06.018

    Article  CAS  Google Scholar 

  • Porubcan AA, Xu S (2011) Colloid straining within saturated heterogeneous porous media. Water Res 45:1796–1806. https://doi.org/10.1016/j.watres.2010.11.037

    Article  CAS  Google Scholar 

  • Posani KT et al (2006) Nanoscale quantum dot infrared sensors with photonic crystal cavity. Appl Physics Letters 88:151104. https://doi.org/10.1063/1.2194167

    Article  CAS  Google Scholar 

  • Qu X, Hwang YS, Alvarez PJ, Bouchard D, Li Q (2010) UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC60) nanoparticles. Environ Sci Technol 44:7821–7826

    CAS  Google Scholar 

  • Qu XL, Alvarez PJJ, Li QL (2012) Impact of sunlight and humic acid on the deposition kinetics of aqueous fullerene nanoparticles (nC(60)). Environ Sci Technol 46:13455–13462

    CAS  Google Scholar 

  • Quevedo IR, Tufenkji N (2009) Influence of solution chemistry on the deposition and detachment kinetics of a CdTe quantum dot examined using a quartz crystal microbalance. Environ Sci Technol 43:3176–3182

    CAS  Google Scholar 

  • Quevedo IR, Olsson AL, Tufenkji N (2013) Deposition kinetics of quantum dots and polystyrene latex nanoparticles onto alumina: role of water chemistry and particle coating. Environ Sci Technol 47:2212–2220. https://doi.org/10.1021/es303392v

    Article  CAS  Google Scholar 

  • Quevedo IR, Olsson ALJ, Clark RJ, Veinot JGC, Tufenkji N (2014) Interpreting deposition behavior of polydisperse surface-modified nanoparticles using QCM-D and sand-packed columns. Environ Eng Sci 31:326–337. https://doi.org/10.1089/ees.2013.0302

    Article  CAS  Google Scholar 

  • Rahman Q, Lohani M, Dopp E, Remsel H, Jonas L, Weiss DG, Schiffmann D (2002) Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis in Syrian hamster embryo fibroblasts. Environ Health Perspect 110:797–800

    CAS  Google Scholar 

  • Ramachandran V, Fogler HS (2000) Plugging by hydrodynamic bridging during flow of stable colloidal particles within cylindrical pores. J Fluid Mech 385:129–156

    Google Scholar 

  • Ramos-Tejada MM, Ontiveros A, Viota J (2003) Interfacial and rheological properties of humic acid/hematite suspensions. J Colloid Interface Sci 268:85–95

    CAS  Google Scholar 

  • Ravishankar Rai V, Jamuna Bai A (2011) Nanoparticles and their potential application as antimicrobials. In: Méndez-Vilas A (ed) Science against microbial pathogens: communicating current research and technological advances. Formatex Research Center, Badajoz, p 197–209

  • Raychoudhury T, Tufenkji N, Ghoshal S (2014) Straining of polyelectrolyte-stabilized nanoscale zero valent iron particles during transport through granular porous media. Water Res 50:80–89. https://doi.org/10.1016/j.watres.2013.11.038

    Article  CAS  Google Scholar 

  • Reerink H, Overbeek JTG (1954) The rate of coagulation as a measure of the stability of silver iodide sols. Discuss Faraday Soc 18:74–84

    CAS  Google Scholar 

  • Reidy B, Haase A, Luch A, Dawson K, Lynch I (2013) Mechanisms of silver nanoparticle release, transformation and toxicity: a critical review of current knowledge and recommendations for future studies and applications. Materials 6:2295–2350. https://doi.org/10.3390/ma6062295

    Article  CAS  Google Scholar 

  • Ren X et al (2014) Impact of Al2O3 on the aggregation and deposition of graphene oxide. Environ Sci Technol 48:5493–5500. https://doi.org/10.1021/es404996b

    Article  CAS  Google Scholar 

  • Reviakine I, Johannsmann D, Richter RP (2011) Hearing what you cannot see and visualizing what you hear: interpreting quartz crystal microbalance data from solvated interfaces. Anal Chem 83:8838–8848

    CAS  Google Scholar 

  • Ritson JP, Graham NJD, Templeton MR, Clark JM, Gough R, Freeman C (2014) The impact of climate change on the treatability of dissolved organic matter (DOM) in upland water supplies: a UK perspective. Sci Total Environ 473:714–730

