ACS Publications. Most Trusted. Most Cited. Most Read
My Activity
CONTENT TYPES

Figure 1Loading Img

A Segregated, Partially Oxidized, and Compact Ag10 Cluster within an Encapsulating DNA Host

View Author Information
Department of Chemistry, Furman University, Greenville, South Carolina 29613, United States
Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
Cite this: J. Am. Chem. Soc. 2016, 138, 10, 3469–3477
Publication Date (Web):February 28, 2016
https://doi.org/10.1021/jacs.5b13124
Copyright © 2016 American Chemical Society

    Article Views

    2110

    Altmetric

    -

    Citations

    69
    LEARN ABOUT THESE METRICS
    Other access options
    Supporting Info (1)»

    Abstract

    Abstract Image

    Silver clusters develop within DNA strands and become optical chromophores with diverse electronic spectra and wide-ranging emission intensities. These studies consider a specific cluster that absorbs at 400 nm, has low emission, and exclusively develops with single-stranded oligonucleotides. It is also a chameleon-like chromophore that can be transformed into different highly emissive fluorophores. We describe four characteristics of this species and conclude that it is highly oxidized yet also metallic. One, the cluster size was determined via electrospray ionization mass spectrometry. A common silver mass is measured with different oligonucleotides and thereby supports a Ag10 cluster. Two, the cluster charge was determined by mass spectrometry and Ag L3-edge X-ray absorption near-edge structure spectroscopy. Respectively, the conjugate mass and the integrated white-line intensity support a partially oxidized cluster with a +6 and +6.5 charge, respectively. Three, the cluster chirality was gauged by circular dichroism spectroscopy. This chirality changes with the length and sequence of its DNA hosts, and these studies identified a dispersed binding site with ∼20 nucleobases. Four, the structure of this complex was investigated via Ag K-edge extended X-ray absorption fine structure spectroscopy. A multishell fitting analysis identified three unique scattering environments with corresponding bond lengths, coordination numbers, and Debye–Waller factors for each. Collectively, these findings support the following conclusion: a Ag10+6 cluster develops within a 20-nucleobase DNA binding site, and this complex segregates into a compact, metal-like silver core that weakly links to an encapsulating silver–DNA shell. We consider different models that account for silver–silver coordination within the core.

    Read this article

    To access this article, please review the available access options below.

    Get instant access

    Purchase Access

    Read this article for 48 hours. Check out below using your ACS ID or as a guest.

    Recommended

    Access through Your Institution

    You may have access to this article through your institution.

    Your institution does not have access to this content. You can change your affiliated institution below.

    Supporting Information

    ARTICLE SECTIONS
    Jump To

    The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/jacs.5b13124.

    • Figures describing size exclusion chromatograms of the native and cluster-bearing DNA strands, mass and mass:charge spectra of a longer oligonucleotide with the violet cluster, absorption spectra of violet clusters with the DNA templates from Table 1, mass:charge spectra of the native 20-nucleotide DNA in its −6 charge state, isotope model for the −6 charge state, mass:charge spectra of the −4 to −12 charge states for the violet cluster/DNA complexes, mass:charge spectrum of the 20-nucleotide DNA with the violet cluster in ammonium acetate, mass:charge spectra of the −4 to −11 charge states for the violet cluster/DNA complexes in a ammonium acetate buffer, mass:charge spectra of the −5, −7, −8, −9, −10, and −11 charge states for the Na+ complexes, mass spectra of Ag+-DNA complexes, circular dichroism spectra of the violet cluster with the 20 nucleotide strand at different temperatures, and the EXAFS oscillations are shown in k-space (PDF)

    Terms & Conditions

    Most electronic Supporting Information files are available without a subscription to ACS Web Editions. Such files may be downloaded by article for research use (if there is a public use license linked to the relevant article, that license may permit other uses). Permission may be obtained from ACS for other uses through requests via the RightsLink permission system: http://pubs.acs.org/page/copyright/permissions.html.

    Cited By

    This article is cited by 69 publications.

