ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

Segmental Relaxation in Poly(dimethylsiloxane)

View Author Information
Naval Research Laboratory, Washington, D.C. 20375-5320
Cite this: Macromolecules 1996, 29, 17, 5747–5750
Publication Date (Web):August 12, 1996
https://doi.org/10.1021/ma960045d
Copyright © 1996 American Chemical Society

    Article Views

    507

    Altmetric

    -

    Citations

    65
    LEARN ABOUT THESE METRICS
    Other access options

    Note: In lieu of an abstract, this is the article's first page.

    Free first page

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    *

    In papers with more than one author, the asterisk indicates the name of the author to whom inquiries about the paper should be addressed.

    Cited By

    This article is cited by 65 publications.

    1. Louis Poon, Jacob R. Hum, Richard G. Weiss. Ion-Transport Properties of Polydimethylsiloxane-Based Ionomers with Amidinium or Imidazolinium Alkyldithiocarbamate Pendant Groups in Low Dielectric Solvents or as Neat Liquids. The Journal of Physical Chemistry B 2022, 126 (49) , 10481-10489. https://doi.org/10.1021/acs.jpcb.2c05431
    2. Pei Bai, Mingchao Ma, Li Sui, Yunlong Guo. Nanoconfinement Controls Mechanical Properties of Elastomeric Thin Films. The Journal of Physical Chemistry Letters 2021, 12 (33) , 8072-8079. https://doi.org/10.1021/acs.jpclett.1c01921
    3. Manjesh K. Singh, Minghan Hu, Yu Cang, Hsiao-Ping Hsu, Heloise Therien-Aubin, Kaloian Koynov, George Fytas, Katharina Landfester, Kurt Kremer. Glass Transition of Disentangled and Entangled Polymer Melts: Single-Chain-Nanoparticles Approach. Macromolecules 2020, 53 (17) , 7312-7321. https://doi.org/10.1021/acs.macromol.0c00550
    4. Agnieszka Talik, Magdalena Tarnacka, Andrzej Dzienia, Ewa Kaminska, Kamil Kaminski, Marian Paluch. High-Pressure Studies on the Chain and Segmental Dynamics of a Series of Poly(propylene glycol) Derivatives. Macromolecules 2019, 52 (15) , 5658-5669. https://doi.org/10.1021/acs.macromol.9b00692
    5. Jialong Shen, Erol Yildirim, Shanshan Li, Yavuz Caydamli, Melissa A. Pasquinelli, Alan E. Tonelli. Role of Local Polymer Conformations on the Diverging Glass Transition Temperatures and Dynamic Fragilities of Isotactic-, Syndiotactic-, and Atactic-Poly(methyl methacrylate)s. Macromolecules 2019, 52 (10) , 3897-3908. https://doi.org/10.1021/acs.macromol.9b00434
    6. Magdalena Tarnacka, Agnieszka Talik, Ewa Kamińska, Monika Geppert-Rybczyńska, Kamil Kaminski, Marian Paluch. The Impact of Molecular Weight on the Behavior of Poly(propylene glycol) Derivatives Confined within Alumina Templates. Macromolecules 2019, 52 (9) , 3516-3529. https://doi.org/10.1021/acs.macromol.9b00209
    7. Valeria Arrighi, Simona Gagliardi, Fabio Ganazzoli, Julia S. Higgins, Giuseppina Raffaini, Jeerachada Tanchawanich, Jenny Taylor, Mark T. F. Telling. Effect of Chain Length and Topological Constraints on Segmental Relaxation in Cyclic PDMS. Macromolecules 2018, 51 (18) , 7209-7223. https://doi.org/10.1021/acs.macromol.8b00397
    8. Junliang Zhang, Robert Deubler, Matthias Hartlieb, Liam Martin, Joji Tanaka, Elena Patyukova, Paul D. Topham, Felix H. Schacher, and Sébastien Perrier . Evolution of Microphase Separation with Variations of Segments of Sequence-Controlled Multiblock Copolymers. Macromolecules 2017, 50 (18) , 7380-7387. https://doi.org/10.1021/acs.macromol.7b01831