    Google Scholar 

  • Robinson JT, Perkins FK, Snow ES, Wei Z, Sheehan PE (2008) Reduced graphene oxide molecular sensors. Nano Lett 8:3137–3140

    CAS  Google Scholar 

  • Ross S, Morrison ID (1988) Colloidal systems and interfaces. Wiley, New York

    Google Scholar 

  • Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia 4:707–716. https://doi.org/10.1016/j.actbio.2007.11.006

    Article  CAS  Google Scholar 

  • Ryan JN, Elimelech M (1996) Colloid mobilization and transport in groundwater. Colloids Surf A 107:1–56. https://doi.org/10.1016/0927-7757(95)03384-X

    Article  CAS  Google Scholar 

  • Sahai N (2002) Is silica really an anomalous oxide? Surface acidity and aqueous hydrolysis revisited. Environ Sci Technol 36:445–452

    CAS  Google Scholar 

  • Saleh N, Kim HJ, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modifed FeO nanoparticles in water saturated sand columns. Environ Sci Technol 42:3349–3355

    CAS  Google Scholar 

  • Sauerbery G (1959) Verwendung von Schwingquarzen zur Wagung dunner schichten und zur mikrowagung. Z Phys 155:206–222

    Google Scholar 

  • Sayes CM et al (2004) The differential cytotoxicity of water-soluble fullerenes. Nano Lett 4:1881–1887

    CAS  Google Scholar 

  • Shen CY, Huang BL, Jin Y (2008) Effects of solution chemistry on straining of colloids in porous media under unfavorable conditions. Water Resour Res 44:W05419. https://doi.org/10.1029/2007WR006580

    Article  Google Scholar 

  • Shen C, Wang L-P, Li B, Huang Y, Jin Y (2012) Role of surface roughness in chemical detachment of colloids deposited at primary energy minima. Vadose Zone J:11. https://doi.org/10.2136/vzj2011.0057

    Google Scholar 

  • Shen C, Wu L, Zhang S, Ye H, Li B, Huang Y (2014) Heteroaggregation of microparticles with nanoparticles changes the chemical reversibility of the mciroparticles’ attachment to planar surfaces. J Colloid Interface Sci 421:103–113

    CAS  Google Scholar 

  • Shen C, Bradford SA, Li T, Li B, Huang Y (2018) Can nanoscale surface charge heterogeneity really explain colloid detachment from primary minima upon reduction of solution ionic strength? J Nanopart Res 20. https://doi.org/10.1007/s11051-018-4265-8

  • Sheng G, Li J, Shao D, Hu J, Chen C, Chen Y, Wang X (2010) Adsorption of copper(II) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids. J Hazard Mater 178:333–340. https://doi.org/10.1016/j.jhazmat.2010.01.084

    Article  CAS  Google Scholar 

  • Simoni SF, Bosma TNP, Harms H, Zehnder AJB (2000) Bivalent cations increase both the subpopulation of adhering bacteria and their adhesion efficiency in sand columns. Environ Sci Technol 34:1011–1017

    CAS  Google Scholar 

  • Sirk KM et al (2009) Effect of adsorbed polyelectrolytes on nanoscale zero valent iron particle attachment to soil surface models. Environ Sci Technol 43:3803–3808

    CAS  Google Scholar 

  • Solovitch N, Labille J, Rose J, Chaurand P, Borschneck D, Wiesner MR, Bottero JY (2010) Concurrent aggregation and deposition of TiO2 nanoparticles in a sandy porous media. Environ Sci Technol 44:4897–4902

    CAS  Google Scholar 

  • Song JE et al (2011) Hydrophobic interactions increase attachment of gum arabic- and PVP-coated Ag nanoparticles to hydrophobic surfaces. Environ Sci Technol 45:5988–5995. https://doi.org/10.1021/es200547c

    Article  CAS  Google Scholar 

  • Sotirelis NP, Chrysikopoulos CV (2015) Interaction between graphene oxide nanoparticles and quartz sand. Environ Sci Technol 49:13413–13421. https://doi.org/10.1021/acs.est.5b03496

    Article  CAS  Google Scholar 

  • Srivastava V, Gusain D, Sharma YC (2015) Critical review on the toxicity of some widely used engineered nanoparticles. Ind Eng Chem Res 54:6209–6233. https://doi.org/10.1021/acs.iecr.5b01610