    1. Caleb J. Setzler, Caleb A. Arrington, David Lewis, Jeffrey T. Petty. Breaching the Fortress: Photochemistry of DNA-Caged Ag106+. The Journal of Physical Chemistry B 2023, 127 (50) , 10851-10860. https://doi.org/10.1021/acs.jpcb.3c06358
    2. Zacharias Liasi, Andreas Erbs Hillers-Bendtsen, Lasse Jensen, Kurt V. Mikkelsen. Elucidating the Mystery of DNA-Templating Effects on a Silver Nanocluster. The Journal of Physical Chemistry Letters 2023, 14 (25) , 5727-5733. https://doi.org/10.1021/acs.jpclett.3c00977
    3. David Lewis, Caleb Setzler, Peter M. Goodwin, Kirsten Thomas, Makayla Branham, Caleb A. Arrington, Jeffrey T. Petty. Interrupted DNA and Slow Silver Cluster Luminescence. The Journal of Physical Chemistry C 2023, 127 (22) , 10574-10584. https://doi.org/10.1021/acs.jpcc.3c01050
    4. Fred David, Caleb Setzler, Alexandra Sorescu, Raquel L. Lieberman, Flora Meilleur, Jeffrey T. Petty. Mapping H+ in the Nanoscale (A2C4)2-Ag8 Fluorophore. The Journal of Physical Chemistry Letters 2022, 13 (48) , 11317-11322. https://doi.org/10.1021/acs.jpclett.2c03161
    5. Yuqing Zhang, Chunli Yang, Jiayang He, Siyu Zuo, Xin Shang, Jiaxi Gao, Ruo Yuan, Wenju Xu. Target DNA-Activating Proximity-Localized Catalytic Hairpin Assembly Enables Forming Split-DNA Ag Nanoclusters for Robust and Sensitive Fluorescence Biosensing. Analytical Chemistry 2022, 94 (43) , 14947-14955. https://doi.org/10.1021/acs.analchem.2c02733
    6. Peter Mastracco, Anna Gonzàlez-Rosell, Joshua Evans, Petko Bogdanov, Stacy M. Copp. Chemistry-Informed Machine Learning Enables Discovery of DNA-Stabilized Silver Nanoclusters with Near-Infrared Fluorescence. ACS Nano 2022, 16 (10) , 16322-16331. https://doi.org/10.1021/acsnano.2c05390
    7. Jeffrey T. Petty, David Lewis, Savannah Carnahan, Dahye Kim, Caroline Couch. Tug-of-War between DNA Chelation and Silver Agglomeration in DNA–Silver Cluster Chromophores. The Journal of Physical Chemistry B 2022, 126 (21) , 3822-3830. https://doi.org/10.1021/acs.jpcb.2c01054
    8. Qiong Wu, Chengcheng Liu, Cheng Cui, Long Li, Lu Yang, Yuan Liu, Hoda Safari Yazd, Shujuan Xu, Xiang Li, Zhuo Chen, Weihong Tan. Plasmon Coupling in DNA-Assembled Silver Nanoclusters. Journal of the American Chemical Society 2021, 143 (36) , 14573-14580. https://doi.org/10.1021/jacs.1c04949
    9. Yuyuan Zhang, Chen He, Jeffrey T. Petty, Bern Kohler. Time-Resolved Vibrational Fingerprints for Two Silver Cluster-DNA Fluorophores. The Journal of Physical Chemistry Letters 2020, 11 (21) , 8958-8963. https://doi.org/10.1021/acs.jpclett.0c02486
    10. Mohammed A. Jabed, Naveen Dandu, Sergei Tretiak, Svetlana Kilina. Passivating Nucleobases Bring Charge Transfer Character to Optically Active Transitions in Small Silver Nanoclusters. The Journal of Physical Chemistry A 2020, 124 (43) , 8931-8942. https://doi.org/10.1021/acs.jpca.0c06974
    11. Andrew G. Walsh, Ziyi Chen, Peng Zhang. X-ray Spectroscopy of Silver Nanostructures toward Antibacterial Applications. The Journal of Physical Chemistry C 2020, 124 (8) , 4339-4351. https://doi.org/10.1021/acs.jpcc.9b09548
    12. Molly S. Blevins, Dahye Kim, Christopher M. Crittenden, Soonwoo Hong, Hsin-Chih Yeh, Jeffrey T. Petty, Jennifer S. Brodbelt. Footprints of Nanoscale DNA–Silver Cluster Chromophores via Activated-Electron Photodetachment Mass Spectrometry. ACS Nano 2019, 13 (12) , 14070-14079. https://doi.org/10.1021/acsnano.9b06470