    9. Shadid Askar, Lingqiao Li, and John M. Torkelson . Polystyrene-Grafted Silica Nanoparticles: Investigating the Molecular Weight Dependence of Glass Transition and Fragility Behavior. Macromolecules 2017, 50 (4) , 1589-1598. https://doi.org/10.1021/acs.macromol.7b00079
    10. Lanhe Zhang, Ravinder Elupula, Scott M. Grayson, and John M. Torkelson . Suppression of the Fragility-Confinement Effect via Low Molecular Weight Cyclic or Ring Polymer Topology. Macromolecules 2017, 50 (3) , 1147-1154. https://doi.org/10.1021/acs.macromol.6b02280
    11. Shi-Jie Xie and Kenneth S. Schweizer . Nonuniversal Coupling of Cage Scale Hopping and Collective Elastic Distortion as the Origin of Dynamic Fragility Diversity in Glass-Forming Polymer Liquids. Macromolecules 2016, 49 (24) , 9655-9664. https://doi.org/10.1021/acs.macromol.6b02272
    12. Lanhe Zhang, John A. Marsiglio, Tian Lan, and John M. Torkelson . Dramatic Tunability of the Glass Transition Temperature and Fragility of Low Molecular Weight Polystyrene by Initiator Fragments Located at Chain Ends. Macromolecules 2016, 49 (6) , 2387-2398. https://doi.org/10.1021/acs.macromol.5b02704
    13. K. Kaminski, W. K. Kipnusu, K. Adrjanowicz, E. U. Mapesa, C. Iacob, M. Jasiurkowska, P. Wlodarczyk, K. Grzybowska, M. Paluch, and F. Kremer . Comparative Study on the Molecular Dynamics of a Series of Polypropylene Glycols. Macromolecules 2013, 46 (5) , 1973-1980. https://doi.org/10.1021/ma302611x
    14. A. Bormuth, P. Henritzi, and M. Vogel. Chain-Length Dependence of the Segmental Relaxation in Polymer Melts: Molecular Dynamics Simulation Studies on Poly(propylene oxide). Macromolecules 2010, 43 (21) , 8985-8992. https://doi.org/10.1021/ma101721d
    15. Yohei Miwa, Shigetaka Shimada, Osamu Urakawa and Shogo Nobukawa . Origin of High Segmental Mobility at Chain Ends of Polystyrene. Macromolecules 2010, 43 (17) , 7192-7199. https://doi.org/10.1021/ma1013644
    16. Christine Gerstl, Gerald J. Schneider, Wim Pyckhout-Hintzen, Jürgen Allgaier, Dieter Richter, Angel Alegría and Juan Colmenero . Segmental and Normal Mode Relaxation of Poly(alkylene oxide)s Studied by Dielectric Spectroscopy and Rheology. Macromolecules 2010, 43 (11) , 4968-4977. https://doi.org/10.1021/ma100384j
    17. J. Hintermeyer, A. Herrmann, R. Kahlau, C. Goiceanu and E. A. Rössler. Molecular Weight Dependence of Glassy Dynamics in Linear Polymers Revisited. Macromolecules 2008, 41 (23) , 9335-9344. https://doi.org/10.1021/ma8016794
    18. C. M. Roland and, R. Casalini. Dynamics of Poly(cyclohexyl methacrylate):  Neat and in Blends with Poly(α-methylstyrene). Macromolecules 2007, 40 (10) , 3631-3639. https://doi.org/10.1021/ma0702849
    19. Shanfeng Wang,, Lichun Lu, and, Michael J. Yaszemski. Bone-Tissue-Engineering Material Poly(propylene fumarate):  Correlation between Molecular Weight, Chain Dimensions, and Physical Properties. Biomacromolecules 2006, 7 (6) , 1976-1982. https://doi.org/10.1021/bm060096a
    20. Shanfeng Wang,, Lichun Lu,, James A. Gruetzmacher,, Bradford L. Currier, and, Michael J. Yaszemski. A Biodegradable and Cross-Linkable Multiblock Copolymer Consisting of Poly(propylene fumarate) and Poly(ε-caprolactone):  Synthesis, Characterization, and Physical Properties. Macromolecules 2005, 38 (17) , 7358-7370. https://doi.org/10.1021/ma050884c
    21. Yohei Miwa,, Katsuhiro Yamamoto,, Masato Sakaguchi,, Masahiro Sakai,, Seiji Makita, and, Shigetaka Shimada. Direct Detection of High Mobility around Chain Ends of Poly(methyl methacrylate) by the Spin-Labeling. Macromolecules 2005, 38 (3) , 832-838. https://doi.org/10.1021/ma048287y