    Article  CAS  Google Scholar 

  • Stensberg MC, Wei Q, McLamore ES, Porterfield DM, Wei A, Sepúlveda MS (2011) Toxicological studies on silver nanoparticles: challenges and opportunities in assessment, monitoring and imaging. Nanomedicine 6:879–898. https://doi.org/10.2217/nnm.11.78

    Article  CAS  Google Scholar 

  • Stone V, Johnston H, Clift MJD (2007) Air pollution, ultrafine and nanoparticle toxicology: cellular and molecular interactions. IEEE Transactions on NanoBioscience 6:331–340. https://doi.org/10.1109/tnb.2007.909005

    Article  Google Scholar 

  • Sun TY, Gottschalk F, Hungerbuhler K, Nowack B (2014) Comprehensive probabilistic modelling of environmental emissions of engineered nanomaterials. Environ Pollut 185:69–76. https://doi.org/10.1016/j.envpol.2013.10.004

    Article  CAS  Google Scholar 

  • Sun P, Shijirbaatar A, Fang J, Owens G, Lin D, Zhang K (2015) Distinguishable transport behavior of zinc oxide nanoparticles in silica sand and soil columns. Sci Total Environ 505:189–198. https://doi.org/10.1016/j.scitotenv.2014.09.095

    Article  CAS  Google Scholar 

  • Svecova L, Cremel S, Sirguey C, Simonnot MO, Sardin M, Dossot M, Mercier-Bion F (2008) Comparison between batch and column experiments to determine the surface charge properties of rutile TiO2 powder. J Colloid Interface Sci 325:363–370. https://doi.org/10.1016/j.jcis.2008.05.067

    Article  CAS  Google Scholar 

  • Sverjensky DA (1994) Zero-point-of-charge prediction from crystal chemistry and solvation theory. Geochim Cosmochim Acta 58:3123–3129

    CAS  Google Scholar 

  • Sygouni V, Chrysikopoulos CV (2015) Characterization of TiO2 nanoparticle suspensions in aqueous solutions and TiO2 nanoparticle retention in water-saturated columns packed with glass beads. Chem Eng J 262:823–830. https://doi.org/10.1016/j.cej.2014.10.044

    Article  CAS  Google Scholar 

  • Tamura H, Katayama N, Furuichi R (1996) Modeling o fionexchange reactions on metal oxides with the frumkin isotherm acid−base and charge characteristics of MnO2, TiO2, Fe3O4, and Al2O3 surfaces and adsorption fffinity of alkali metal ions. Environ Sci Technol 30:1198–1204

    CAS  Google Scholar 

  • Tang Z, Cheng T (2018) Stability and aggregation of nanoscale titanium dioxide particle (nTiO2): effect of cation valence, humic acid, and clay colloids. Chemosphere 192:51–58. https://doi.org/10.1016/j.chemosphere.2017.10.105

    Article  CAS  Google Scholar 

  • Tang SCN, Lo IMC (2013) Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res 47:2613–2632. https://doi.org/10.1016/j.watres.2013.02.039

    Article  CAS  Google Scholar 

  • Tang L, Wang Y, Li Y, Feng H, Lu J, Li J (2009) Preparation, structure, and electrochemical properties of reduced graphene sheet films. Adv Funct Mater 19:2782–2789. https://doi.org/10.1002/adfm.200900377

    Article  CAS  Google Scholar 

  • Tang Z, Cheng T, Fisher-Power LM (2018) Influence of aggregation on nanoscale titanium dioxide (nTiO2) deposition to quartz sand. Chemosphere 209:517–524. https://doi.org/10.1016/j.chemosphere.2018.06.112

    Article  CAS  Google Scholar 

  • Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    CAS  Google Scholar 

  • Thio BJR, Zhou D, Keller AA (2011) Influence of natural organic matter on the aggregation and deposition of titanium dioxide nanoparticles. J Hazard Mater 189:556–563. https://doi.org/10.1016/j.jhazmat.2011.02.072

    Article  CAS  Google Scholar 

  • Tombácz E, Libor Z, Illés E, Majzik A, Klumpp E (2004) The role of reactive surface sites and complexation by humic acids in the interaction of clay mineral and iron oxide particles. Org Geochem 35:257–267

    Google Scholar 

  • Tosco T, Tiraferri A, Sethi R (2009) Ionic strength dependent transport of microparticles in saturated porous media: modeling mobilization and immobilization phenomena under transient chemical conditions. Environ Sci Technol 43:4425–4431