    13. Chenyang Shi, Yao Xing, Aniruddha Patil, Zhaohui Meng, Rui Yu, Naibo Lin, Wu Qiu, Fan Hu, Xiang Yang Liu. Primary and Secondary Mesoscopic Hybrid Materials of Au Nanoparticles@Silk Fibroin and Applications. ACS Applied Materials & Interfaces 2019, 11 (33) , 30125-30136. https://doi.org/10.1021/acsami.9b07846
    14. Dustin J. E. Huard, Aida Demissie, Dahye Kim, David Lewis, Robert M. Dickson, Jeffrey T. Petty, Raquel L. Lieberman. Atomic Structure of a Fluorescent Ag8 Cluster Templated by a Multistranded DNA Scaffold. Journal of the American Chemical Society 2019, 141 (29) , 11465-11470. https://doi.org/10.1021/jacs.8b12203
    15. Joshua A. Snyder, Aaron P. Charnay, Forrest R. Kohl, Yuyuan Zhang, Bern Kohler. DNA-like Photophysics in Self-Assembled Silver(I)–Nucleobase Nanofibers. The Journal of Physical Chemistry B 2019, 123 (28) , 5985-5994. https://doi.org/10.1021/acs.jpcb.9b00660
    16. Chen He, Peter M. Goodwin, Ahmed I. Yunus, Robert M. Dickson, Jeffrey T. Petty. A Split DNA Scaffold for a Green Fluorescent Silver Cluster. The Journal of Physical Chemistry C 2019, 123 (28) , 17588-17597. https://doi.org/10.1021/acs.jpcc.9b03773
    17. Cecilia Cerretani, Tom Vosch. Switchable Dual-Emissive DNA-Stabilized Silver Nanoclusters. ACS Omega 2019, 4 (4) , 7895-7902. https://doi.org/10.1021/acsomega.9b00614
    18. Tomash S. Sych, Zakhar V. Reveguk, Vladimir A. Pomogaev, Andrey A. Buglak, Anastasiya A. Reveguk, Ruslan R. Ramazanov, Nikolay M. Romanov, Elena V. Chikhirzhina, Alexander M. Polyanichko, Alexei I. Kononov. Fluorescent Silver Clusters on Protein Templates: Understanding Their Structure. The Journal of Physical Chemistry C 2018, 122 (51) , 29549-29558. https://doi.org/10.1021/acs.jpcc.8b08306
    19. Jeffrey T. Petty, Mainak Ganguly, Ahmed I. Yunus, Chen He, Peter M. Goodwin, Yi-Han Lu, Robert M. Dickson. A DNA-Encapsulated Silver Cluster and the Roles of Its Nucleobase Ligands. The Journal of Physical Chemistry C 2018, 122 (49) , 28382-28392. https://doi.org/10.1021/acs.jpcc.8b09414
    20. Yuxiang Chen, M. Lisa Phipps, James H. Werner, Saumen Chakraborty, Jennifer S. Martinez. DNA Templated Metal Nanoclusters: From Emergent Properties to Unique Applications. Accounts of Chemical Research 2018, 51 (11) , 2756-2763. https://doi.org/10.1021/acs.accounts.8b00366
    21. Andrew W. Cook, Trevor W. Hayton. Case Studies in Nanocluster Synthesis and Characterization: Challenges and Opportunities. Accounts of Chemical Research 2018, 51 (10) , 2456-2464. https://doi.org/10.1021/acs.accounts.8b00329
    22. Xi Chen, Esko Makkonen, Dorothea Golze, Olga Lopez-Acevedo. Silver-Stabilized Guanine Duplex: Structural and Optical Properties. The Journal of Physical Chemistry Letters 2018, 9 (16) , 4789-4794. https://doi.org/10.1021/acs.jpclett.8b01908
    23. Jeffrey T. Petty, Mainak Ganguly, Ian J. Rankine, Elizabeth J. Baucum, Martin J. Gillan, Lindsay E. Eddy, J. Christian Léon, and Jens Müller . Repeated and Folded DNA Sequences and Their Modular Ag106+ Cluster. The Journal of Physical Chemistry C 2018, 122 (8) , 4670-4680. https://doi.org/10.1021/acs.jpcc.7b12351