    22. Yifu Ding,, V. N. Novikov, and, A. P. Sokolov, , R. Casalini and, C. M. Roland. Observation of Chain Dynamics in Depolarized Light Scattering Spectra of Polymers. Macromolecules 2004, 37 (24) , 9273-9278. https://doi.org/10.1021/ma048718c
    23. Yifu Ding,, V. N. Novikov, and, A. P. Sokolov, , A. Cailliaux,, C. Dalle-Ferrier, and, C. Alba-Simionesco, , B. Frick. Influence of Molecular Weight on Fast Dynamics and Fragility of Polymers. Macromolecules 2004, 37 (24) , 9264-9272. https://doi.org/10.1021/ma0492420
    24. C. M. Roland,, R. Casalini,, P. Santangelo,, M. Sekula,, J. Ziolo, and, M. Paluch. Chemical Structure and Local Segmental Dynamics in 1,2-Polybutadiene. Macromolecules 2003, 36 (13) , 4954-4959. https://doi.org/10.1021/ma034416j
    25. C. M. Roland and, R. Casalini. Temperature and Volume Effects on Local Segmental Relaxation in Poly(vinyl acetate). Macromolecules 2003, 36 (4) , 1361-1367. https://doi.org/10.1021/ma025791z
    26. M. J. Schroeder, , C. M. Roland. Segmental Relaxation in End-Linked Poly(dimethylsiloxane) Networks. Macromolecules 2002, 35 (7) , 2676-2681. https://doi.org/10.1021/ma011678h
    27. P. G. Santangelo and, C. M. Roland, , Taihyun Chang and, Donghyun Cho, , Jacques Roovers. Dynamics near the Glass Temperature of Low Molecular Weight Cyclic Polystyrene. Macromolecules 2001, 34 (26) , 9002-9005. https://doi.org/10.1021/ma011069+
    28. Sheila N. Daniel,, Emily D. Niemeyer, and, Frank V. Bright. Evidence for Chain Length Dependent Local Ordering Surrounding Perylene Dissolved in Poly(ethylene glycol). Macromolecules 1999, 32 (24) , 8084-8088. https://doi.org/10.1021/ma990674y
    29. Apostolos K. Rizos, , K. L. Ngai. Local Segmental Dynamics of Low Molecular Weight Polystyrene:  New Results and Interpretation. Macromolecules 1998, 31 (18) , 6217-6225. https://doi.org/10.1021/ma980613k
    30. P. G. Santangelo and, C. M. Roland. Molecular Weight Dependence of Fragility in Polystyrene. Macromolecules 1998, 31 (14) , 4581-4585. https://doi.org/10.1021/ma971823k
    31. Emily D. Niemeyer and, Frank V. Bright. Effects of CO2 Sorption on the Rotational Reorientation Dynamics of a Model Solute Dissolved in Molten Poly(dimethylsiloxane). Macromolecules 1998, 31 (1) , 77-85. https://doi.org/10.1021/ma970335+
    32. K. L. Ngai and, C. M. Roland. Short-Time Relaxational Dynamics of the “Strong” Glass-Former Methanol. The Journal of Physical Chemistry B 1997, 101 (22) , 4437-4441. https://doi.org/10.1021/jp963352u
    33. Daisuke Kawaguchi, Ayano Higasayama, Yudai Ogata, Taizo Kabe, Yushu Matsushita, Keiji Tanaka. Crystalline structure, molecular motion and photocarrier formation in thin films of monodisperse poly(3-hexylthiophene) with various molecular weights. Polymer Journal 2023, 55 (4) , 497-505. https://doi.org/10.1038/s41428-022-00713-0
    34. Valeria Arrighi, Julia S. Higgins. Local Effects of Ring Topology Observed in Polymer Conformation and Dynamics by Neutron Scattering—A Review. Polymers 2020, 12 (9) , 1884. https://doi.org/10.3390/polym12091884
    35. Angelika Wrzesińska, Izabela Bobowska, Paulina Maczugowska, Joanna Małolepsza, Katarzyna M. Błażewska, Aleksandra Wypych-Puszkarz. Effect of Metal-Ligand Coordination Complexes on Molecular Dynamics and Structure of Cross-Linked Poly(dimethylosiloxane). Polymers 2020, 12 (8) , 1680. https://doi.org/10.3390/polym12081680