    CAS  Google Scholar 

  • Tufenkji N (2006) Application of a dual deposition mode model to evaluate transport of Escherichia coli D21 in porous media. Water Resources Res 42:277–305. https://doi.org/10.1029/2005wr004851

    Article  Google Scholar 

  • Tufenkji N, Elimelech M (2004a) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environ Sci Technol 38:529–536

    CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2004b) Deviation from the classical colloid filtration theory in the presence of repulsive DLVO interactions. Langmuir 20:10818–10828

    CAS  Google Scholar 

  • Tufenkji N, Elimelech M (2005) Breakdown of colloid filtration theory: role of the secondary energy minimum and surface charge heterogeneities. Langmuir 21:841–852

    CAS  Google Scholar 

  • Tufenkji N, Redman JA, Elimelech M (2003) Interpreting deposition patterns of microbial particles in laboratory-scale column experiments. Environ Sci Technol 37:616–623

    CAS  Google Scholar 

  • Unrine J, Tsyusko OV, Hunyadi S, Judy J, Bertsch P (2010) Effects of particle size on chemical speciation and bioavailability of Cu to earthworms exposed to Cu nanoparticles. J Environ Qual 39:1942–1953

    CAS  Google Scholar 

  • Usui S (1973) Interaction of electrical double layers at constant surface charge. J Colloid Interface Sci 44:107–113

    Google Scholar 

  • Van Genuchten MTh, Wierenga PJ (1976) Mass transfer studies in sorbing porous media. I. Analytic solutions. Soil Sci Soc Am Proc 40:473–480

  • Vastamaki P, Jussila M, Riekkola ML (2005) Continuous two-dimensional field-flow fractionation: a novel technique for continuous separation and collection of macromolecules and particles. Analyst 130:427–432. https://doi.org/10.1039/b410046h

    Article  CAS  Google Scholar 

  • Vecitis CD, Zodrow KR, Kang S, Elimelech M (2010) Electronic-structure-dependent bacterial cytotoxicity of single-walled carbon-nanotubes. ACS Nano 4:5471–5479

    CAS  Google Scholar 

  • Verwey EJ (1955) Theory of the stability of lyophobic colloids. J Phys Chem 51:631–636

    Google Scholar 

  • Walden C, Zhang W (2016) Biofilms versus activated sludge: considerations in metal and metal oxide nanoparticle removal from wastewater. Environ Sci Technol 50:8417–8431. https://doi.org/10.1021/acs.est.6b01282

    Article  CAS  Google Scholar 

  • Walker HW, Bob MM (2001) Stability of particle flocs upon addition of natural organic matter under quiescent conditions. Water Res 35:875–882

    CAS  Google Scholar 

  • Wamer WG, Yin J-J, Wei RR (1997) Oxidative damage to nucleic acids photosensitized by titanium dioxide. Free Radical Biol Med 23:851

    CAS  Google Scholar 

  • Wang J et al (2007) Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 168:176–185. https://doi.org/10.1016/j.toxlet.2006.12.001

    Article  CAS  Google Scholar 

  • Wang C, Bobba AD, Attinti R, Shen C, Lazouskaya V, Wang L-P, Jin Y (2012) Retention and transport of silica nanoparticles in saturated porous media: effect of concentration and particle size. Environ Sci Technol 46:7151–7158. https://doi.org/10.1021/es300314n

    Article  CAS  Google Scholar 

  • Wang C, Qiao Q, Klie RF, Shokuhfar T (2014) High resolution in-situ study of reactions in graphene liquid cells. Microsc Microanal 20:1520–1521

    Google Scholar 

  • Wang D, Jin Y, Jaisi DP (2015) Effect of size-selective retention on the cotransport of hydroxyapatite and goethite nanoparticles in saturated porous media. Environ Sci Technol 49:8461–8470. https://doi.org/10.1021/acs.est.5b01210

    Article  CAS  Google Scholar 

  • Wang Z et al (2016) Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: column experiments and mechanistic explanations. Environ Pollut 213:698–709. https://doi.org/10.1016/j.envpol.2016.03.053

    Article  CAS  Google Scholar 

  • Wang Z, Wang X, Zhang J, Yu X, Wu Z (2017) Influence of surface functional groups on deposition and release of TiO2 nanoparticles. Environ Sci Technol 51:7467–7475. https://doi.org/10.1021/acs.est.7b00956