    24. Fangyuan Dong, Enduo Feng, Tingting Zheng, and Yang Tian . In Situ Synthesized Silver Nanoclusters for Tracking the Role of Telomerase Activity in the Differentiation of Mesenchymal Stem Cells to Neural Stem Cells. ACS Applied Materials & Interfaces 2018, 10 (2) , 2051-2057. https://doi.org/10.1021/acsami.7b16949
    25. Samuel L. Brown, Erik K. Hobbie, Sergei Tretiak, and Dmitri S. Kilin . First-Principles Study of Fluorescence in Silver Nanoclusters. The Journal of Physical Chemistry C 2017, 121 (43) , 23875-23885. https://doi.org/10.1021/acs.jpcc.7b04870
    26. Sidsel Ammitzbøll Bogh, Cecilia Cerretani, Laura Kacenauskaite, Miguel R. Carro-Temboury, and Tom Vosch . Excited-State Relaxation and Förster Resonance Energy Transfer in an Organic Fluorophore/Silver Nanocluster Dyad. ACS Omega 2017, 2 (8) , 4657-4664. https://doi.org/10.1021/acsomega.7b00582
    27. Jeffrey T. Petty, Mainak Ganguly, Ian J. Rankine, Daniel M. Chevrier, and Peng Zhang . A DNA-Encapsulated and Fluorescent Ag106+ Cluster with a Distinct Metal-Like Core. The Journal of Physical Chemistry C 2017, 121 (27) , 14936-14945. https://doi.org/10.1021/acs.jpcc.7b04506
    28. Ivan L. Volkov, Anastasiya Smirnova, Anna A. Makarova, Zakhar V. Reveguk, Ruslan R. Ramazanov, Dmitry Yu Usachov, Vera K. Adamchuk, and Alexei I. Kononov . DNA with Ionic, Atomic, and Clustered Silver: An XPS Study. The Journal of Physical Chemistry B 2017, 121 (11) , 2400-2406. https://doi.org/10.1021/acs.jpcb.6b11218
    29. Megalamane S. Bootharaju, Sergey M. Kozlov, Zhen Cao, Moussab Harb, Niladri Maity, Aleksander Shkurenko, Manas R. Parida, Mohamed N. Hedhili, Mohamed Eddaoudi, Omar F. Mohammed, Osman M. Bakr, Luigi Cavallo, and Jean-Marie Basset . Doping-Induced Anisotropic Self-Assembly of Silver Icosahedra in [Pt2Ag23Cl7(PPh3)10] Nanoclusters. Journal of the American Chemical Society 2017, 139 (3) , 1053-1056. https://doi.org/10.1021/jacs.6b11875
    30. Megalamane S. Bootharaju, Raju Dey, Lieven E. Gevers, Mohamed N. Hedhili, Jean-Marie Basset, and Osman M. Bakr . A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines. Journal of the American Chemical Society 2016, 138 (42) , 13770-13773. https://doi.org/10.1021/jacs.6b05482
    31. Vanessa Rück, Vlad A. Neacșu, Mikkel B. Liisberg, Christian B. Mollerup, Park Hee Ju, Tom Vosch, Jiro Kondo, Cecilia Cerretani. Atomic Structure of a DNA‐Stabilized Ag 11 Nanocluster with Four Valence Electrons. Advanced Optical Materials 2024, 12 (7) https://doi.org/10.1002/adom.202301928
    32. Shanshan Yu, Jing Wang, Meijuan Liang, Jinhua Shang, Yingying Chen, Xiaoqing Liu, Dengpeng Song, Fuan Wang. Rational Engineering of a Multifunctional DNA Assembly for Enhanced Antibacterial Efficacy and Accelerated Wound Healing. Advanced Healthcare Materials 2024, 13 (2) https://doi.org/10.1002/adhm.202300694
    33. Rweetuparna Guha, Anna Gonzàlez-Rosell, Malak Rafik, Nery Arevalos, Benjamin B. Katz, Stacy M. Copp. Electron count and ligand composition influence the optical and chiroptical signatures of far-red and NIR-emissive DNA-stabilized silver nanoclusters. Chemical Science 2023, 14 (41) , 11340-11350. https://doi.org/10.1039/D3SC02931J