    36. Shaoyong Huang, Hongfei Li, Shichun Jiang. Crystal structure and unique lamellar thickening for poly(l-lactide) induced by high pressure. Polymer 2019, 175 , 81-86. https://doi.org/10.1016/j.polymer.2019.05.020
    37. A. Roggero, E. Dantras, T. Paulmier, C. Tonon, S. Lewandowski, S. Dagras, D. Payan. Dynamic glass transition of filled polysiloxane upon electron irradiation. Journal of Non-Crystalline Solids 2017, 455 , 17-23. https://doi.org/10.1016/j.jnoncrysol.2016.10.025
    38. C. Ghisleri, M. A. C. Potenza, L. Ravagnan, A. Bellacicca, P. Milani. A simple scanning spectrometer based on a stretchable elastomeric reflective grating. Applied Physics Letters 2014, 104 (6) https://doi.org/10.1063/1.4865427
    39. Yan Jin, MingShi Song, GuiXian Hu, DaMing Wu. Correlation of cooperatively localized rearrangement on the “fluidized domain” in glass substances (or polymers) to their fragility III: Theory of dynamic fragility at isochoric state. Science China Physics, Mechanics and Astronomy 2011, 54 (3) , 420-436. https://doi.org/10.1007/s11433-010-4236-2
    40. K.L. Ngai. Glass-Forming Substances and Systems. 2011, 49-638. https://doi.org/10.1007/978-1-4419-7649-9_2
    41. Evgeny B. Stukalin, Jack F. Douglas, Karl F. Freed. Application of the entropy theory of glass formation to poly(α-olefins). The Journal of Chemical Physics 2009, 131 (11) https://doi.org/10.1063/1.3216109
    42. L. P. Singh, S. S. N. Murthy. Study of secondary relaxation in disordered plastic crystals of isocyanocyclohexane, cyanocyclohexane, and 1-cyanoadamantane. The Journal of Chemical Physics 2008, 129 (9) https://doi.org/10.1063/1.2961036
    43. K. Kunal, M. Paluch, C. M. Roland, J. E. Puskas, Y. Chen, A. P. Sokolov. Polyisobutylene: A most unusual polymer. Journal of Polymer Science Part B: Polymer Physics 2008, 46 (13) , 1390-1399. https://doi.org/10.1002/polb.21473
    44. Klaus Schröter, Sven Reissig, Elke Hempel, Mario Beiner. From small molecules to polymers: Relaxation behavior of n-butyl methacrylate based systems. Journal of Non-Crystalline Solids 2007, 353 (41-43) , 3976-3983. https://doi.org/10.1016/j.jnoncrysol.2007.02.062
    45. J. Salud, D.O. López, S. Diez-Berart, M.A. Pérez-Jubindo, M.R. de la Fuente, M.A. Rute. Some insights into fragility as a function of thermodynamic parameters: From orientational to structural glass transitions. Chemical Physics Letters 2007, 446 (1-3) , 71-76. https://doi.org/10.1016/j.cplett.2007.08.052
    46. V.M. Gun’ko, M.V. Borysenko, P. Pissis, A. Spanoudaki, N. Shinyashiki, I.Y. Sulim, T.V. Kulik, B.B. Palyanytsya. Polydimethylsiloxane at the interfaces of fumed silica and zirconia/fumed silica. Applied Surface Science 2007, 253 (17) , 7143-7156. https://doi.org/10.1016/j.apsusc.2007.02.185
    47. A P Sokolov, V N Novikov, Y Ding. Why many polymers are so fragile. Journal of Physics: Condensed Matter 2007, 19 (20) , 205116. https://doi.org/10.1088/0953-8984/19/20/205116
    48. R. Casalini, C. M. Roland, S. Capaccioli. Effect of chain length on fragility and thermodynamic scaling of the local segmental dynamics in poly(methylmethacrylate). The Journal of Chemical Physics 2007, 126 (18) https://doi.org/10.1063/1.2728898
    49. Qian Qin, Gregory B. McKenna. Correlation between dynamic fragility and glass transition temperature for different classes of glass forming liquids. Journal of Non-Crystalline Solids 2006, 352 (28-29) , 2977-2985. https://doi.org/10.1016/j.jnoncrysol.2006.04.014