    Article  CAS  Google Scholar 

  • Wei X, He J, Wang M, Fang J, Chen J, Lv B (2016) nTiO2 mass transfer and deposition behavior in an aquatic environment. J Nanopart Res 18. https://doi.org/10.1007/s11051-016-3668-7

  • Westerhoff PK, Kiser MA, Hristovski K (2013) Nanomaterial removal and transformation during biological wastewater treatment. Environ Eng Sci 30:109–117. https://doi.org/10.1089/ees.2012.0340

    Article  CAS  Google Scholar 

  • Wiesner MR, Bottero JY (2007) Environmental nanotechnology. J Environ Monit Jem 24:1

    Google Scholar 

  • Wiesner MR, Lowry GV, Jones KL, Michael F, Hochella J, Di Giulio RT, Casman E, Bernhardt ES (2009) Decreasing uncertainties in assessing environmental exposure, risk, and ecological implications of nanomaterials. Environ Sci Technol 43:6458–6462. https://doi.org/10.1021/es8034544)

    Article  CAS  Google Scholar 

  • Wilkinson KJ, Balnois E, Leppard GG, Buffle J (1999) Characteristic features of the major components of freshwater colloidal organic matter revealed by transmission electron and atomic force microscopy. Colloids Surf 155:287–310

    CAS  Google Scholar 

  • Wu D, He L, Ge Z, Tong M, Kim H (2018) Different electrically charged proteins result in diverse bacterial transport behaviors in porous media. Water Res 143:425–435. https://doi.org/10.1016/j.watres.2018.06.070

    Article  CAS  Google Scholar 

  • Xiao Y, Wiesner MR (2013) Transport and retention of selected engineered nanoparticles by porous media in the presence of a biofilm. Environ Sci Technol 47:2246–2253. https://doi.org/10.1021/es304501n

    Article  CAS  Google Scholar 

  • Xu LC, Logan BE (2005) Interaction forces between colloids and protein-coated surfaces measured using an atomic force microscope. Environ Sci Technol 39:3592–3600

    CAS  Google Scholar 

  • Xu D, Hodges C, Ding Y, Biggs S, Brooker A, York D (2010a) Adsorption kinetics of Laponite and Ludox silica nanoparticles onto a deposited poly(diallyldimethylammonium chloride) layer measured by a quartz crystal microbalance and optical reflectometry. Langmuir 26:18105–18112. https://doi.org/10.1021/la103071c

    Article  CAS  Google Scholar 

  • Xu D, Hodges C, Ding Y, Biggs S, Brooker A, York D (2010b) A QCM study on the adsorption of colloidal laponite at the solid/liquid interface. Langmuir 26:8366–8372. https://doi.org/10.1021/la904784a

    Article  CAS  Google Scholar 

  • Yang FH, Jr LA, Yang RT (2006) Adsorption of spillover hydrogen atoms on single-wall carbon nanotubes. J Phys Chem B 110:6236–6244

    CAS  Google Scholar 

  • Yang K, Lin D, Xing B (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25:3571–3576

    CAS  Google Scholar 

  • Yang X, Flynn R, von der Kammer F, Hofmann T (2012) Modeling colloid deposition on a protein layer adsorbed to iron-oxide-coated sand. J Contam Hydrol 142–143:50–62. https://doi.org/10.1016/j.jconhyd.2012.09.006

    Article  CAS  Google Scholar 

  • Yao KM, Habibian MT, O’Melia CR (1971) Water and waste water filtration: concepts and applications. Environ Sci Technol 5:1105–1112. https://doi.org/10.1021/es60058a005

    Article  CAS  Google Scholar 

  • Yi P, Chen KL (2011) Influence of surface oxidation on the aggregation and deposition kinetics of multiwalled carbon nanotubes in monovalent and divalent electrolytes. Langmuir 27:3588–3599. https://doi.org/10.1021/la104682b

    Article  CAS  Google Scholar 

  • Yi P, Chen KL (2013) Influence of solution chemistry on the release of multiwalled carbon nanotubes from silica surfaces. Environ Sci Technol 47:12211–12218. https://doi.org/10.1021/es403133r

    Article  CAS  Google Scholar 

  • Yi P, Chen KL (2014) Release kinetics of multiwalled carbon nanotubes deposited on silica surfaces: quartz crystal microbalance with dissipation (QCM-D) measurements and modeling. Environ Sci Technol 48:4406–4413. https://doi.org/10.1021/es405471u