    34. Peter Mastracco, Stacy M. Copp. Beyond nature's base pairs: machine learning-enabled design of DNA-stabilized silver nanoclusters. Chemical Communications 2023, 59 (69) , 10360-10375. https://doi.org/10.1039/D3CC02890A
    35. Akhilesh Kumar Gupta, Nolan Marshall, Liam Yourston, Lewis Rolband, Damian Beasock, Leyla Danai, Elizabeth Skelly, Kirill A. Afonin, Alexey V. Krasnoslobodtsev. Optical, structural, and biological properties of silver nanoclusters formed within the loop of a C-12 hairpin sequence. Nanoscale Advances 2023, 5 (13) , 3500-3511. https://doi.org/10.1039/D3NA00092C
    36. Manzhou Zhu, Qinzhen Li. Characterizations and atomically precise structures of metal nanoclusters. 2023, 45-78. https://doi.org/10.1016/B978-0-323-90474-2.00004-6
    37. Yu‐An Kuo, Cheulhee Jung, Yu‐An Chen, Hung‐Che Kuo, Oliver S. Zhao, Trung D. Nguyen, James R. Rybarski, Soonwoo Hong, Yuan‐I Chen, Dennis C. Wylie, John A. Hawkins, Jada N. Walker, Samuel W. J. Shields, Jennifer S. Brodbelt, Jeffrey T. Petty, Ilya J. Finkelstein, Hsin‐Chih Yeh. Massively Parallel Selection of NanoCluster Beacons. Advanced Materials 2022, 34 (41) https://doi.org/10.1002/adma.202204957
    38. Bo Zheng, Binhui Pan, Sheng Xu, Zhihua Xu, Guangrong Lu, FangYan Wang, Biyun Fang, ChangLong Xu. Detection of inflammatory bowel disease (IBD)-associated microRNAs by two color DNA-templated silver nanoclusters fluorescent probes. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 2022, 276 , 121185. https://doi.org/10.1016/j.saa.2022.121185
    39. Conglian Yang, Li Kong, Zhiping Zhang. Bioreactor: Intelligent platform for drug delivery. Nano Today 2022, 44 , 101481. https://doi.org/10.1016/j.nantod.2022.101481
    40. Zhenjie Qiao, Yongcun Yan, Sai Bi. Three-dimensional DNA structures in situ decorated with metal nanoclusters for dual-mode biosensing of glucose. Sensors and Actuators B: Chemical 2022, 352 , 131073. https://doi.org/10.1016/j.snb.2021.131073
    41. Yuyuan Zhang, Chen He, Kimberly de La Harpe, Peter M. Goodwin, Jeffrey T. Petty, Bern Kohler. A single nucleobase tunes nonradiative decay in a DNA-bound silver cluster. The Journal of Chemical Physics 2021, 155 (9) https://doi.org/10.1063/5.0056836
    42. Jeffrey T. Petty, Savannah Carnahan, Dahye Kim, David Lewis. Long-lived Ag106+ luminescence and a split DNA scaffold. The Journal of Chemical Physics 2021, 154 (24) https://doi.org/10.1063/5.0056214
    43. Anna Gonzàlez-Rosell, Cecilia Cerretani, Peter Mastracco, Tom Vosch, Stacy M. Copp. Structure and luminescence of DNA-templated silver clusters. Nanoscale Advances 2021, 3 (5) , 1230-1260. https://doi.org/10.1039/D0NA01005G
    44. Zhenjie Qiao, Jian Zhang, Xin Hai, Yongcun Yan, Weiling Song, Sai Bi. Recent advances in templated synthesis of metal nanoclusters and their applications in biosensing, bioimaging and theranostics. Biosensors and Bioelectronics 2021, 176 , 112898. https://doi.org/10.1016/j.bios.2020.112898
    45. Jinliang Ma, Huawei Niu, Shaobin Gu. The spatial organization of trace silver atoms on a DNA template. RSC Advances 2021, 11 (2) , 1153-1163. https://doi.org/10.1039/D0RA08066G
    46. Yun-Peng Xie, Yang-Lin Shen, Guang-Xiong Duan, Jun Han, Lai-Ping Zhang, Xing Lu. Silver nanoclusters: synthesis, structures and photoluminescence. Materials Chemistry Frontiers 2020, 4 (8) , 2205-2222. https://doi.org/10.1039/D0QM00117A
    47. Cecilia Cerretani, Jiro Kondo, Tom Vosch. Removal of the A 10 adenosine in a DNA-stabilized Ag 16 nanocluster. RSC Advances 2020, 10 (40) , 23854-23860. https://doi.org/10.1039/D0RA02672G
    48. Zhen Han, Xi-Yan Dong, Peng Luo, Si Li, Zhao-Yang Wang, Shuang-Quan Zang, Thomas C. W. Mak. Ultrastable atomically precise chiral silver clusters with more than 95% quantum efficiency. Science Advances 2020, 6 (6) https://doi.org/10.1126/sciadv.aay0107
    49. Ziping Wang, Yushuang Fang, Xianfeng Zhou, Zhibo Li, Haiguang Zhu, Fanglin Du, Xun Yuan, Qiaofeng Yao, Jianping Xie. Embedding ultrasmall Ag nanoclusters in Luria-Bertani extract via light irradiation for enhanced antibacterial activity. Nano Research 2020, 13 (1) , 203-208. https://doi.org/10.1007/s12274-019-2598-y
    50. Cecilia Cerretani, Hiroki Kanazawa, Tom Vosch, Jiro Kondo. Crystal structure of a NIR‐Emitting DNA‐Stabilized Ag 16 Nanocluster. Angewandte Chemie 2019, 131 (48) , 17313-17317. https://doi.org/10.1002/ange.201906766
    51. Cecilia Cerretani, Hiroki Kanazawa, Tom Vosch, Jiro Kondo. Crystal structure of a NIR‐Emitting DNA‐Stabilized Ag 16 Nanocluster. Angewandte Chemie International Edition 2019, 58 (48) , 17153-17157. https://doi.org/10.1002/anie.201906766
    52. Zhi Wang, Feng-Lei Yang, Yang Yang, Qing-Yun Liu, Di Sun. Hierarchical multi-shell 66-nuclei silver nanoclusters trapping subvalent Ag 6 kernels. Chemical Communications 2019, 55 (69) , 10296-10299. https://doi.org/10.1039/C9CC05044B
    53. Antonio Aires, Irantzu Llarena, Marco Moller, Jose Castro‐Smirnov, Juan Cabanillas‐Gonzalez, Aitziber L. Cortajarena. A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. Angewandte Chemie 2019, 131 (19) , 6280-6285. https://doi.org/10.1002/ange.201813576
    54. Antonio Aires, Irantzu Llarena, Marco Moller, Jose Castro‐Smirnov, Juan Cabanillas‐Gonzalez, Aitziber L. Cortajarena. A Simple Approach to Design Proteins for the Sustainable Synthesis of Metal Nanoclusters. Angewandte Chemie International Edition 2019, 58 (19) , 6214-6219. https://doi.org/10.1002/anie.201813576
    55. Natalia V. Karimova, Christine M. Aikens. Chiral Noble Metal Nanoparticles and Nanostructures. Particle & Particle Systems Characterization 2019, 36 (5) https://doi.org/10.1002/ppsc.201900043
    56. Yu-An Kuo, Cheulhee Jung, Yu-An Chen, James R. Rybarski, Trung D. Nguyen, Yin-An Chen, Hung-Che Kuo, Oliver S. Zhao, Victor A. Madrid, Yuan-I Chen, Yen-Liang Liu, John A. Hawkins, Jeffrey T. Petty, Ilya J. Finkelstein, Hsin-Chih Yeh, , . High-throughput activator sequence selection for silver nanocluster beacons. 2019, 18. https://doi.org/10.1117/12.2510649
    57. Fátima Linares, Emilio García-Fernández, F. Javier López-Garzón, María Domingo-García, Angel Orte, Antonio Rodríguez-Diéguez, Miguel A. Galindo. Multifunctional behavior of molecules comprising stacked cytosine–Ag I –cytosine base pairs; towards conducting and photoluminescence silver-DNA nanowires. Chemical Science 2019, 10 (4) , 1126-1137. https://doi.org/10.1039/C8SC04036B
    58. Yan Shan Ang, Wei Wen Elvin Woon, Lin-Yue Lanry Yung. The role of spacer sequence in modulating turn-on fluorescence of DNA-templated silver nanoclusters. Nucleic Acids Research 2018, 46 (14) , 6974-6982. https://doi.org/10.1093/nar/gky521
    59. Xingya Jiang, Bujie Du, Yingyu Huang, Jie Zheng. Ultrasmall noble metal nanoparticles: Breakthroughs and biomedical implications. Nano Today 2018, 21 , 106-125. https://doi.org/10.1016/j.nantod.2018.06.006
    60. J. Christian Léon, Darío González‐Abradelo, Cristian A. Strassert, Jens Müller. Fluorescent DNA‐Templated Silver Nanoclusters from Silver(I)‐Mediated Base Pairs. Chemistry – A European Journal 2018, 24 (33) , 8320-8324. https://doi.org/10.1002/chem.201801858
    61. Matthew J. Turnbull, Daniel Vaccarello, Jonathan Wong, Yun Mui Yiu, Tsun-Kong Sham, Zhifeng Ding. Probing the CZTS/CdS heterojunction utilizing photoelectrochemistry and x-ray absorption spectroscopy. The Journal of Chemical Physics 2018, 148 (13) https://doi.org/10.1063/1.5016351
    62. Guangyu Tao, Yang Chen, Ruoyun Lin, Jiang Zhou, Xiaojing Pei, Feng Liu, Na Li. How G-quadruplex topology and loop sequences affect optical properties of DNA-templated silver nanoclusters. Nano Research 2018, 11 (4) , 2237-2247. https://doi.org/10.1007/s12274-017-1844-4
    63. Ruby Srivastava. Complexes of DNA bases and Watson–Crick base pairs interaction with neutral silver Ag n ( n  = 8, 10, 12) clusters: a DFT and TDDFT study. Journal of Biomolecular Structure and Dynamics 2018, 36 (4) , 1050-1062. https://doi.org/10.1080/07391102.2017.1310059
    64. Ran Xiong, Dong Die, Lu Xiao, Yong-Gen Xu, Xu-Ying Shen. Probing the Structural, Electronic, and Magnetic Properties of Ag n V (n = 1–12) Clusters. Nanoscale Research Letters 2017, 12 (1) https://doi.org/10.1186/s11671-017-2394-0
    65. Sungmoon Choi, Junhua Yu. Recent development in deciphering the structure of luminescent silver nanodots. APL Materials 2017, 5 (5) , 053401. https://doi.org/10.1063/1.4974515
    66. Brandon B. Dale, Ravithree D. Senanayake, Christine M. Aikens. Research Update: Density functional theory investigation of the interactions of silver nanoclusters with guanine. APL Materials 2017, 5 (5) https://doi.org/10.1063/1.4977795
    67. Cecilia Cerretani, Miguel R. Carro-Temboury, Stefan Krause, Sidsel Ammitzbøll Bogh, Tom Vosch. Temperature dependent excited state relaxation of a red emitting DNA-templated silver nanocluster. Chemical Communications 2017, 53 (93) , 12556-12559. https://doi.org/10.1039/C7CC06785B
    68. S. Y. New, S. T. Lee, X. D. Su. DNA-templated silver nanoclusters: structural correlation and fluorescence modulation. Nanoscale 2016, 8 (41) , 17729-17746. https://doi.org/10.1039/C6NR05872H
    69. Megalamane S. Bootharaju, Lutfan Sinatra, Osman M. Bakr. Distinct metal-exchange pathways of doped Ag25 nanoclusters. Nanoscale 2016, 8 (39) , 17333-17339. https://doi.org/10.1039/C6NR06353E

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    Pair your accounts.

    Export articles to Mendeley

    Get article recommendations from ACS based on references in your Mendeley library.

    You’ve supercharged your research process with ACS and Mendeley!

    STEP 1:
    Click to create an ACS ID

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    Please note: If you switch to a different device, you may be asked to login again with only your ACS ID.

    MENDELEY PAIRING EXPIRED
    Your Mendeley pairing has expired. Please reconnect