ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES
RETURN TO ISSUEPREVResearch ArticleNEXT

Surface Chemical Structure and Cell Adhesion onto Ion Beam Modified Polysiloxane

View Author Information
Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6-95125 Catania-Italia
Cite this: Langmuir 2001, 17, 7, 2243–2250
Publication Date (Web):March 8, 2001
https://doi.org/10.1021/la001321r
Copyright © 2001 American Chemical Society

    Article Views

    489

    Altmetric

    -

    Citations

    58
    LEARN ABOUT THESE METRICS
    Other access options

    Abstract

    The modification of the adhesion and spreading of BHK21 fibroblast cells has been studied for new biocompatible surfaces obtained by irradiating polyhydroxymethylsiloxane thin films with increasing doses of 5 keV Ar+ ion beams. The irradiated surfaces showed a dose-dependent increase of cytocompatibility, with an observed onset of the effect at about 5 × 1014 ions/cm2. At this dose, in fact, we found both the enhancement of cell adhesion, for an incubation time of 2 h, and complete cell confluence after an incubation time of 48 h. The observed fluence-dependent trends in cell adhesion and spreading have been correlated with the irradiation-induced modifications of the polymer surface composition and the related change in surface energy, obtained by using X-ray photoelectron spectroscopy (XPS) and contact angle measurements of three liquids. XPS data showed that ion irradiation induced a progressive compositional modification of the polymer toward a SiOx-rich phase, because of the irradiation-induced formation of [SiO4] clusters and decrease of the original [SiO3−C] ones, involving the loss of more than 50% of the original methyl groups and the transformation of the residual carbon-containing groups in a dispersed hydrogenated amorphous carbon phase of nanometric size. The surface free energy measurements, performed with the static contact angle technique, showed that ion irradiation transforms the initially hydrophobic surfaces, with θ = 77.6° ± 1.5°, into much more hydrophilic ones, with θ = 31.4° ± 1.7°. Furthermore, the contact angle is found to undergo an abrupt decrease just at an ion dose of 5 × 1014 ions/cm2, that is, where the onset of cell adhesion and confluence is observed. The analysis of the observed changes in the total surface energy in terms of the relative polar and dispersive force contributions showed that the strong enhancement of the hydrophilic character of the irradiated surfaces is mainly due to the raising of the polar acid−base force components, this effect being due to the enrichment of the irradiated surfaces with the permanent dipoles of the [SiO4]-based network and the elimination of the original pendant methyl groups.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

     Corresponding author. Prof. G. Marletta, Dipartimento di Scienze Chimiche, University of Catania, Viale A. Doria, 6-95125 Catania, Italy. Telefax:  ++39-095-33.64.22. E-mail:  gmarletta@ dipchi.unict.it.

    Cited By

    This article is cited by 58 publications.