    50. Kenneth S. Schweizer, Erica J. Saltzman. Theory of dynamic barriers, activated hopping, and the glass transition in polymer melts. The Journal of Chemical Physics 2004, 121 (4) , 1984-2000. https://doi.org/10.1063/1.1756854
    51. C. G. Robertson, C. M. Roland. Local segmental relaxation in bidisperse polystyrenes. Journal of Polymer Science Part B: Polymer Physics 2004, 42 (13) , 2604-2611. https://doi.org/10.1002/polb.20127
    52. C. M. Roland, R. Casalini. Temperature dependence of local segmental motion in polystyrene and its variation with molecular weight. The Journal of Chemical Physics 2003, 119 (3) , 1838-1842. https://doi.org/10.1063/1.1581850
    53. C. M. Roland, P. G. Santangelo, C. G. Robertson, K. L. Ngai. Comment on “Direct determination of kinetic fragility indices of glassforming liquids by differential scanning calorimetry: Kinetic versus thermodynamic fragilities” [J. Chem. Phys. 117 , 10184 (2002)]. The Journal of Chemical Physics 2003, 118 (22) , 10351-10352. https://doi.org/10.1063/1.1571814
    54. M. Paluch, C. M. Roland, S. Pawlus. Temperature and pressure dependence of the α-relaxation in polymethylphenylsiloxane. The Journal of Chemical Physics 2002, 116 (24) , 10932-10937. https://doi.org/10.1063/1.1478767
    55. Robert F. Brady. Clean hulls without poisons: Devising and testing nontoxic marine coatings. Journal of Coatings Technology 2000, 72 (1) , 45-56. https://doi.org/10.1007/BF02698394
    56. C. M. Roland, P. G. Santangelo, D. J. Plazek, K. M. Bernatz. Creep of selenium near the glass temperature. The Journal of Chemical Physics 1999, 111 (20) , 9337-9342. https://doi.org/10.1063/1.479846
    57. Dino Ferri, Paolo Lomellini. Melt rheology of randomly branched polystyrenes. Journal of Rheology 1999, 43 (6) , 1355-1372. https://doi.org/10.1122/1.551048
    58. C. M. Roland, P. G. Santangelo, K. L. Ngai. The application of the energy landscape model to polymers. The Journal of Chemical Physics 1999, 111 (12) , 5593-5598. https://doi.org/10.1063/1.479861
    59. Christo Alexandrov Solunov. Cooperative molecular dynamics and strong/fragile behavior of polymers. European Polymer Journal 1999, 35 (8) , 1543-1556. https://doi.org/10.1016/S0014-3057(98)00226-2
    60. C. León, K. L. Ngai, C. M. Roland. Relationship between the primary and secondary dielectric relaxation processes in propylene glycol and its oligomers. The Journal of Chemical Physics 1999, 110 (23) , 11585-11591. https://doi.org/10.1063/1.478006
    61. Rodney J. Andrews, Eric A. Grulke. Glass Transition Temperatures of Polymers. 1999https://doi.org/10.1002/0471532053.bra039
    62. P. G. Santangelo, C. M. Roland. Test of the energy landscape interpretation of fragility in polymers. Physical Review B 1998, 58 (21) , 14121-14123. https://doi.org/10.1103/PhysRevB.58.14121
    63. P.G. Santangelo, K.L. Ngai, C.M. Roland. The coupling model approach to the terminal relaxation. Polymer 1998, 39 (3) , 681-687. https://doi.org/10.1016/S0032-3861(97)00315-7
    64. C.M. Roland, K.L. Ngai. Commentary on ‘Strong and fragile liquids - A brief critique’. Journal of Non-Crystalline Solids 1997, 212 (1) , 74-76. https://doi.org/10.1016/S0022-3093(96)00684-9
    65. C.M. Roland, K.L. Ngai, D.J. Plazek. The viscoelastic behaviour of networks. Computational and Theoretical Polymer Science 1997, 7 (3-4) , 133-137. https://doi.org/10.1016/S1089-3156(97)00016-0

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect