Skip to main content
Log in

Characterization of ferrous-agarose-xylenol gel dosimeter at 60Co γ-rays beam therapy unit

  • Published:
Radiological Physics and Technology Aims and scope Submit manuscript

Abstract

Fricke gel dosimetry is a valuable technique used for recording 3D dose distribution in radiotherapy. Herein, we present the dosimetric characteristics of a synthesized ferrous-agarose-xylenol orange gel dosimeter in a clinical 60Co beam. Experimental data were obtained using a secondary standards dosimetry laboratory 60Co therapy unit. The dosimeter was calibrated using the ionization chamber as a reference, and its total mass attenuation coefficient, absorption spectrum, optical density-dose relationship, sensitivity, and dose rate dependency were evaluated. The potentiality of the ferrous-agarose-xylenol gel dosimeter was investigated to measure output factors for different field sizes. The gel dosimeter readings were measured using a spectrophotometer. The ferrous-agarose-xylenol gel dosimeter exhibited a linearity in the range of 3–15 Gy, indicating that the dosimeter is tissue-equivalent and dose rate-independent and yield reproducible results. The measured output factors and those published in the literature showed good agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. International Commission on Radiation Units and Measurements. Determination of absorbed dose in a patient irradiated by beams of X or γ-rays in radiotherapy procedures, Bethesda, MD: ICRU; ICRU Report 24; 1976. p. 67.

  2. International Commission on Radiation Units and Measurements. Prescribing, recording, and electron beam therapy, Bethesda, MD: ICRU; ICRU Report 50; 2004. p. 3–100.

  3. Luis F, Pirani A, Marcos V, Moreira B, Jhonatha JL, Costa C, Lucas N, Oliveira CDN, Linda VE, Caldas D, Adelaide de Almeida EA. Fricke dosimeter gel measurements of the profiles of shielded fields. Appl Radiat Isot. 2013;82:239–41.

    Article  Google Scholar 

  4. Maeyama T, Fukasaku K, Takagi S, Noda S, Himeno R, Fukuda SA. Diffusion free and linear energy transfer independent nanocomposite Fricke gel dosimeter. Radiat Phys Chem. 2014;96:92–6.

    Article  CAS  Google Scholar 

  5. Gore JC, Yang YS, Schulz RI. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys Med Biol. 1984;29:1189–97.

    Article  CAS  Google Scholar 

  6. Lepage M, Jordan K. 3D dosimetry fundamentals: gels and plastics. J Phys Conf Ser. 2010;250:012055.

    Article  Google Scholar 

  7. Watanabe Y, Warmington L, Gopishankar N. Three-dimensional radiation dosimetry using polymer gel and solid radiochromic polymer: Des bases aux applications cliniques. World J Radiol. 2017;9:112–25.

    Article  Google Scholar 

  8. Appleby A, Leghrouz A. Imaging of radiation dose by visible color development in ferrous-agarose-xylenol orange gels. Med phys. 1991;18(2):309–12.

    Article  CAS  Google Scholar 

  9. Olsson LE, Appleby A, Sommer A. New dosimeter based on ferrous sulphate solution and agarose gel. Appl Radiat Isot. 1991;42:1081–6.

    Article  CAS  Google Scholar 

  10. Appleby A, Christman EA, Leghrouz A. Imaging of spatial radiation dose distribution in agarose gels using magnetic resonance. Med Phys. 1987;14:382–4.

    Article  CAS  Google Scholar 

  11. Dehghan M, Mokhtari H, Bouzarjomehri F. Evaluation of ferrous-agarose- xylenol gel properties in radiation dosimetry. J Biomed Phys Eng. 2012;2:54–9.

    Google Scholar 

  12. Leong LH, Kandaiya S, Seng NB. Characterisation of a Ferrous Agarose Xylenol (FAX) gel for radioherapy dose measurement. Australas Phys Eng Sci Med. 2007;30:135–40.

    Article  Google Scholar 

  13. Audet C, Schreiner LJ. Multiple-site fast exchange model for spin-lattice relaxation in the Fricke gelatin dosimeter. Med Phys. 1997;24:201–9.

    Article  CAS  Google Scholar 

  14. Olsson LE, Petersson L, Ahlgren L, Mattsson S. Ferrous sulphate gels for determination of absorbed dose distributions using MRI technique: basic studies. Phys Med Biol. 1989;34:43–52.

    Article  CAS  Google Scholar 

  15. Hazle JD, Hefner L, Nyerick CE, Wilson L, Boyer AL. Dose-response characteristics of a ferrous-sulphate- doped gelatin system for determining radiation absorbed dose distributions by magnetic resonance imaging (FeMRI). Phys Med Biol. 1991;36:1117–25.

    Article  CAS  Google Scholar 

  16. Maeyama T, Fukunishi N, Ishikawa KL, Fukasaku K, Fukuda S. Radiological roperties of nanocomposite Fricke gel dosimeters for heavy ion beams. J Radiat Res. 2016;57:318–24.

    Article  CAS  Google Scholar 

  17. Babu SE, Singh IR, Poornima CG, Ravindran BP. Enhancing the longevity of three-dimensional dose in a diffusion-controlled Fricke gel dosimeter. J Can Res Ther. 2015;11:580–5.

    Article  Google Scholar 

  18. Kron T, Metcalfe P, Pope JM. Investigation of the tissue equivalence of gels used for NMR dosimetry. Phys Med Biol. 1993;38:139–50.

    Article  CAS  Google Scholar 

  19. Gambarini G, Brusa D, Carrara M, Castellano G, Mariani M, Tomatis S, Valente M, Vanossi E. Dose imaging in radiotherapy photon fields with Fricke and normoxic-polymer gels. J Phys Conf Ser. 2006;41:466–74.

    Article  CAS  Google Scholar 

  20. Caldeira A, De Almeida A, Neto A, Baesso M, Bento A, Silva M. Fricke xylenol gel characterization using a photoacustic technique. Nucl Instr Meth A. 2007;582:484–8.

    Article  CAS  Google Scholar 

  21. Bero MA. Dosimetric properties of a radiochromic gel detector for diagnostic X-rays. Nucl Instr Meth A. 2007;580:186–9.

    Article  CAS  Google Scholar 

  22. Cavinato CC, Campos LL. Energy dependent response of the Fricke gel dosimeter prepared with 270 bloom gelatine for photons in the energy range 13.93 keV–6MeV. Nucl Instr Meth A. 2010;619:198–202.

    Article  CAS  Google Scholar 

  23. Chenting J, Chen J, Liming Y, Wenyun L, Guohua W, Yuanzi Z. Effect of DMSO on the sensitivity and diffusion of FPGX gel dosimeter. Radiat Phys Chem. 2012;81:879–83.

    Article  Google Scholar 

  24. Adem U. Water and tissue equivalency of some gel dosimeters for photon energy absorption. Appl Radiat Isot. 2013;82:258–63.

    Article  Google Scholar 

  25. Collura G, Galloa S, Tranchinae L, Abbate FB, Bartolottaa A, d’Errico F. Marrale. Analysis of the response of PVA-GTA Fricke-geld dosimeters with clinical magnetic resonance imaging. Nucl Instr Meth B. 2018;414:46–153.

    Article  Google Scholar 

  26. So long sulphur. Nature Chem. 2009;1:333. https://doi.org/10.1038/nchem.301.

  27. Arslan H. Photon attenuation parameters for some tissues from Geant4 simulation, theoretical calculations and experimental data: a comparative study. NucL Sci Tech. 2019. https://doi.org/10.1007/s41365-019-0617-z.

    Article  Google Scholar 

  28. Kurudirek M. Effective atomic numbers and electron densities of some human tissues and dosimetric materials for mean energies of various radiation sources relevant to radiotherapy and medical applications. Radiat Phys Chem. 2014;2:139–46.

    Article  Google Scholar 

  29. Vishwanath PS, Badiger NM. Effective atomic numbers of some tissue substitutes by different methods: a study. Med Phys. 2014;39:24–31.

    Article  Google Scholar 

  30. Gerward L, Guilbert N, Jensen KB, Levring H. WinXCom a program for calculating X-ray attenuation coefficients. Radiat Phys Chem. 2004;71:653–4.

    Article  CAS  Google Scholar 

  31. Taylor ML, Smith RL, Dossing F, Franich RD. Robust calculation of effective atomic numbers: the auto-Zeff software. Med Phys. 2012;39:1769–78.

    Article  CAS  Google Scholar 

  32. International Atomic Energy Agency (IAEA).Absorbed dose determination in external beam radiotherapy: An international code of practice for dosimetry based on standards of absorbed dose to water: IAEA TRS-398; 2000.

  33. International Organization for Standardization. Guide to expression of uncertainty in measurement. ISO; ISO; 1993.

  34. Kron T, Metcalfe P, Pope JM. Investigation of the tissue equivalence of gels used for NMR dosimetry. Phys Med Bioi. 1993;38:139–50.

    Article  CAS  Google Scholar 

  35. Amen S, Andrew M, Niall M. Radiotherapy in practice physics for clinical oncology. In: Oxford University Press; 2012. p. 100–101 & 114–115.

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouiza Moussous.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study does not deal with human participants and animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussous, O. Characterization of ferrous-agarose-xylenol gel dosimeter at 60Co γ-rays beam therapy unit. Radiol Phys Technol 14, 105–112 (2021). https://doi.org/10.1007/s12194-020-00600-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12194-020-00600-4

Keywords

Navigation