    1. Cristian Padilha Fontoura, Patrícia Ló Bertele, Melissa Machado Rodrigues, Ana Elisa Dotta Maddalozzo, Rafaele Frassini, Charlene Silvestrin Celi Garcia, Sandro Tomaz Martins, Janaina da Silva Crespo, Carlos A. Figueroa, Mariana Roesch-Ely, Cesar Aguzzoli. Comparative Study of Physicochemical Properties and Biocompatibility (L929 and MG63 Cells) of TiN Coatings Obtained by Plasma Nitriding and Thin Film Deposition. ACS Biomaterials Science & Engineering 2021, 7 (8) , 3683-3695. https://doi.org/10.1021/acsbiomaterials.1c00393
    2. Isabel Hopp, Melanie N. MacGregor, Kyle Doherty, Rahul M. Visalakshan, Krasimir Vasilev, Rachel L. Williams, Patricia Murray. Plasma Polymer Coatings To Direct the Differentiation of Mouse Kidney-Derived Stem Cells into Podocyte and Proximal Tubule-like Cells. ACS Biomaterials Science & Engineering 2019, 5 (6) , 2834-2845. https://doi.org/10.1021/acsbiomaterials.9b00299
    3. Hae-Chang Jeong, Hong-Gyu Park, Yoon Ho Jung, Ju Hwan Lee, Byeong-Yun Oh, and Dae-Shik Seo . Tailoring the Orientation and Periodicity of Wrinkles Using Ion-Beam Bombardment. Langmuir 2016, 32 (28) , 7138-7143. https://doi.org/10.1021/acs.langmuir.6b01473
    4. Robert Huszank, Szabolcs Z. Szilasi, and Dezső Szikra . Ion-Energy Dependency in Proton Irradiation Induced Chemical Processes of Poly(dimethylsiloxane). The Journal of Physical Chemistry C 2013, 117 (49) , 25884-25889. https://doi.org/10.1021/jp406984d
    5. Dinesh Rangappa, Kempaiah Devaraju Murukanahally, Takaaki Tomai, Atsushi Unemoto, and Itaru Honma . Ultrathin Nanosheets of Li2MSiO4 (M = Fe, Mn) as High-Capacity Li-Ion Battery Electrode. Nano Letters 2012, 12 (3) , 1146-1151. https://doi.org/10.1021/nl202681b
    6. R. Huszank, D. Szikra, A. Simon, S. Z. Szilasi, and I. P. Nagy . 4He+ Ion Beam Irradiation Induced Modification of Poly(dimethylsiloxane). Characterization by Infrared Spectroscopy and Ion Beam Analytical Techniques. Langmuir 2011, 27 (7) , 3842-3848. https://doi.org/10.1021/la200202u
    7. Nicoletta Giamblanco, Mohammed Yaseen, Genady Zhavnerko, Jian R. Lu, and Giovanni Marletta . Fibronectin Conformation Switch Induced by Coadsorption with Human Serum Albumin. Langmuir 2011, 27 (1) , 312-319. https://doi.org/10.1021/la104127q
    8. B. Cláudio Trasferetti,, Rogério V. Gelamo,, F. Paulo Rouxinol, and, Mário A. Bica de Moraes, , Maria do Carmo Gonçalves and, Celso U. Davanzo. Nanocomposites of Amorphous Hydrogenated Carbon and Siloxane Networks Produced by PECVD. Chemistry of Materials 2004, 16 (4) , 567-569. https://doi.org/10.1021/cm0348139
    9. Young-Hye La,, Yu Jin Jung,, Hyun Ju Kim,, Tai-Hee Kang,, Kyuwook Ihm,, Ki-Jung Kim,, Bongsoo Kim, and, Joon Won Park. Sub-100-nm Pattern Formation through Selective Chemical Transformation of Self-Assembled Monolayers by Soft X-ray Irradiation. Langmuir 2003, 19 (10) , 4390-4395. https://doi.org/10.1021/la026815y
    10. Vyacheslav Chudinov, Igor N. Shardakov, Ilya A. Morozov, Irina V. Kondyurina, Alexey Kondyurin. Polydimethylsiloxane surface irradiated by nitrogen ions: Influence of low molecular fractions. Journal of Vacuum Science & Technology A 2024, 42 (3) https://doi.org/10.1116/6.0003443