    Article  CAS  Google Scholar 

  • Yopps JA, Fuerstenau DW (1964) The zero point of charge of alpha-alumina. J Colloid Sci 19:61–71

    CAS  Google Scholar 

  • Youngren G, Acrivos A (1975) Stokes flow past a particle of arbitrary shape: a numerical method of solution. J Fluid Mechanics 69:377–403

    Google Scholar 

  • Yu S, Liu J, Yin Y, Shen M (2018) Interactions between engineered nanoparticles and dissolved organic matter: a review on mechanisms and environmental effects. J Environ Sci (China) 63:198–217. https://doi.org/10.1016/j.jes.2017.06.021

    Article  Google Scholar 

  • Yuan BL, Pham M, Nguyen TH (2008) Deposition kinetics of bacteriophage MS2 on a silica surface coated with natural organic matter in a radial stagnation point flow cell. Environ Sci Technol 42:7628–7633

    CAS  Google Scholar 

  • Yuk JM, Park J, Ercius P, Kim K, Hellebusch DJ (2012) High-resolution EM of colloidal nanocrystal growth using graphene liquid cells. Science 336:61–64

    CAS  Google Scholar 

  • Zhang LW, Yang J, Barron AR, Monteiro-Riviere NA (2009) Endocytic mechanisms and toxicity of a functionalized fullerene in human cells. Toxicol Lett 191:149–157. https://doi.org/10.1016/j.toxlet.2009.08.017

    Article  CAS  Google Scholar 

  • Zhang W, Yao Y, Li K, Huang Y, Chen Y (2011) Influence of dissolved oxygen on aggregation kinetics of citrate-coated silver nanoparticles. Environ Pollut 159:3757–3762. https://doi.org/10.1016/j.envpol.2011.07.013

    Article  CAS  Google Scholar 

  • Zhang L, Hou L, Wang L, Kan AT, Chen W, Tomson MB (2012) Transport of fullerene nanoparticles (nC60) in saturated sand and sandy soil: controlling factors and modeling. Environ Sci Technol 46:7230–7238. https://doi.org/10.1021/es301234m

    Article  CAS  Google Scholar 

  • Zhang M, Yao Q, Lu C, Li Z, Wang W (2014) Layered double hydroxide-carbon dot composite: high-performance adsorbent for removal of anionic organic dye. ACS Appl Mater Interfaces 6:20225–20233. https://doi.org/10.1021/am505765e

    Article  CAS  Google Scholar 

  • Zhang X, Jiang M, Niu N, Chen Z, Li S, Liu S, Li J (2018) Natural-product-derived carbon dots: from natural products to functional materials. ChemSusChem 11:11–24. https://doi.org/10.1002/cssc.201701847

    Article  CAS  Google Scholar 

  • Zhou ZH, Gunter WD (1992) The Nature of the surface-charge of kaolinite. Clays Clay Minerals 40:365–368

    CAS  Google Scholar 

  • Zhou D, Abdel-Fattah AI, Keller AA (2012) Clay particles destabilize engineered nanoparticles in aqueous environments. Environ Sci Technol 46:7520–7526. https://doi.org/10.1021/es3004427

    Article  CAS  Google Scholar 

  • Zimmermann R, Dukhin S, Werner C (2001) Electrokinetic measurements reveal interfacial charge at polymer films caused by simple electrolyte ions. J Phys Chem 105:8544–85449

    CAS  Google Scholar 

Download references

Funding

The present work has been financially supported by the National Natural Science Foundation of China (51608067, 51878092); Graduate Research and Innovation Foundation of Chongqing, China (Grant CYS18029); the Scientific and Technological Innovation Special Program of Social Livelihood of Chongqing (cstc2015shmsztzx0053); the Chongqing Postdoctoral Science Foundation (Grant Xm2016059); and the Fundamental Research Funds for the Central Universities (Grant 0903005203276 and Grant 106112016CDJXY210010).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoliu Huangfu or Qiang He.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Responsible editor: Thomas D. Bucheli

Electronic supplementary material

A summary of research examining the depositional behavior of various nanomaterials on environmentally relevant surfaces.

ESM 1

(DOCX 59.3 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, C., Huangfu, X., He, Q. et al. Deposition of engineered nanoparticles (ENPs) on surfaces in aquatic systems: a review of interaction forces, experimental approaches, and influencing factors. Environ Sci Pollut Res 25, 33056–33081 (2018). https://doi.org/10.1007/s11356-018-3225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3225-2

Keywords

Navigation