    11. Dong Wook Lee, Dong Hyun Kim, Jin Young Oh, Jonghoon Won, Da Bin Yang, Hae-Chang Jeong, Dae-Shik Seo. Ion-beam exposure on PAM surface according to molecular concentration for application to liquid-crystal device. Journal of Materials Science: Materials in Electronics 2023, 34 (13) https://doi.org/10.1007/s10854-023-10523-6
    12. Dong Wook Lee, Hae-Chang Jeong, Dong Hyun Kim, Jin Young Oh, Yang Liu, Dae-Shik Seo. Liquid crystals alignment and switching between surface reinforced poly(ethylene-co-vinyl acetate) thin layers. Optical Materials 2022, 125 , 112088. https://doi.org/10.1016/j.optmat.2022.112088
    13. Ju Hwan Lee, Jonghoon Won, Hae-Chang Jeong, Dong Hyun Kim, Dong Wook Lee, Jeong-Min Han, Byeong-Yun Oh, Dae-Shik Seo. Physicochemical analysis of ion beam-induced surface modifications on polyethylene glycol films for liquid crystal alignment. Liquid Crystals 2019, 46 (12) , 1799-1807. https://doi.org/10.1080/02678292.2019.1606351
    14. Yang Xie, Li Wang, Yan Zhang, Houbin Li, Ronghua Huang. An in situ silicone–silicone interpenetrating polymer network (IPN) with higher mechanical property, higher hydrophilicity, and lower protein adsorption. Journal of Materials Science 2018, 53 (12) , 9325-9339. https://doi.org/10.1007/s10853-018-2146-2
    15. Quang Duc Truong, Murukanahally Kempaiah Devaraju, Itaru Honma. Nanocrystalline MgMnSiO4 and MgCoSiO4 particles for rechargeable Mg-ion batteries. Journal of Power Sources 2017, 361 , 195-202. https://doi.org/10.1016/j.jpowsour.2017.06.084
    16. Zhengping Ding, Yiming Feng, Ran Ji, Datong Zhang, Libao Chen, Shuangbao Wang, Douglas G. Ivey, Weifeng Wei. Improving the electrochemical cyclability of lithium manganese orthosilicate through the pillaring effects of gradient Na substitution. Journal of Power Sources 2017, 349 , 18-26. https://doi.org/10.1016/j.jpowsour.2017.03.023
    17. Palmira Tavolaro, Silvia Catalano, Guglielmo Martino, Adalgisa Tavolaro. Zeolite inorganic scaffolds for novel biomedical application: Effect of physicochemical characteristic of zeolite membranes on cell adhesion and viability. Applied Surface Science 2016, 380 , 135-140. https://doi.org/10.1016/j.apsusc.2016.01.279
    18. G.B.V.S. Lakshmi, D.K. Avasthi. Tuning of wettability of PANI-GNP composites using keV energy ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2016, 379 , 152-155. https://doi.org/10.1016/j.nimb.2016.02.032
    19. Kai Wang, Wenju Ren, Jinlong Yang, Rui Tan, Yidong Liu, Feng Pan. Depolarization effects of Li 2 FeSiO 4 nanocrystals wrapped in different conductive carbon networks as cathodes for high performance lithium-ion batteries. RSC Advances 2016, 6 (53) , 47723-47729. https://doi.org/10.1039/C6RA07755B
    20. Hong-Gyu Park, Hae-Chang Jeong, Yoon Ho Jung, Dae-Shik Seo. Control of the wrinkle structure on surface-reformed poly(dimethylsiloxane) via ion-beam bombardment. Scientific Reports 2015, 5 (1) https://doi.org/10.1038/srep12356
    21. Lin Hu, Jinlong Yang, Ibrahim Saana Amiinu, Xiaochun Kang, Wei Zhang, Shichun Mu. Lithium storage properties of in situ synthesized Li 2 FeSiO 4 and LiFeBO 3 nanocomposites as advanced cathode materials for lithium ion batteries. Journal of Materials Chemistry A 2015, 3 (46) , 23368-23375. https://doi.org/10.1039/C5TA04588F
    22. Ayşe Karakeçili, Grazia M.L. Messina, Merve Çapkın Yurtsever, Menemşe Gümüşderelioğlu, Giovanni Marletta. Impact of selective fibronectin nanoconfinement on human dental pulp stem cells. Colloids and Surfaces B: Biointerfaces 2014, 123 , 39-48. https://doi.org/10.1016/j.colsurfb.2014.08.008
    23. Wei-Chen Huang, Kun-Ho Liu, Ta-Chung Liu, Dean-Mo Liu, San-Yuan Chen. Synergistic hierarchical silicone-modified polysaccharide hybrid as a soft scaffold to control cell adhesion and proliferation. Acta Biomaterialia 2014, 10 (8) , 3546-3556. https://doi.org/10.1016/j.actbio.2014.04.025
    24. Hirahara. Adhesion between Cured Silicone Rubber. International Polymer Science and Technology 2014, 41 (6) , 327-332. https://doi.org/10.1177/0307174X1404100605
    25. Wakana Togami, Akira Sei, Tatsuya Okada, Takuya Taniwaki, Toru Fujimoto, Takayuki Nakamura, Shogo Tahata, Yoshitaka Nakanishi, Hiroshi Mizuta. Effects of water-holding capability of the PVF sponge on the adhesion and differentiation of rat bone marrow stem cell culture. Journal of Biomedical Materials Research Part A 2014, 102 (1) , 247-253. https://doi.org/10.1002/jbm.a.34695
    26. Huiliang Jin, Qiang Xin, Na Li, Jiang Jin, Bo Wang, Yingxue Yao. The morphology and chemistry evolution of fused silica surface after Ar/CF4 atmospheric pressure plasma processing. Applied Surface Science 2013, 286 , 405-411. https://doi.org/10.1016/j.apsusc.2013.09.100
    27. Somik Banerjee, M. Deka, A Kumar, Udayan De. Ion Irradiation Effects in some Electro-Active and Engineering Polymers Studies by Conventional and Novel Techniques. Defect and Diffusion Forum 2013, 341 , 1-49. https://doi.org/10.4028/www.scientific.net/DDF.341.1
    28. Haiyan Gao, Zhe Hu, Kai Zhang, Fangyi Cheng, Jun Chen. Intergrown Li2FeSiO4·LiFePO4–C nanocomposites as high-capacity cathode materials for lithium-ion batteries. Chemical Communications 2013, 49 (29) , 3040. https://doi.org/10.1039/c3cc40565f
    29. Hidetoshi HIRAHARA, Katsuhito MORI, Takahiro KUDO, Yusuke MATSUNO, Kunio MORI. Adhesion Between Cured Silicone Rubbers. NIPPON GOMU KYOKAISHI 2013, 86 (11) , 327-332. https://doi.org/10.2324/gomu.86.327
    30. Myoung-Woon Moon, Chansoo Kim, Ashkan Vaziri. Ion Beam-Induced Self-Assembled Wrinkles. 2013, 47-67. https://doi.org/10.1007/978-1-4614-4562-3_4
    31. Yang Xu, Yajuan Li, Suqin Liu, Hongliang Li, Younian Liu. Nanoparticle Li2FeSiO4 as anode material for lithium-ion batteries. Journal of Power Sources 2012, 220 , 103-107. https://doi.org/10.1016/j.jpowsour.2012.07.130
    32. Devaraju M. Kempaiah, Dinesh Rangappa, Itaru Honma. Controlled synthesis of nanocrystalline Li2MnSiO4 particles for high capacity cathode application in lithium-ion batteries. Chemical Communications 2012, 48 (21) , 2698. https://doi.org/10.1039/c2cc17234h
    33. Anju Dhillon, Amarjeet Kaur, D.K. Avasthi. Electrical and morphological properties of poly(3-hexyl thiophene) irradiated with 100 MeV silver ions. Thin Solid Films 2010, 519 (3) , 998-1002. https://doi.org/10.1016/j.tsf.2010.08.030
    34. Byoung Har Hwang, Chu Ji Choi, Min Kyoung Jo, Jong Bok Kim, Hae Min Choe, Soo Sang Chae, Youn Sang Kim, Hong Koo Baik. Delicate Modification of Poly(dimethylsiloxane) Ultrathin Film by Low-Energy Ion Beam Treatment for Durable Intermediate Liquid Crystal Pretilt Angles. Langmuir 2010, 26 (7) , 5072-5076. https://doi.org/10.1021/la903535c
    35. Todorka Vladkova, Natalia Krasteva. Nanoengineered Systems for Regenerative Medicine Surface Engineered Polymeric Biomaterials with Improved Bio-Contact Properties. 2010, 157-174. https://doi.org/10.1007/978-90-481-8790-4_9
    36. Todorka G. Vladkova. Surface Engineered Polymeric Biomaterials with Improved Biocontact Properties. International Journal of Polymer Science 2010, 2010 , 1-22. https://doi.org/10.1155/2010/296094
    37. Zhen-Mei Liu, Soo-Yeon Lee, Sukhéna Sarun, Stephanie Moeller, Matthias Schnabelrauch, Thomas Groth. Biocompatibility of Poly(L-lactide) Films Modified with Poly(ethylene imine) and Polyelectrolyte Multilayers. Journal of Biomaterials Science, Polymer Edition 2010, 21 (6-7) , 893-912. https://doi.org/10.1163/156856209X450748
    38. I. Keranov, T. G. Vladkova, M. Minchev, A. Kostadinova, G. Altankov, P. Dineff. Topography characterization and initial cellular interaction of plasma‐based Ar + beam‐treated PDMS surfaces. Journal of Applied Polymer Science 2009, 111 (5) , 2637-2646. https://doi.org/10.1002/app.29185
    39. G. Marletta. Ion-Beam Modification of Polymer Surfaces for Biological Applications. 2009, 345-369. https://doi.org/10.1007/978-3-540-88789-8_12
    40. I. Keranov, T. Vladkova, M. Minchev, A. Kostadinova, G. Altankov. Preparation, characterization, and cellular interactions of collagen‐immobilized PDMS surfaces. Journal of Applied Polymer Science 2008, 110 (1) , 321-330. https://doi.org/10.1002/app.28630
    41. Fabio Formosa, Carmelina D. Anfuso, Cristina Satriano, Gabriella Lupo, Giovanni Giurdanella, Nicola Ragusa, Giovanni Marletta, Mario Alberghina. UV-O3-treated and protein-coated polymer surfaces facilitate endothelial cell adhesion and proliferation mediated by the PKCα/ERK/cPLA2 pathway. Microvascular Research 2008, 75 (3) , 330-342. https://doi.org/10.1016/j.mvr.2007.11.005
    42. Cristina Satriano, Giovanni Marletta, Bengt Kasemo. Oxygen plasma-induced conversion of polysiloxane into hydrophilic and smooth SiO x surfaces. Surface and Interface Analysis 2008, 40 (3-4) , 649-656. https://doi.org/10.1002/sia.2764
    43. Myoung-Woon Moon, Sang Hoon Lee, Jeong-Yun Sun, Kyu Hwan Oh, Ashkan Vaziri, John W. Hutchinson. Wrinkled hard skins on polymers created by focused ion beam. Proceedings of the National Academy of Sciences 2007, 104 (4) , 1130-1133. https://doi.org/10.1073/pnas.0610654104
    44. Jinwei Wang, Liping Wang. The lower surface free energy achievements from ladder polysilsesquioxanes with fluorinated side chains. Journal of Fluorine Chemistry 2006, 127 (2) , 287-290. https://doi.org/10.1016/j.jfluchem.2005.12.001
    45. Santina Carnazza, Cristina Satriano, Salvatore Guglielmino, Giovanni Marletta. Fast exopolysaccharide secretion of Pseudomonas aeruginosa on polar polymer surfaces. Journal of Colloid and Interface Science 2005, 289 (2) , 386-393. https://doi.org/10.1016/j.jcis.2005.03.089
    46. Giovanni Marletta, Gabriela Ciapetti, Cristina Satriano, Stefania Pagani, Nicola Baldini. The effect of irradiation modification and RGD sequence adsorption on the response of human osteoblasts to polycaprolactone. Biomaterials 2005, 26 (23) , 4793-4804. https://doi.org/10.1016/j.biomaterials.2004.11.047
    47. T.G. Vladkova, I.L. Keranov, P.D. Dineff, S.Y. Youroukov, I.A. Avramova, N. Krasteva, G.P. Altankov. Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modification. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2005, 236 (1-4) , 552-562. https://doi.org/10.1016/j.nimb.2005.04.040
    48. Fayou Yu, Ping Li, Hao Shen, Sanjay Mathur, Claus-Michael Lehr, Udo Bakowsky, Frank Mücklich. Laser interference lithography as a new and efficient technique for micropatterning of biopolymer surface. Biomaterials 2005, 26 (15) , 2307-2312. https://doi.org/10.1016/j.biomaterials.2004.07.021
    49. Fayou Yu, Frank Mücklich, Ping Li, Hao Shen, Sanjay Mathur, Claus-Michael Lehr, Udo Bakowsky. In Vitro Cell Response to a Polymer Surface Micropatterned by Laser Interference Lithography. Biomacromolecules 2005, 6 (3) , 1160-1167. https://doi.org/10.1021/bm049324w
    50. Giovanna Assero, Cristina Satriano, Gabriella Lupo, Carmelina Daniela Anfuso, Giovanni Marletta, Mario Alberghina. Pericyte adhesion and growth onto polyhydroxymethylsiloxane surfaces nanostructured by plasma treatment and ion irradiation. Microvascular Research 2004, 68 (3) , 209-220. https://doi.org/10.1016/j.mvr.2004.08.003
    51. Zoltan A. Fekete, Eugene Wilusz, Frank E. Karasz. Modeling of displacement damage in an ion‐beam‐modified perfluorosulfonate ionomer. Journal of Polymer Science Part B: Polymer Physics 2004, 42 (8) , 1343-1350. https://doi.org/10.1002/polb.20010
    52. C. Satriano, S. Carnazza, S. Guglielmino, G. Marletta. Surface free energy and cell attachment onto ion-beam irradiated polymer surfaces. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2003, 208 , 287-293. https://doi.org/10.1016/S0168-583X(03)00647-5
    53. C. Satriano, S. Carnazza, A. Licciardello, S. Guglielmino, G. Marletta. Cell adhesion and spreading on polymer surfaces micropatterned by ion beams. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2003, 21 (4) , 1145-1151. https://doi.org/10.1116/1.1575217
    54. Xiaoyun Chen, Xiongfei Zhang, Ya Zhu, Jizhong Zhang, Ping Hu. Surface Modification of Polyhydroxyalkanoates by Ion Implantation. Characterization and Cytocompatibility Improvement. Polymer Journal 2003, 35 (2) , 148-154. https://doi.org/10.1295/polymj.35.148
    55. C. Satriano, S. Carnazza, S. Guglielmino, G. Marletta. Differential Cultured Fibroblast Behavior on Plasma and Ion-Beam-Modified Polysiloxane Surfaces. Langmuir 2002, 18 (24) , 9469-9475. https://doi.org/10.1021/la025800x
    56. B. Pignataro, J.-C. Pivin, G. Marletta. High-energy ion-beam-induced modification of the optical properties of polysiloxane films. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 2002, 191 (1-4) , 772-777. https://doi.org/10.1016/S0168-583X(02)00650-X
    57. G. Marletta, C. Satriano. Irradiation-Controlled Adsorption and Organization of Biomolecules on Surfaces: From the Nanometric to the Mesoscopic Level. , 71-94. https://doi.org/10.1007/1-4020-2173-9_9
    58. T. Vladkova. Surface Modification Approach to Control Biofouling. , 135-163. https://doi.org/10.1007/978-3-540-69796-1_7

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect